Spelling suggestions: "subject:"sinegordon"" "subject:"dieselfordon""
11 |
Defeitos topológicos e cadeias cíclicas de deformação aplicados em diferentes cenáriosChinaglia, Mariana 30 April 2015 (has links)
Submitted by Izabel Franco (izabel-franco@ufscar.br) on 2016-09-23T14:20:00Z
No. of bitstreams: 1
TeseMC.pdf: 7974204 bytes, checksum: 37e1ce261d2f4d80353e99c7ad41eada (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:39:24Z (GMT) No. of bitstreams: 1
TeseMC.pdf: 7974204 bytes, checksum: 37e1ce261d2f4d80353e99c7ad41eada (MD5) / Approved for entry into archive by Marina Freitas (marinapf@ufscar.br) on 2016-09-26T20:39:29Z (GMT) No. of bitstreams: 1
TeseMC.pdf: 7974204 bytes, checksum: 37e1ce261d2f4d80353e99c7ad41eada (MD5) / Made available in DSpace on 2016-09-26T20:39:36Z (GMT). No. of bitstreams: 1
TeseMC.pdf: 7974204 bytes, checksum: 37e1ce261d2f4d80353e99c7ad41eada (MD5)
Previous issue date: 2015-04-30 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / In order to obtain structures known as defects, it was used a systematic procedure
which holds cyclic deformation chains. This cyclical procedure enables that the initial
defect (used to trigger the chain) is recovered via the process of successive deformations.
This technique was applied considering topological kink like defects derived from two
models, 4 and sine-Gordon, described by a single real scalar eld. The results show that
this procedure can generate simultaneously kink and lump like defects with topological
mass satisfying closed relations. After the detailed description and analysis of this method,
some of its results were applied in brane scenario, where we studied the quantum problem
analogue derived from a metric perturbation. The scenarios includes thick branes results
that could support 4-dimensional gravity inside. Finally, we studied the topological origin
of vacuum transitions in scenarios supported by double-well potentials. It was found
that the Wigner function, constructed by means of the ground and rst excited states
(solutions of the normal modes potential spectrum), performs quantum tunneling moving
from one minimum to another in the potential. The tunneling analysis was performed by
a prescription of the Wigner's function dynamics and the time dependence of stagnation
points for an analytical double well potential. / Com a finalidade de obter estruturas conhecidas como defeitos, foi utilizado um procedimento sistemático que encerra cadeias cíclicas de deformações. Esse procedimento ciclico possibilita que o defeito inicial (utilizado para acionar a cadeia) seja recuperado através do processo de deformações sucessivas. Essa técnica foi aplicada considerando-se defeitos topológicos (tipo kink) derivados de dois modelos, __ x4 e sine-Gordon, descritos por um único campo escalar e real. Os resultados encontrados revelam que esse procedimento
pode gerar simultaneamente defeitos tipo kink e tipo lump (não topológico)
com massas topológicas satisfazendo relações fechadas de vinculo. Após a descriçao e análise detalhadas desse método, alguns de seus resultados foram aplicados em cenário de branas, tencionando-se estudar seu problema quântico derivado de uma perturbação na métrica. O cenário inclui como resultado branas espessas que poderiam sustentar gravidade 4-dimensional em seu interior. Por fim, estudou-se a origem topológica das transições de vácuo em cenários sustentados por potenciais com fundo duplo. Verificou-se que a função de Wigner, construida por meio do estado fundamental e do primeiro estado excitado (soluções do espectro de modos normais do potencial), realiza tunelamento quântico deslocando-se de um minimo ao outro do potencial. A análise do tunelamento foi realizada através de uma prescrição da dinâmica da função de Wigner e da dependência temporal dos pontos de estagnação para um potencial de fundo duplo analitico.
