• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 28
  • 24
  • 19
  • 8
  • 1
  • 1
  • 1
  • Tagged with
  • 91
  • 91
  • 23
  • 13
  • 13
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Aging Response And Its Effect On Mechanical Properties Of Cu-Al-Ni Single Crystal Shape Memory Alloy

Suresh, N 02 1900 (has links) (PDF)
No description available.
62

Understanding the Chemistry and Mechanical Properties of Metal-Organic Framework-Polymer Composites

Yang, Xiaozhou 27 July 2023 (has links)
Metal-organic frameworks (MOFs) are an emerging class of materials exhibiting desirable properties and functionalities for a variety of applications, including catalysis, molecular separation, gas storage, and mechanical reinforcement. However, the majority of MOFs exist as particulate powders, limiting their transportability and applicability in practical fields. Polymers, on the other hand, are one of the most widely used materials in the world owing to their facile processability and low production cost. Combining MOFs and polymers to form MOF-polymer composites can potentially maintain the merits of both materials while overcoming drawbacks of each individual component. Specifically, MOFs are promising candidates as mechanical reinforcers for polymers because of their low density, high specific modulus, and controllable dimensions. Herein, we aim to provide a comprehensive investigation into the chemistry and mechanical properties of MOF-polymer composites. Various governing parameters, including particle aspect ratio (AR), MOF-particle interface, and intrinsic mechanical properties of MOFs, were thoroughly studied to construct an optimal pathway for fabricating mechanically reinforced MOF-polymer composites. Chapter 1 presents an introduction to MOFs, polymer composites, and mechanical properties and characterizations of polymeric materials. It serves as a foundation of this dissertation and outlines essential concepts for the scientific background. The primary factors that impact the mechanical properties of polymer composite are highlighted, leading to the following three research chapters. Comprehensive background on various characterization techniques that aim at mechanical properties is covered in detail. Chapter 2 focuses on the role of MOF AR on the mechanical properties of MOF-polymer composites. PCN-222, a Zr-MOF with porphyrin linkers, was synthesized with AR ranging from 3.4 to 54. The crystallinity and chemical structure of the MOFs remained consistent for different ARs, ensuring that the AR was the only variable in determining the mechanical reinforcement. Fabricated through the doctor-blade technique, the MOF-PMMA composite films showed homogeneous MOF distribution and alignment. Tensile tests revealed that Young's modulus of the composites increased with MOF AR, exhibiting a good agreement with a modified Halpin-Tsai model. Both storage and loss moduli were also enhanced following increased MOF AR. In addition, the thermal stability was also improved with the addition of MOF particles. In Chapter 3, the authors extend the understanding of mechanical properties of MOF-polymer composites to the interfacial properties between the two materials. Pristine MOFs often lack strong interactions with a polymer matrix due to the difference in chemical/physical properties. The authors developed a three-step synthetic route to grow PMMA on the surface of PCN-222. Owing to an efficient surface-initiated polymerization technique, the PMMA was successfully grafted with high molecular weight and grafting density. The molecular weight of PMMA could be controlled by simply varying polymerization time. The PMMA-grafted PCN-222 was manufactured along with PMMA matrix to form composite films. Mechanical analysis proved that the mechanical reinforcement was improved with increasing grafted molecular weight. Chapter 4 presents an experimental approach to unveil the structure-mechanical property of MOF single crystals, which provides insights on designing MOFs with desired mechanical strength. Zeolitic imidazolate frameworks (ZIFs), a subdivision of MOFs, were chosen as the template owing to their facile synthesis, structural diversity, and high crystallinity. Two types of micron-sized ZIFs, ZIF-8 with Zn2+ node and ZIF-67 with Co2+ node, were synthesized to compare the effect of metal-linker bond. Moreover, the linker composition was varied to examine the difference in crystal structure and defect level. The mechanical properties of these ZIF samples were revealed by nanoindentation on single particles. Overall, the stronger metal-linker bond and high crystallinity were able to yield the highest elastic modulus and hardness. Finally, Chapter 5 offers a comprehensive review on polymer-grafted MOF particles regarding the synthesis and applications associated with surface-anchored polymers. Various polymerization techniques were summarized, and their adjustment and limitations with respect to MOFs were highlighted. The novel and unique applications arisen from polymer-grafted MOFs and Mixed Matrix Membranes were thoroughly discussed. / Doctor of Philosophy / Polymer composites, a combination of polymer matrix and particle fillers, have shown great applicability in nearly every aspect of our daily lives. For example, rubber tires, composed of synthetic polymeric rubber and inorganic particle fillers (e.g., carbon black and glass fiber), have been a great booster for modern society owing to their durability and mechanical strength. Aircraft are also made of roughly 50% composite materials, because of their lightweight and high mechanical strength. Herein, we present a novel type of polymer composite using metal-organic frameworks (MOFs) as mechanical reinforcers. Thanks to the low density, high modulus, and tunable geometry, MOFs can be ideal candidates for mechanically reinforced polymer composites. In this dissertation, several fundamental parameters that impact the mechanical properties of MOF-polymer composites are discussed. The intent of this work is to provide mechanistic insights on the development of outstanding lightweight composites with efficient mechanical reinforcement.
63

