• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 146
  • 49
  • 23
  • 15
  • 11
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 279
  • 279
  • 245
  • 58
  • 43
  • 40
  • 39
  • 39
  • 34
  • 30
  • 30
  • 30
  • 30
  • 29
  • 28
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
131

Non-Linear Control of a Tilt-Rotor Quadcopter using Sliding Mode Technique

Sridhar, Siddharth 16 June 2020 (has links)
No description available.
132

Robust Model-Based Control of Nonlinear Systems for Bio-Inspired Autonomous Underwater Vehicles

Thome De Faria, Cassio 16 September 2013 (has links)
The growing need for ocean surveillance and exploration has pushed the development of novel autonomous underwater vehicle (AUV) technology. A current trend is to make use of bio-inspired propulsor to increase the overall system efficiency and performance, an improvement that has deep implications in the dynamics of the system. The goal of this dissertation is to propose a generic robust control framework specific for bio-inspired autonomous underwater vehicles (BIAUV). These vehicles utilize periodic oscillation of a flexible structural component to generate thrust, a propulsion mechanism that can be tuned to operate under resonance and consequently improve the overall system efficiency. The control parameter should then be selected to keep the system operating in such a condition. Another important aspect is to have a controller design technique that can address the time-varying behaviors, structured uncertainties and system nonlinearities. To address these needs a robust, model-based, nonlinear controller design technique is presented, called digital sliding mode controller (DSMC), which also takes into account the discrete implementation of these laws using microcontrollers. The control law is implemented in the control of a jellyfish-inspired autonomous underwater vehicle. / Ph. D.
133

Novel control techniques for a quadrotor based on the Sliding Mode Controller

Sudakar, Madhavan January 2020 (has links)
No description available.
134

Sliding Mode Control and Electrical Capacitance Volume Tomography for Advanced Control of the Chemical Looping Process

Park, Cody 08 October 2018 (has links)
No description available.
135

ADAPTIVE SLIDING MODE CONTROL WITH APPLICATION TO A MEMS VIBRATORY GYROSCOPE

Fei, Juntao January 2007 (has links)
No description available.
136

Bioinspired Sinusoidal Finger Joint Synergies for a Dexterous Robotic Hand to Screw and Unscrew Objects

Karnati, Nareen 22 August 2012 (has links)
No description available.
137

Trajectory-Tracking Control of the Ball-and-Plate System

Riccoboni, Dominic E 01 March 2023 (has links) (PDF)
The Mechatronics group in the Mechanical Engineering department of Cal Poly is interested in creating a demonstration of a ball-and-plate trajectory tracking controller on hardware. The display piece will serve to inspire engineering students to pursue Mechatronics and control theory as an area of study. The ball-and-plate system is open-loop unstable, underactuated, and has complicated, nonlinear equations of motion. These features present substantial challenges for control - especially if the objective is trajectory tracking. Because the system is underactuated, common nonlinear trajectory tracking control techniques are ineffective. This thesis lays out a theoretical foundation for controlling the hardware. Several important concepts related to ball-and-plate trajectory tracking control are presented. Models of the system, with various assumptions, are given and used in deriving control law candidates. To limit project scope, reasonable control criteria are introduced and used to evaluate designs from the thesis. Several control architectures are explored, these being Full-State Feedback with Integral Action, Single-Input-Single-Output Sliding Mode, and Full-State Feedback with Feed Forward. The mathematical reasoning behind each is detailed, simulation results are shown to validate their practicality and demonstrate features of the architectures, and trajectory similarity measure studies are produced to evaluate controller performance for a wide range of setpoint functions. The Full-State Feedback with Feed Forward controller is recommended based on its theoretical advantages and compliance with the control criteria over the competing designs. The control architecture has a proof of asymptotic tracking in the linear model, has excellent performance in simulations that use a nonlinear plant model, and produces the most pleasing visual experience when viewed in animation.
138

Comparison and Analysis of Attitude Control Systems of a Satellite Using Reaction Wheel Actuators

Kök, Ibrahim January 2012 (has links)
In this thesis, analysis and comparison of different attitude control systems of a satelliteusing different reaction wheel configurations were investigated. Three different reactionwheel configurations (e.g. tetrahedron configuration, pyramid configuration, standardorthogonal 3-wheel configuration) and three control algorithms (Linear Quadratic Regulator,Sliding Mode, Integrator Backstepping) were analyzed and compared in terms of settlingtimes, power consumptions and actuator failure robustness. / <p>Validerat; 20121205 (global_studentproject_submitter)</p>
139

Modeling and online parameter estimation of intake manifold in gasoline engines using sliding mode observer

Butt, Q.R., Bhatti, A.I., Mufti, Muhammad R., Rizvi, M.A., Awan, Irfan U. January 2013 (has links)
No / Model based control of automotive engines for fuel economy and pollution minimization depends on accuracy of models used. A number of mathematical models of automotive engine processes are available for this purpose but critical model parameters are difficult to obtain and generalize. This paper presents a novel method of online estimation of discharge coefficient of throttle body at the intake manifold of gasoline engines. The discharge coefficient is taken to be a varying parameter. Air mass flow across the throttle body is a critical variable in maintaining a closer to stoichiometric air fuel ratio; which is necessary to minimize the pollution contents in exhaust gases. The estimation method is based on sliding mode technique. A classical first Sliding mode observer is designed to estimate intake manifold pressure and the model uncertainty arising from the uncertain and time varying discharge coefficient is compensated by the discontinuity/switching signal of sliding mode observer. This discontinuity is used to compute coefficient of discharge as a time varying signal. The discharge coefficient is used to tune/correct the intake manifold model to engine measurements. The resulting model shows a very good agreement with engine measurements in steady as wells transient state. The stability of the observer is shown by Lyapunov direct method and the validity of the online estimation is successfully demonstrated by experimental results. OBD-II (On Board Diagnostic revision II) based sensor data acquisition from the ECU (Electronic Control Unit) of a production model vehicle is used. The devised algorithm is simple enough to be designed and implemented in a production environment. The online estimation of parameter can also be used for engine fault diagnosis work. (c) 2012 Elsevier B.V. All rights reserved.
140

Motion Control of an Open Container with Slosh Constraints

Karnik, Kedar B. 19 December 2008 (has links)
No description available.

Page generated in 0.0568 seconds