|
12 |
Ολοκληρώσιμες μη γραμματικές μερικές διαφορικές εξισώσεις και διαφορική γεωμετρίαΒλάχου, Αναστασία 09 October 2014 (has links)
Στόχος της παρούσας εργασίας είναι η σύνδεση της μοντέρνας θεωρίας σολιτονίων
με την κλασική διαφορική γεωμετρία. Ειδικότερα, αρχίζουμε με ένα εισαγωγικό μέρος,
όπου παραθέτουμε τις βασικές έννοιες που αφορούν: α) Τις λύσεις μη-γραμμικών μερικών
διαφορικών εξισώσεων (ΜΔΕ) που ονομάζονται σολιτόνια (solitons) και β) Την γεωμετρία
των ομαλών καμπυλών και επιφανειών του Ευκλείδειου χώρου). Ακολουθεί, το δεύτερο
και κύριο μέρος, στο οποίο μελετάμε την σχέση τριών χαρακτηριστικών μη-γραμμικών
εξισώσεων εξέλιξης, της εξίσωσης sine-Gordon, της τροποποιημένης εξίσωσης Korteweg
de Vries (mKdV) και της μη γραμμικής εξίσωσης Schrödinger (NLS), με την θεωρία
καμπυλών και επιφανειών.
Αναλυτικότερα, στο πρώτο μέρος και πιο συγκεκριμένα στο πρώτο κεφάλαιο
παρουσιάζουμε μια ιστορική αναδρομή στην έννοια του σολιτονίου. Στην συνέχεια
αναζητούμε κυματικές-σολιτονικές λύσεις για τις εξισώσεις KdV και NLS. Κλείνουμε
παραθέτοντας τις προϋποθέσεις κάτω από τις οποίες μια μη γραμμική εξίσωση είναι
ολοκληρώσιμη. Επιλέγουμε να αναλύσουμε δύο από αυτές τις προϋποθέσεις,
χρησιμοποιώντας συγκεκριμένα παραδείγματα, ενώ, για τις άλλες δύο, περιοριζόμαστε σε
μια συνοπτική περιγραφή .
Στο δεύτερο κεφάλαιο του εισαγωγικού μέρους γίνεται μια εκτενής αναφορά σε
θεμελιώδεις έννοιες της διαφορικής γεωμετρίας. Πιο συγκεκριμένα, οι έννοιες αυτές
σχετίζονται με την θεωρία καμπυλών και επιφανειών και για ορισμένες από αυτές
παρουσιάζουμε κάποια αντιπροσωπευτικά παραδείγματα.
Ακολουθεί το κύριο μέρος και ειδικότερα το πρώτο κεφάλαιο, στο οποίο,
μελετώντας υπερβολικές επιφάνειες, καταλήγουμε σε ένα κλασικό μη γραμμικό σύστημα
εξισώσεων. Είναι αυτό που οφείλουμε στον Bianchi και το οποίο ενσωματώνει τις
εξισώσεις Gauss-Mainardi-Codazzi. Στην συνέχεια, περιοριζόμαστε στις ψευδοσφαιρικές
επιφάνειες και έτσι καταλήγουμε στην εξίσωση sine-Gordon. Ακολουθεί η ενότητα 1.2,
στην οποία βρίσκουμε τον μετασχηματισμό auto-Bäcklund για την εξίσωση sine-Gordon
και περιγράφουμε την γεωμετρική διαδικασία για την κατασκευή ψευδοσφαιρικών
επιφανειών. Στην ενότητα 1.3, χρησιμοποιώντας τον παραπάνω μετασχηματισμό
Bäcklund, καταλήγουμε στο Θεώρημα Αντιμεταθετικότητας του Bianchi. Συνεχίζουμε με
την ενότητα 1.4, στην οποία παρουσιάζουμε ψευδοσφαιρικές επιφάνειες, οι οποίες
αντιστοιχούν σε σολιτονικές λύσεις της εξίσωσης sine-Gordon. Πιο αναλυτικά, στην
υποενότητα 1.4.1 κατασκευάζουμε την ψευδόσφαιρα του Beltrami, η οποία αντιστοιχεί
στην στάσιμη μονο-σολιτονική λύση. Στην υποενότητα 1.4.2 μελετάμε το ελικοειδές που
δημιουργείται από την έλκουσα καμπύλη, δηλαδή την επιφάνεια Dini, την οποία και
κατασκευάζουμε. Ακολουθεί η υποενότητα 1.4.3, όπου, χρησιμοποιώντας το θεώρημα
μεταθετικότητας, καταλήγουμε στην λύση δύο-σολιτονίων για την εξίσωση sine-Gordon
και συνεχίζουμε με την υποενότητα 1.4.4, όπου κατασκευάζουμε περιοδικές λύσεις των
δύο-σολιτονίων γνωστές ως breathers. Στο δεύτερο κεφάλαιο μελετάμε την κίνηση συγκεκριμένων καμπυλών και
επιφανειών, οι οποίες οδηγούν σε σολιτονικές εξισώσεις. Ειδικότερα, στην ενότητα 2.1
καταλήγουμε στην εξίσωση sine-Gordon μέσω της κίνησης μιας μη-εκτατής καμπύλης
σταθερής καμπυλότητας ή στρέψης. Ακολουθεί η ενότητα 2.2, όπου η εξίσωση sine-
Gordon προκύπτει ως η συνθήκη συμβατότητας για το 2 2 γραμμικό σύστημα AKNS. Στην
συνέχεια, στην ενότητα 2.3 ασχολούμαστε με την κίνηση ψευδοσφαιρικών επιφανειών.