CRESCIMENTO E CARACTERIZAÇÃO DE FIBRAS MONOCRISTALINAS DE FLUORETOS DO TIPO LiY1-xTRxF4 (TR = TERRAS-RARAS) / GROWTH AND CHARACTERIZATION OF FLUORIDE CRYSTALLINE FIBRES TYPE LiY1-xTRxF4 (RE = RARE-EARTH)

Santo, Ana Maria do Espirito 29 September 2005 (has links)
Neste trabalho, foram estudados os processos de crescimento e caracterização de fibras monocristalinas de LiF e de LiYF4 (YLF) puras e dopadas com érbio (Er) ou neodímio (Nd) para aplicações ópticas. O crescimento destas fibras foi efetuado pelo método de micro-pulling-down (µ-PD) e o uso desta técnica é inédito para a obtenção de fibras monocristalinas destes fluoretos. Para tal finalidade, foi inicialmente construído no IPEN, um protótipo do sistema de µ-PD no modo resistivo para a compreensão dos parâmetros experimentais. Posteriormente, um equipamento comercial foi instalado e especialmente adaptado para o puxamento de fibras de fluoretos. Foram obtidas fibras monocristalinas de LiF, com boa qualidade óptica e estrutural e dimensões uniformes: diâmetros entre 0,5 e 1 mm e comprimentos de até 15 cm. A avaliação para o uso destas fibras como meio laser ativo indicou que suas propriedades ópticas são semelhantes às observadas em cristais volumétricos. Foi investigada a influência da geometria do capilar e cadinho, da atmosfera de crescimento e da composição de partida na estabilidade do processo de crescimento de fibras de YLF pelo método de µ-PD. Este material é muito sensível às contaminações procedentes da atmosfera de crescimento e a formação da fase estequiométrica, durante o crescimento da fibra, depende fortemente da atmosfera, da velocidade de puxamento e da composição de partida. Foram obtidas, de forma reprodutível, fibras puras com diâmetro uniforme (0,5 à 0,8 mm) e longo comprimento da fase estequiométrica (até 60 mm). Fibras de YLF com dopagens nominais de 10 mol% e 40 mol% de Er e com 1,7 mol% de Nd foram também obtidas com sucesso. As fibras de YLF:Er são homogêneas e livres de trincas, com distribuição regular de dopante e concentração próxima ao valor nominal. O perfil de distribuição de Nd na fibra de YLF:Nd é diferenciado. O valor do coeficiente de distribuição efetivo k foi estimado em 0,58; valor este superior aos valores encontrados para cristais volumétricos de YLF:Nd. A investigação das propriedades ópticas de absorção e emissão evidenciou características semelhantes às observadas em cristais volumétricos dopados com Nd, permitindo considerar as fibras de YLF:Nd com potencial para uso como meio laser ativo em dispositivos ópticos compactos com bombeamento por diodo. / In this work we present the growth and characterization of LiF and pure and rare-earth doped (Er and Nd) yttrium-lithium tetra-fluoride (LiYF4 or YLF) by the micro-pulling-down technique (µ-PD). The use of this technique is original for the present purpose. A m-PD prototype in the resistive mode was firstly built to understand the most important operational parameters. A commercial equipment was later installed and specifically modified to grow fluoride fibres. Regular and transparent single-crystalline fibres of LiF (diameter of 0.6 mm and length up to 150 mm) were obtained. LiF crystalline fibres as a potential laser media presented the same spectroscopic properties of bulk crystals. The influence of capillary and crucible shapes, growth atmosphere and start composition stoichiometry on the growth process of YLF fibers were also investigated. In general, the fluorides are very sensitive to moisture contamination. The growth atmosphere plays an important role on the stoichiometry deviation. Since this fluoride melts incongruently, any compositional changes inflences the solidification behavior of the material. Additionally, a limited pulling rate is required to the YLF phase formation and to the compositional homogeneity along the fiber. Homogeneous and regular section YLF fibres, with diametres between 0.5 to 0.8 mm and up to 60 mm in length, were obtained in a suitable and reproducible growth process. Er-doped (with nominal concentration of 10 and 40 mol%) and Nd-doped (with nominal concentration of 1.7 mol%) fibres were also successfully grown. Er-doped fibres were crack-free and the dopant concentration was practically uniform along the YLF phase. However, Nd–doped fibres presented a short initial transient in its concentration. The Nd distribution coefficient was evaluated as 0.58 for the YLF fibre. This value is greater than those estimated for YLF bulk crystals grown by normal freezing processes. The optical properties of the YLF:Nd fibres were similar to those observed in bulk crystals, which drive us to consider the YLF:Nd fibres as an important material to build compact all-solid-state lasers directly pumped by diodes.
64

