Spelling suggestions: "subject:"singularités isolées"" "subject:"ingularités isolées""
1 |
Concordance des noeudsBlanloeil, Vincent 10 June 2003 (has links) (PDF)
HDR
|
2 |
Trace au bord de solutions d'équations de Hamilton-Jacobi elliptiques et trace initiale de solutions d'équations de la chaleur avec absorption sur-linéaireNguyen, Phuoc Tai 02 February 2012 (has links) (PDF)
Cette thèse est constituée de trois parties. Dans la première partie, on s'intéresse au problème de trace au bord d'une solution positive de l'équation de Hamilton-Jacobi (E1) $-\Delta u+g(|\nabla u|)=0$ dans un domaine borné $\Omega$ de ${\mathbb R}^N$, satisfaisant (E2) $u = \mu$ sur $\partial \Omega$. Si $g(r) \geq r^q$ avec $q > 1$, on prouve que toute solution positive de (E1) admet une trace au bord considérée comme une mesure de Borel régulière, pas nécessairement localement bornée. Si $g(r) = r^q$ avec $1 < q < q_c = \frac{N+1}{N}$ , on montre l'existence d'une solution positive dont la trace au bord est une mesure de Borel régulière $\nu \not \equiv \infty$ et on caractérise les singularités frontières isolées de solutions positives. Si $g(r) = r^q$ avec $q_c \leq q < 2$, on établit une condition nécessaire de résolution en terme de capacité de Bessel $C_{\frac{2-q}{q},q'} . On étudie aussi des ensembles éliminables au bord pour des solutions modérées. La deuxième partie est consacrée à étudier la limite, lorsque $k \to \infty$, de solutions d'équation $\partial_t u - \Delta u + f(u) =0$ dans ${\mathbb R}^N \times (0;\infty)$ avec donnée initiale $k\delta_0$ où $0$ est la masse de Dirac concentrée à l'origine et f est une fonction positive, continue, croissante et satisfaisant $f(0) = f^{-1}(0) = 0$. On prouve, sous certaines hypothèses portant sur f, qu'il existe essentiellement trois types de comportement possible en fonction des valeurs finies ou infinies des intégrales $\int_1^\infty f^{-1}(s)ds$ et $\int_1^\infty F^{-1/2}(s)ds$, où $F(s)=\int_0^s f(r)dr$. Grâce à ces résultats, on donne une nouvelle construction de la trace initiale et quelques résultats d'unicité et de non-unicité de solutions dont la donnée initiale n'est pas bornée. Dans la troisième partie, on élargit le cadre de nos investigations et généralise les résultats obtenus dans la deuxième partie au cas où l'opérateur est non-linéaire. En particulier, on s'intéresse à des propriétés qualitatives de solutions positives de l'équation $ \partial_t u-\Delta_p u+f(u)=0$ où $p > 1, \Delta_p u = div(\abs{\nabla u}^{p-2}\nabla u)$ et $f$ est une fonction continue, croissante, positive et satisfaisant $f(0) = 0 = f^{-1}(0)$. Si $p > \frac{2N}{N+1}$, on fournit une condition suffisante portant sur f pour l'existence et l'unicité des solutions fondamentales de données initiales $k\delta_0$ et on étudie la limite, lorsque $k \to \infty$, qui dépend du fait que $f^{-1}$ et $F^{-1/p}$ soient intégrables à l'infini ou pas, où $F(s) =\int_0^s f(r)dr. On donne aussi de nouveaux résultats de non-unicité de solutions avec donnée initiale non bornée. Si $p \geq 2$, on prouve que toute solution positive admet une trace initiale dans la classe de mesures de Borel régulières positives. Finalement on applique les résultats ci-dessus au cas modèle $f(u)=u^\alpha \ln^\beta(u+1)$ avec $\alpha>0$ et $\beta>0$.
|
3 |
Fully linear elliptic equations and semilinear fractionnal elliptic equationsChen, Huyuan 10 January 2014 (has links)
Cette thèse est divisée en six parties. La première partie est consacrée à l'étude de propriétés de Hadamard et à l'obtention de théorèmes de Liouville pour des solutions de viscosité d'équations aux dérivées partielles elliptiques complètement non-linéaires avec des termes de gradient, ... / This thesis is divided into six parts. The first part is devoted to prove Hadamard properties and Liouville type theorems for viscosity solutions of fully nonlinear elliptic partial differential equations with gradient term ...
|
Page generated in 0.0974 seconds