Πιο συγκεκριμένα, στην υποενότητα 2.3.1 συνδέουμε την κίνηση μιας ψευδοσφαιρικής
επιφάνειας με ένα μη αρμονικό μοντέλο πλέγματος, το οποίο ενσωματώνει την εξίσωση
mKdV. Επιπλέον, στην υποενότητα 2.3.2 δείχνουμε ότι η καθαρά κάθετη κίνηση μιας
ψευδοσφαιρικής επιφάνειας, παράγει το κλασικό σύστημα Weingarten. Ολοκληρώνουμε
την ενότητα 2.3 με την κατασκευή των μετασχηματισμών Bäcklund τόσο για το μοντέλο
πλέγματος, όσο και για το σύστημα Weingarten. Το κεφάλαιο κλείνει με την ενότητα 2.4,
όπου μέσω της κίνησης μιας μη εκτατής καμπύλης μηδενικής στρέψης, καταλήγουμε στην
εξίσωση mKdV. Στην συνέχεια μελετάμε την κίνηση των επιφανειών Dini και τελικά
κατασκευάζουμε επιφάνειες που αντιστοιχούν στο τριπλά ορθογώνιο σύστημα Weingarten.
Στο τρίτο και τελευταίο κεφάλαιο επικεντρωνόμαστε στην εξίσωση NLS. Πιο
συγκεκριμένα, στην ενότητα 3.1 καταλήγουμε στην εξίσωση NLS μ’ έναν καθαρά
γεωμετρικό τρόπο. Επιπλέον, κατασκευάζουμε επιφάνειες, οι οποίες αντιστοιχούν στην
μονο-σολιτονική λύση της εξίσωσης NLS και παρουσιάζουμε γι’ αυτές κάποιες γενικές
γεωμετρικές ιδιότητες. Το κεφάλαιο 3 ολοκληρώνεται με την ενότητα 3.3 όπου αρχικά
λαμβάνουμε ακόμη μια φορά την εξίσωση NLS, χρησιμοποιώντας την μελέτη στην
κινηματική των Marris και Passman. Κλείνουμε και αυτό το κεφάλαιο με τον auto-
Bäcklund μετασχηματισμό για την εξίσωση NLS και επιπλέον παρουσιάζουμε χωρικά
περιοδικές λύσεις της, γνωστές ως smoke-ring (δαχτυλίδι-καπνού). / The aim of this diploma thesis is to find a connection between modern soliton
theory and classical differential geometry. More particularly, we begin with an introductory
section, where we present the basic concepts regarding soliton equations and the geometry
of smooth curves ans surfaces. This is followed by the main body of the thesis, which
focuses on three partial differential equations, namely, the sine-Gordon equation, the
modified Korteweg de Vries equation (mKdV) and the nonlinear Scrödinger equation
(NLS), and their connection to the theory of curves and surfaces.
The first introductory chapter is a historical overview of the notion of solitons. We
then seek travelling wave solutions for the KdV and NLS equations. Closing, we quote the
conditions under which a nonlinear equation is integrable. We choose to analyze in detail
two of these conditions while we settle for a brief description of the other two.
The second chapter is an extensive report on fundamental concepts of differential
geometry, namely, those associated with the theory of curves and surfaces in Euclidean
three-dimensional space, and we present some representative examples.