Microstructure and texture evolution during annealing of plane strain compressed fcc metals / Modifications de la microstructure et de la texture pendant le recuit des métaux déformés de structure c.f.c

Miszczyk, Magdalena Maria 14 June 2013 (has links)
Le présent programme de recherche constitue une tentative d’expliquer les mécanismes de transformation contrôlant la transformation de la texture qui a lieu lors des opérations technologiques du recuit. Les expériences ont été conduites sur les échantillons monocristallins dont les orientations étaient dites « stables »: Goss{110}<001> et ‘brass’{110}<112>, déformées jusqu’à la plage des degrés importants de déformation lors de l’essai de compression encastrée modélisant le processus de laminage. Ensuite les échantillons ont été soumis au recuit à des températures situées dans le domaine de recristallisation primaire. L’analyse des transformations cristallographiques a été menée sur des métaux représentant un large spectre d’énergie du défaut d’empilement : petite - Cu-2% Al, moyenne - Cu et Ni grande - Al et Al-1%Mn. Lors du travail on a analysé les mécanismes de contrôle des phases initiales de recristallisation. L’analyse détaillée de la désorientation à travers le front de recristallisation a montré clairement que les orientations initiales des grains n’étaient pas dues au hasard. Les axes de désorientation dans la relation à travers le front de recristallisation se trouvaient près des normales aux plans {111}, mais ne se recouvraient que sporadiquement avec la direction <111>. La distribution de l’angle de rotation en relation à travers le front de recristallisation présentait les préférences à la formation de deux maxima : près des valeurs 30° et 45-55°. / The present research program is a renewed attempt at explaining the transformation mechanisms. The experimental investigations has focused on a model analysis of transformations which occur in single crystals, with stable orientations, i.e. Goss{110}<001> and brass{110}<112>, the deformation is carried out by channel-die compression to simulate the rolling process of thin sheets. Next, the samples were annealed at temperatures of primary recrystallization. The analysis of crystallographic transformations was conducted on metals from a wide spectrum of stacking fault energy: low – Cu-2%Al, average- Cu and Ni to high Al and Al-1%Mn. At work were analyzed the mechanisms controlling the initial stages of recrystallization. Detailed analysis of disorientation across the recrystallization front clearly showed that the initial grain orientations were not accidental. The axes of disorientation in the relationship across the front of recrystallization were near normal in {111} planes, but only sporadically covered with the <111> direction. The distribution of the recrystallization angle rotation in relation to the preferences presented through the formation of two maxima values near 30 ° and 45-55 °.
65

Growth And Characterization Of Technologically Important Nonlinear Optical Crystals: Cesium Lithium Borate And Potassium Di-Deuterium Phosphate

Karnal, Ashwani Kumar 07 1900 (has links)
Present day advanced technologies heavily rely on one particular class of matter, i.e. the crystals. It is the periodic nature of the atoms and the properties arising due to the periodicity in crystals that is exploited to meet various technological feats. The technological revolutions in the semiconductor, optics and communication industries are the examples. The anisotropy in the crystals gives them enhanced properties as required in the field of non-linear optics. The field of non-linear optics became practically a reality after the invention of lasers. The coherent and monochromatic optical beams in the visible and ultraviolet ranges are in high demand due to their application in the fields like material processing, semiconductor lithography, laser micromachining, laser spectroscopy, photochemical synthesis, inertial confinement fusion and other basic scientific studies. In this thesis, work on the growth and characterization of two technologically important non-linear optical crystals has been carried out after developing the necessary instrumentation and some novel techniques for synthesis and growth. Also, studies on the glassy nature of one of the crystals have been carried out. This thesis consists of seven chapters. The first chapter gives a brief introduction to the nonlinear optical phenomenon, crystal growth and glassy state. Instrumentation is the backbone of crystal research technology. Without precision growth equipments large size crystals cannot be grown and without precision characterization instrumentation no conclusion regarding the quality and usefulness of the grown material can be drawn. The work reported in Chapter 2 describes the instrumentation developed for the growth, processing and characterization of crystals grown by solution and melt growth techniques. In low temperature solution growth, crystal growth workstations have been developed using tanks (made of acrylic), heating elements, and stirring propellers. Cooling coils have been inserted into the designed water bath to grow crystals below ambient also. This bath has an advantage to work over a wide range of temperatures, so that maximum retrieval of the material is possible. The growth of large crystals is usually hindered due to spurious nucleation precipitating during the growth process. A novel nucleation-trap crystallizer has been designed and developed that facilitates the continuation of the growth run in spite of extra nucleation precipitating after seeding. In this crystallizer, the spurious nuclei and any other particles generated after the filtration are forced into a well, and the growth of spurious nuclei is arrested by manipulating the temperature of this trap. Achieving adequate heat flow and mass flow profiles is of vital importance for growing good quality crystals. An optimized stirring procedure for the solution or melt is needed for ensuring the desired supply of growth units to the crystal-nutrient interface, and for transporting away any debris of the crystal-growth process. An ACRT set up has been designed and developed. For the growth of crystals by the flux technique and from direct melt, a crystal puller has been designed and developed. The crystal puller consists of a crystal rotation unit, slow and fast pulling mechanisms and a control unit. The pulling assembly is protected from damage caused by possible human errors through interlock mechanisms. The vibration at the shaft of the seed rotation assembly has been minimized by using a dc motor for rotation. A versatile triangular / square wave oscillator has been designed for developing a dc motor control. By implementing this control, the speed of the motor does not vary with supply-voltage variations. A quarter-step switching logic sequence is introduced for stepper motors, which is used for the slow UP/DOWN movement of the puller. This puller can be controlled locally by a control panel provided with the puller, or through a PC remotely by bypassing the local control. Additionally, for the processing and characterization of the grown DKDP crystals, a closed-loop thread-cutter, a ferroelectric loop tracer, and a computer-controlled system for measuring the half-wave voltage have been developed. A novel mercury encapsulant seeding technique that facilitates the processing of solution with immersed seed is invented and has been described in Chapter 3. This technique allows processing of solution with the seed inside the growth chamber, and still avoids contamination of the solution and formation of crystal clusters that are normally generated when seed is inserted after processing of the solution. DKDP and KAP crystal seeds have been used to check the dissolution of seeds, if any, when immersed in pure water for several hours and at high temperatures after introducing the seal. It has been observed that the mercury seal does not allow creeping of water into the seed holder, and there is no dissolution of the seed. This technique has been practically implemented for the growth of crystals from aqueous solution and its usefulness has been demonstrated by growing ammonium acid phthalate, potassium acid phthalate and potassium di-deuterium phosphate crystals. Nonlinear-optical crystals find major use in inertial-confinement fusion (ICF) experiments. For such applications, nonlinear crystals with very large damage-resistance are needed. Alternatively, crystals with moderate damage resistance but large size can be used for frequency-conversion for efficient plasma experiments. Potassium di-hydrogen phosphate, KH2PO4 (KDP) and its deuterated analog, K(DxH1-x)2PO4 (DKDP) are at present the only nonlinear optical crystals which can be grown to large sizes and are suitable for ICF studies. Also, solid-state light valves, light deflectors, and laser communication devices require large and perfect tetragonal DKDP crystals, with high deuterium concentration for easier operation. Chapter 4 describes the growth and characterization of DKDP crystals. DKDP crystals have been grown by all the three techniques i.e. conventional, platform and novel mercury encapsulant seeding techniques. Details about a new approach for the synthesis of DKDP solution have been given. A comparative study of the grown crystals by mercury-encapsulant technique and other techniques is described. Habit modification was observed due to the placement of seed crystals at an off-centre position and orientation in mercury encapsulant seeding technique and has been discussed. The grown crystals have been characterized for homogeneity, dislocations, transmission, DSC, rockng curve, etc. Due to the higher photon energies and the ability to be more tightly focused, coherent radiations of shorter wavelength (deep-UV) are in demand. The photon energies in this region are sufficient for bond-breaking processes in many materials, and find applications in fields like material processing, semiconductor lithography, laser micromachining, laser spectroscopy, photochemical synthesis, etc. Although excimer lasers (XeCl, KrF, ArF etc.) produce significant power in the deep-UV region, these laser systems involve corrosive gases, and are bulky, apart from requiring regular maintenance. A maintenance-free, compact, solid-state laser is preferable. But this, in turn, requires an efficient NLO crystal in that region. CLBO is one such crystal. Growth of CLBO crystals has been carried out by the flux-growth technique using B2O3-deficient flux, as well as from stoichiometric melt and has been discussed in Chapter 5. It was observed that the nucleation of material on platinum wire or spontaneous nucleation was difficult to achieve in spite of high supercooling. After forcing cracks into the mass deposited on platinum wire nucleation could be achieved. The growth of crystals was carried out on seeds with different orientations. Transmission studies, etch-pit studies and harmonic-generation experiments were performed on the grown crystals. The glass-forming tendency of CLBO has been studied and reported in Chapter 6. DTA experiments show that CLBO melt generally transforms to glass on cooling. Even at a cooling rate as low as 1°C/min, the material does not crystallize but transforms into glass. Ergodicity making and glass transition temperatures were determined for glassy CLBO. Since neither the crystallization peak nor the melting peak was observed in DTA experiments during the heating part of thermal cycle for glassy CLBO, a new approach of seeded crystallization was adopted in the calorimetric experiments to achieve crystallization. Since the size of added nuclei is already above the critical radius, the onset of crystallization peaks is independent of the critical-radius energy barrier. Kissenger method was applied to determine the activation energy of seeded- crystallization process. The transformation of glass CLBO to the crystalline phase is mediated by dendrites. Possibility of bulk crystal growth from the glassy state has been discussed, and a novel idea of surface crystallization is proposed. Chapter 7 summarizes the work carried out and projects the scope for future work.
66