Chapter 1 of the main part, opens with the derivation of a classical nonlinear
system which we owe to Bianchi and embodies the Gauss-Mainardi-Codazzi equations. We
then specialise to pseudospherical surfaces and produce the sine-Gordon equation. Section
1.2 includes the derivation of the auto-Bäcklund transformation for the sine-Gordon
equation along with the geometric procedure for the construction of pseudospherical
surfaces. In section 1.3, we use the above transformation to conclude to Bianchi’s
Permutability Theorem. We continue to section 1.4, where we present certain
pseudospherical surfaces. These surfaces correspond to solitonic solutions of the sine-
Gordon equation, i.e. in subsection 1.4.1 we construct the pseudosphere which corresponds
to the stationary single soliton solution. Also, in subsection 1.4.2 we examine the helicoid
that is created by the tractrix, namely, the Dini surface. In section 1.4.3, by use of Bianchi’s
Permutability Theorem, we end up in the two-soliton solution for the sine-Gordon equation
and continue in the next subsection, where we present periodic two-soliton solutions,
known as breathers.
In Chapter 2, we show how certain motions of curves and surfaces can lead to
solitonic equations. More precisely, in section 2.1, we arrive at the sine-Gordon equation,
through the motion of an inextensible curve of constant curvature or torsion. Then, section
2.2 displays how the sine-Gordon equation arises as the compatibility condition for the
linear 2 2 AKNS system. In section 2.3 we study the movement of pseudospherical
surfaces. In particular, we connect, in subsection 2.3.1, the motion of a pseudospherical
surface to a continuum version of an unharmonic lattice model, which encorporates the
mKdV equation. Moreover, in subsection 2.3.2, we show that a purely normal motion of a
pseudospherical surface produces the classical Weingarten system. We conclude section 2.3 by constructing the Bäcklund transformation both for the lattice model and the
Weingarten system. The chapter ends with section 2.4, where through the motion of an
inextensible curve of zero torsion, we produce the mKdV equation. Furthermore, we
investigate the motion of Dini surfaces and, finally, construct surfaces corresponding to the
triply orthogonal Weingarten system.
The third and final chapter focuses on the NLS equation. In section 3.1 we produce
the NLS equation through a purely geometric manner. We then construct surfaces, that
correspond to the single-soliton solution of this equation, and also present certain general
geometric properties of them. We conclude the final chapter with the auto-Bäcklund
transformation for the NLS equation and the presentation of spatially periodic solutions,
known as smoke-ring.
|
13 |
Solitons on lattices and curved space-timeKotecha, Vinay January 2001 (has links)
This thesis is concerned with solitons (solutions of certain nonlinear partial differential equations) in certain cases when the underlying space is either a lattice or curved. Chapter 2 of the thesis is concerned with the outcome of collisions between a kink (a 1-dimensional soliton) and an antikink for certain topological discrete (TD) systems. The systems considered are the TD sine-Gordon and the TD ø(^4) For the TD sine-Gordon system it is found that the kink can support an internal shape mode which plays an important role during the collisions. In particular, this mode can be excited during collisions and this leads to spectacular resonance effects. The outcome of any particular collision has sensitive dependence on the initial conditions and could be either a trapped kink-antikink state, a "reflection" or a "transmission”. Such resonance effects are already known to exist for the conventional discrete ø(^4) system, and the TD ø(^4) system is no different, though the results for the two are not entirely similar. Chapter 3 considers the question of the existence of explicit travelling kink solutions for lattice systems. In particular, an expression for such a solution for the integrable lattice sine-Gordon system is derived. In Chapter 4, by reducing the Yang-Mills equations on the (2 + 2)-dimensional ultrahyperbolic space-time, an integrable Yang-Mills-Higgs system on (2 + 1) dimensional de Sitter space-time is derived. It represents the curved space-time version of the Bogomolny equations for monopoles on R(^3) . Using twister methods, various explicit solutions with gauge groups U(l) and SU(2) are constructed. A multi-solution SU(2) solution is also presented.