The study of crystallization and interfacial morphology in polymer/carbon nanotube composites

Minus, Marilyn Lillith 08 July 2008 (has links)
This study illustrates the ability of SWNT to nucleate and template polymer crystallization and orientation, and produce materials with improved properties and unique polymer morphologies. This research work focuses primarily on the physical interaction between single-wall carbon nanotubes (SWNT) and the flexible polymer system polyvinyl alcohol (PVA). Polymer crystallization in the near vicinity of SWNT (interphase) has been studied to understand the capability of SWNT in influence polymer morphology in bulk films and fibers. Fibrillar crystallization was achieved by shearing PVA/SWNT dispersions and resulted in the formation of oriented PVA/SWNT fibers or ribbons, while PVA solutions produce unoriented fibers. PVA single crystals were grown in PVA solutions as well as PVA/SWNT dispersions over a period of several months at room temperature (25 C). PVA single crystal growth in PVA/SWNT dispersions is templated by SWNT, and these crystals show the presence of new morphologies for PVA. PVA single crystals of differing morphology were also grown at elevated temperatures, and show morphology dependant electron beam irradiation resistance. Gel-spinning was used to produce PVA, and PVA/SWNT fibers where, PVA crystallization in the bulk fiber was observed. With 1 wt% SWNT loading in PVA, the fiber tensile strength increased from 1.6 GPa for the control PVA to 2.6 GPa for PVA/SWNT. Analysis of this data suggests stress of up to ~120 GPa on the SWNT. This is the highest reported stress on the SWNT to date and confirm excellent reinforcement and load transfer of SWNT in the PVA matrix. Raman spectroscopy data show high SWNT alignment in the fiber where the ratio is measured to be 106. High-resolution transmission electron microscopy (HR-TEM) is used to characterize polymer morphology near the polymer-SWNT interface for PVA/SWNT fibers. HR-TEM studies of Polymer/CNT composites show distinct morphological differences at the polymer-SWNT interface/interphase for semi-crystalline and amorphous polymer systems which may be related to polymer-SWNT interaction in the composite. Studies on polymer crystallization, carbon nanotube (CNT)/polymer composite, and polymer composite interfacial literature in summarized in Chapter 1. Fibrillar crystallization of PVA and PVA/SWNT is presented in Chapter 2. PVA single crystal grown at varying temperatures is discussed in Chapter 3, followed by single crystal growth studies in PVA/SWNT dispersions in Chapter 4. Chapter 5 summarizes the gel-spinning studies of PVA and PVA/SWNT fibers. Conclusions and recommendations for future work pertaining to this study are given in Chapter 6. Results of HR-TEM studies on other polymer/SWNT composites are given in Appendix A, Appendix B summarizes work on PE crystallization in the SWNT/DMF dispersions, and studies of PVA and PVA/SWNT gel films are summarized in Appendix C.
67

CRESCIMENTO E CARACTERIZAÇÃO DE FIBRAS MONOCRISTALINAS DE FLUORETOS DO TIPO LiY1-xTRxF4 (TR = TERRAS-RARAS) / GROWTH AND CHARACTERIZATION OF FLUORIDE CRYSTALLINE FIBRES TYPE LiY1-xTRxF4 (RE = RARE-EARTH)

Ana Maria do Espirito Santo 29 September 2005 (has links)
Neste trabalho, foram estudados os processos de crescimento e caracterização de fibras monocristalinas de LiF e de LiYF4 (YLF) puras e dopadas com érbio (Er) ou neodímio (Nd) para aplicações ópticas. O crescimento destas fibras foi efetuado pelo método de micro-pulling-down (µ-PD) e o uso desta técnica é inédito para a obtenção de fibras monocristalinas destes fluoretos. Para tal finalidade, foi inicialmente construído no IPEN, um protótipo do sistema de µ-PD no modo resistivo para a compreensão dos parâmetros experimentais. Posteriormente, um equipamento comercial foi instalado e especialmente adaptado para o puxamento de fibras de fluoretos. Foram obtidas fibras monocristalinas de LiF, com boa qualidade óptica e estrutural e dimensões uniformes: diâmetros entre 0,5 e 1 mm e comprimentos de até 15 cm. A avaliação para o uso destas fibras como meio laser ativo indicou que suas propriedades ópticas são semelhantes às observadas em cristais volumétricos. Foi investigada a influência da geometria do capilar e cadinho, da atmosfera de crescimento e da composição de partida na estabilidade do processo de crescimento de fibras de YLF pelo método de µ-PD. Este material é muito sensível às contaminações procedentes da atmosfera de crescimento e a formação da fase estequiométrica, durante o crescimento da fibra, depende fortemente da atmosfera, da velocidade de puxamento e da composição de partida. Foram obtidas, de forma reprodutível, fibras puras com diâmetro uniforme (0,5 à 0,8 mm) e longo comprimento da fase estequiométrica (até 60 mm). Fibras de YLF com dopagens nominais de 10 mol% e 40 mol% de Er e com 1,7 mol% de Nd foram também obtidas com sucesso. As fibras de YLF:Er são homogêneas e livres de trincas, com distribuição regular de dopante e concentração próxima ao valor nominal. O perfil de distribuição de Nd na fibra de YLF:Nd é diferenciado. O valor do coeficiente de distribuição efetivo k foi estimado em 0,58; valor este superior aos valores encontrados para cristais volumétricos de YLF:Nd. A investigação das propriedades ópticas de absorção e emissão evidenciou características semelhantes às observadas em cristais volumétricos dopados com Nd, permitindo considerar as fibras de YLF:Nd com potencial para uso como meio laser ativo em dispositivos ópticos compactos com bombeamento por diodo. / In this work we present the growth and characterization of LiF and pure and rare-earth doped (Er and Nd) yttrium-lithium tetra-fluoride (LiYF4 or YLF) by the micro-pulling-down technique (µ-PD). The use of this technique is original for the present purpose. A m-PD prototype in the resistive mode was firstly built to understand the most important operational parameters. A commercial equipment was later installed and specifically modified to grow fluoride fibres. Regular and transparent single-crystalline fibres of LiF (diameter of 0.6 mm and length up to 150 mm) were obtained. LiF crystalline fibres as a potential laser media presented the same spectroscopic properties of bulk crystals. The influence of capillary and crucible shapes, growth atmosphere and start composition stoichiometry on the growth process of YLF fibers were also investigated. In general, the fluorides are very sensitive to moisture contamination. The growth atmosphere plays an important role on the stoichiometry deviation. Since this fluoride melts incongruently, any compositional changes inflences the solidification behavior of the material. Additionally, a limited pulling rate is required to the YLF phase formation and to the compositional homogeneity along the fiber. Homogeneous and regular section YLF fibres, with diametres between 0.5 to 0.8 mm and up to 60 mm in length, were obtained in a suitable and reproducible growth process. Er-doped (with nominal concentration of 10 and 40 mol%) and Nd-doped (with nominal concentration of 1.7 mol%) fibres were also successfully grown. Er-doped fibres were crack-free and the dopant concentration was practically uniform along the YLF phase. However, Nd–doped fibres presented a short initial transient in its concentration. The Nd distribution coefficient was evaluated as 0.58 for the YLF fibre. This value is greater than those estimated for YLF bulk crystals grown by normal freezing processes. The optical properties of the YLF:Nd fibres were similar to those observed in bulk crystals, which drive us to consider the YLF:Nd fibres as an important material to build compact all-solid-state lasers directly pumped by diodes.
68