|
14 |
Analyticity and scaling in quantum field theoryKjaergaard, Lars January 2000 (has links)
The theory describing the scaling properties of quantum field theory is introduced. The symmetry principles behind scale and conformal transformations are reviewed together with the renormalisation group. A method for improving perturbative calculations of physical quantities in the infra-red limit is developed using general analyticity properties valid for all unitary quantum field theories. The infra-red limit of a physical quantity is shown to equal the limiting value of the Borel transform in a complex scale parameter, where the order of the Borel transform is related to the domain of analyticity. It is shown how this general result can be used to improve perturbative calculations in the infra-red limit. First, the infra-red central charge of a perturbed conformal field theory is considered, and for the unitary minimal models perturbed by ɸ(1,3) the developed approximation is shown to be very close to the exact results by improving only a one loop perturbation. The other example is the infra-red limit of the critical exponents of x(^4) theory in three dimensions, where our approximation is within the limits of other approximations. The exact renormalisation group equation is studied for a theory with exponential interactions and a background charge. It is shown how to incorporate the background charge, and using the operator product expansion together with the equivalence between the quantum group restricted sine-Gordon model and the unitary minimal models perturbed by ɸ(1,3), the equation obtained is argued to describe the flow between unitary minimal models. Finally, a semi-classical approximation of the low energy limit of a bosonic membrane is studied where the action is taken to be the world-volume together with an Einstein-Hilbert term. A solution to the linearized equations of motion is determined describing a membrane oscillating around a flat torus.
|
15 |
Classical and quantum aspects of topological solitons (using numerical methods)Weidig, Tom January 1999 (has links)
In Introduction, we review integrable and topological solitons. In Numerical Methods, we describe how to minimize functionals, time-integrate configurations and solve eigenvalue problems. We also present the Simulated Annealing scheme for minimisation in solitonic systems. In Classical Aspects, we analyse the effect of the potential term on the structure of minimal- energy solutions for any topological charge n. The simplest holomorphic baby Skyrme model has no known stable minimal-energy solution for n > 1. The one-vacuum baby Skyrme model possesses non-radially symmetric multi-skyrmions that look like 'skyrmion lattices' formed by skyrmions with n = 2. The two-vacua baby Skyrme model has radially symmetric multi- skyrmions. We implement Simulated Annealing and it works well for higher order terms. We find that the spatial part of the six-derivative term is zero. In Quantum Aspects, we find the first order quantum mass correction for the Ф(^4) kink using the semi-classical expansion. We derive a trace formula which gives the mass correction by using the eigenmodes and values of the soliton and vacuum perturbations. We show that the zero mode is the most important contribution. We compute the mass correction of Ф(^4) kink and Sine-Gordon numerically by solving the eigenvalue equations and substituting into the trace formula.
|
16 |
Modified Stochastic Sine-Gordon EquationTalafha, Abdallah M. 01 December 2014 (has links)
The main focus of my dissertation is the Modified Stochastic Sine-Gordon Equation: utt = 2uxx − ut − sin(|u|^(&gamma)) + b(u, du/dt)dW/dt where &gamma > 0 is the parameter of the power of non-linearity, &delta &ge 0 is the magnitude of non-linearity, &alpha> 0 be the damping parameter, and &sigma the diffusion intensity, on one dimensional domain. We analyze the properties of the solution of the SPDE by the eigenfunctions approach allowing us to truncate the infinite-dimensional stochastic system (i.e the SDEs of Fourier coefficients related to the SPDE), to control its energy, existence, uniqueness, continuity and stability. The analysis relies on the investigation of expected Lyapunov functional of the energy in terms of all system-parameters. We simulate the model with respect to all system-parameters to visualize our conclusions.
|
17 |
Stabilité et dynamique d'écoulements de fluides parfaits barotropes autour d'un obstacle en présence de dispersionPHAM, Chi-Tuong 23 September 2003 (has links) (PDF)
Cette thèse regroupe une série de travaux ayant tous trait à des systèmes hamiltoniens non linéaires spatialement étendus présentant une bifurcation nœud-col. Elle est constituée de deux parties. Nous étudions dans une première partie la transition à la dissipation de systèmes unidimensionnels soumis à un forçage local et régis par des équations de type sine-Gordon ou Schrödinger non linéaire (ESNL). Nous en calculons analytiquement les solutions stationnaires et caractérisons le comportement dynamique au voisinage de celles-ci près de la bifurcation. Lorsque la relation de dispersion des systèmes possède une fréquence de coupure, le comportement dynamique est caractéristique de systèmes hamiltoniens. A contrario, lorsque la relation de dispersion ne possède pas de fréquence de coupure, la dynamique du système se couple avec l'émission d'ondes sonores qui joue le rôle d'un amortissement effectif. Elle devient alors typique de systèmes dissipatifs. En outre, les modes propres temporels du système subissent une délocalisation spatiale. La seconde partie de la thèse concerne l'étude de deux types d'écoulements bidimensionnels de fluides parfaits barotropes autour d'un obstacle : un écoulement décrit par l'ESNL et un écoulement à surface libre dans l'approximation eau peu profonde, où sont pris en compte les effets dispersifs dus aux effets de tension de surface. Lorsque la longueur caractérisant la dispersion des ondes sonores tend vers zéro, ces deux écoulements se réduisent à l'écoulement autour d'un disque d'un fluide eulérien compressible, auquel se superpose une couche limite que nous calculons analytiquement. Par des méthodes de suivi de branches fondés sur des développements pseudo-spectraux, nous calculons le diagramme de bifurcation complet des deux écoulements. En étudiant la dynamique des deux systèmes au-delà de la bifurcation, nous mettons en évidence une émission d'excitations (dans le cas de l'ESNL) dont la nature dépend du rapport de la longueur de cohérence sur la taille de l'obstacle. Dans le cadre de l'écoulement en eau peu profonde, cette émission est remplacée par une singularité à temps fini de démouillage.