Construction Of A 17 Tesla Pulsed Magnet And Effects Of Arsenic Alloying And Heteroepitaxy On Transport And Optical Properties Of Indium Antimonide

Bansal, Bhavtosh 04 1900 (has links) (PDF)
No description available.
69

Heterometallic coordination polymers : toward luminescence modulation / Polymères de coordination hetherometallique : vers la modélisation de la luminescence

Fan, Xiao 13 March 2015 (has links)
Les polymères de coordination décrits dans cette thèse ont été préparés en accord avec les concepts de la chimie verte par réactions dans l’eau entre les sels de sodium des ligands et les ions lanthanides compris entre La et Lu (sauf Pm) plus Y. Deux types d’échantillons ont été préparés : des monocristaux et des poudres microcristallines. Les structures cristallines ont été résolues sur la base des monocristaux et les poudres microcristallines ont été utilisées pour étudier les propriétés physicochimiques des composés : stabilité thermique, propriétés de luminescence et de magnétisme. Dans nos travaux, quatre systèmes de polymères de coordination ont été étudiés. Ils ont été obtenus à partir de quatre acides : acide chelidonique (H2cda), acide 5-hydroxy-isophthalique (H2hip), acide 5-nitroisophthalique (H2nip) et acide 4-carboxyphenylboronique (Hcpb). Dix nouveaux monocristaux ont été obtenus par diffusions lentes en tubes en U à travers des gels physique (Agar) ou chimiques (TMOS ou TEOS), par diffusion lente en tubes en H à travers de l’eau distillée ou par évaporation lente du filtrat obtenu après la synthèse des poudres microcristallines. Les poudres microcristallines ont été classées sur la base de leurs diagrammes de diffraction des rayons-X. Leurs propriétés de luminescence ou de magnétisme ont été étudiées à l’état solide. Les transferts d’énergie intermétalliques ont été discutés, en particulier pour les ligands H2hip et Hcpb. Les composés hétéro-nucléaires (Gd / Tb et Eu / Tb) ont été préparés pour moduler les propriétés luminescentes de ces composés en variant les proportions relatives en ions lanthanides. Les polymères de coordination à base de terres rares synthétisés et étudiés dans ce manuscrit fournissent des informations intéressantes pour la conception future de matériaux multifonctionnels. / According to the concepts of Green Chemistry, the coordination polymers based on lanthanide ions were prepared by reactions in water between the sodium salts of ligands and lanthanide ions comprised between La and Lu (except Pm) plus Y. Two kinds of samples were prepared : single crystals and microcrystalline powders. The former ones are used to determine the single crystal structure, and the later ones are used to measure the physical-chemical properties : thermal stability, luminescence and magnetism properties. In our work, four ligands were explored: chelidonic acid (H2cda), 5-hydroxy-isophthalic acid (H2hip), 5-nitroisophthalic acid (H2nip) and 4-carboxyphenylboronic acid (Hcpb). As a result, 10 new single crystals were obtained by slow diffusion in U-shape tubes through physical gel (agar) or chemical gels (TMOS or TEOS), by slow diffusion in H-shape tubes through distilled water or by evaporation of the filtrate obtained after the synthesis of the microcrystalline powders. Microcrystalline powders were classified on the basis of their X-ray powder diffraction patterns. Their luminescent properties and magnetic properties were studied in the solid state. Intermetallic energy transfers were also discussed. Especially, for ligands H2hip and H2cpb. Hetero-nuclear compounds (Gd/Tb and Eu/Tb) were also prepared to tune luminescent properties by changing the relative ratios of the lanthanide ions. Lanthanide coordination polymers described in this thesis provide information that could be useful as far as multifunctional materials are targeted.
70

Medidas diretas do efeito magnetocalórico convencional e anisotrópico por medida do fluxo de calor com dispositivos Peltier / Direct measurement of the convencional and anisotropic magnetocaloric effect by heat flux measurements with Peltier devices

Monteiro, José Carlos Botelho, 1984- 30 August 2018 (has links)
Orientador: Flávio César Guimarães Gandra / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Física Gleb Wataghin / Made available in DSpace on 2018-08-30T17:33:36Z (GMT). No. of bitstreams: 1 Monteiro_JoseCarlosBotelho_D.pdf: 10216375 bytes, checksum: 06d25402d8c5828939f2e7fa0710efbe (MD5) Previous issue date: 2016 / Resumo: Esta tese tem como principal objetivo desenvolver, apresentar e justificar a utilização de uma metodologia experimental que permita avaliar o efeito magnetocalórico (EMC), em qualquer tipo de material, de modo que as medidas reflitam a resposta real que a amostra fornece ao ser submetida a ciclos de magnetização similares àqueles que ocorrem em sistemas de refrigeração magnética. Para tal, construímos sistemas de medidas que utilizam dispositivos Peltier como sensores de fluxo de calor, capazes de realizar medidas diretas da quantidade de calor que a amostra absorve ou libera em situações aonde há variação de temperatura, campo magnético ou do ângulo entre direção do cristal e o campo aplicado. Na primeira parte do trabalho, foram realizadas medidas no sistema com dispositivos Peltier desenvolvido para uso no equipamento comercial PPMS - Physical Property Measurement System (Sistema de medidas de propriedades físicas) da Quantum Design. Utilizamos os métodos indiretos de medida do EMC mais comuns na literatura (medidas via curvas de magnetização e calor específico) para comparação com as medidas diretas de fluxo de calor através de varredura de campo obtidas pelo nosso sistema. Esta análise foi feita inicialmente em duas amostras com transições magnéticas de primeira e segunda ordem, consideradas como amostras padrão na área do EMC: Gadolínio e a liga Gd5Ge2Si2. Discutimos as diferenças encontradas e definimos aquele que acreditamos ser o protocolo de medidas mais correto para a avaliação do EMC para fins práticos. A partir desta conclusão, analisamos três outras amostras que apresentam comportamentos não usuais e alto potencial magnetocalórico e discutimos as diferenças. Perdas do EMC por histerese foram obtidas experimentalmente. Na segunda parte, com o auxílio de um calorímetro com o elemento Peltier capaz de realizar um giro de até 80° sob campo constante de até 1,9 T, realizamos o estudo do efeito magnetocalórico anisotrópico (EMC-ani) em amostras monocristalinas da família RAl2, obtidas pelo processo de Czochralski. Primeiramente medidas de calor específico e do EMC convencional foram realizadas nos monocristais, através do protocolo definido como ideal na primeira parte do trabalho, utilizando o sistema Peltier do PPMS. A partir desses dados, fomos capazes de obter o EMC-ani, de modo indireto, pela subtração das curvas obtidas. Por fim utilizamos o sistema Peltier de giro para realizar medidas diretas do EMC-ani em monocristais de DyAl2. Os resultados das medidas indiretas e diretas foram comparados com cálculos obtidos através de um modelo autoconsistente / Abstract: This thesis aimed to develop, present and justify the use of a methodology that allows one to evaluate the magnetocaloric effect (MCE), for any kind of material, such that the results reflects the real behavior of the sample submitted to magnetization cycles similar to those of magnetic refrigeration systems. To do so, we built measurement systems that uses Peltier devices as heat flux sensors to determine the heat absorbed or released by the sample in situations where the temperature, magnetic field, or angle between a given crystal direction and field changes. In the first part of the work, we report measurements using a Peltier device system developed for use with the Quantum Design PPMS (Physical Property Measurement System). We evaluated the indirect MCE measurements by using the most common techniques found in literature (through magnetization or specific heat curves) and compared to the direct heat flux measurements obtained through field sweep scans with our system. This analysis was initially made with two samples that present a first and a second order magnetic transition, considered as standard samples at MCE research area: Gadolinium and the Gd5Ge2Si2 alloy. We discussed the differences found and defined the measurement protocol that we believe to be correct to the practical evaluation of the MCE. From this conclusion, we analyzed three other samples that present uncommon behavior and high magnetocaloric potential and discussed their differences. MCE hysteresis losses were experimentally obtained. In the second part, with the aid of a calorimeter built with Peltier devices capable of perform an 80° rotation under constant magnetic field up to 1,9 T, we made the study of the Anisotropic Magnetocaloric Effect (MCE-ani) in monocrystalline samples of the RAl2 family grown by the Czochralski method. First, we made specific heat and conventional MCE measurements with the ideal protocol that was defined in the first part of the work, using the PPMS Peltier system. From these data, we were able to calculate indirectly the MCE-ani by subtracting the acquired curves. Finally, we used the Peltier rotation system to perform direct measurements of the MCE-ani in DyAl2 single crystals. The results of the indirect and direct measurements were compared with calculations achieved using a self-consistent process / Doutorado / Física / Doutor em Ciências / 1060137/2011 / CAPES

Page generated in 0.0612 seconds