|
18 |
Supratransmission et bistabilité nonlinéaire dans<br />les milieux à bandes interdites photoniques et électroniquesChevriaux, D. 15 June 2007 (has links) (PDF)
On étudie, dans cette thèse, la diffusion d'ondes dans différents milieux nonlinéaires possédant une bande interdite naturelle. On montre, en particulier, l'existence d'un comportement de bistabilité dans les milieux régis, soit par l'équation de sine-Gordon (chaîne de pendules courte, réseaux de jonctions Josephson, double couches à effet Hall quantique), soit par l'équation de Schrödinger nonlinéaire (milieu Kerr et milieu de Bragg), dans les cas discrets et continus. Ces différents milieux sont soumis à des conditions aux bords périodiques, dont la fréquence est prise dans la bande interdite et avec une amplitude déterminant l'état de stabilité du système. En effet, pour une amplitude suffisante (supratransmission), le milieu n'est plus réfléchissant et absorbe de l'énergie, faisant passer le signal de sortie d'un état d'amplitude évanescente vers un état de très grande amplitude. On donne, par ailleurs, une description analytique complète de la bistabilité qui permet de comprendre les différents états stationnaires observés dans ces milieux et de prédire le passage d'un état à un autre.
|
19 |
Aux frontieres de la théorie des champs: I. De l'hydrodynamique aux champs multivalués. II. Construction de théories de champs de spin élevé en interaction.Faquir, Mohamed 19 December 2006 (has links) (PDF)
I. L'équation décrivant la dynamique des ondes courtes à la surface d'un fluide après une réduction de Green-Naghdi des équations d'Euler se trouve être un nouveau système intégrable exhibant des propriétés remarquables. Une relation insoupçonnée avec le modèle de sine-Gordon, au travers de transformations impliquant une quantité conservée, nous permet en effet d'obtenir des solutions singulières et multivaluées pour la nouvelle équation intégrable et, par la suite, d'en construire une description en termes du Lagrangien d'un champ relativiste. L'existence de modèles très similaires au système hydrodynamique et partageant les mêmes propriétés nous pousse à rechercher les conditions d'apparition d'une telle relation dans un cadre plus général puis à construire un modèle non relativiste mélangeant deux des équations obtenues auparavant. Cette partie se clôt sur une étude aux premiers ordres quantiques des effets de ces transformations responsables de l'apparition de champs relativistes multivalués.<br />II. Dans l'optique d'arriver à une théorie cohérente décrivant des champs de spin élevé en interaction, nous présentons dans la seconde partie une construction, basée sur la théorie des champs de cordes, qui mélange tous les niveaux de spin. Grâce à des contraintes d'hermiticité, on détermine dans un premier temps les éléments d'un groupe de jauge et leur loi de composition. Les champs de jauge sont choisis comme la représentation adjointe du groupe puis modifiés pour se rapprocher des définitions usuelles. Finalement, l'étude du spin 3 nécessite l'introduction de champs auxiliaires qui nous permettent d'obtenir un Lagrangien pour le champ de spin 2 massif en généralisant une méthode introduite par Veltman dans le cas de Yang-Mills.
|
20 |
Extensions supersymétriques des équations structurelles des supervariétés plongées dans des superespacesBertrand, Sébastien 06 1900 (has links)
No description available.
|
Page generated in 0.0453 seconds