Spelling suggestions: "subject:"smart."" "subject:"kmart.""
121 |
Reinterpreting Skins and Systems: Integrating Smart Materials with Traditional ConstructionStauffer, Erica F. 24 September 2012 (has links)
No description available.
|
122 |
"Imperfect offices of prayer and praise": hymnody and some poets /Burrows, Kenneth Charles January 1974 (has links)
No description available.
|
123 |
Adaptive Arrays and Diversity Antenna Configurations for Handheld Wireless Communication TerminalsDietrich, Carl B. 28 April 2000 (has links)
This dissertation reports results of an investigation into the performance of adaptive beamforming and diversity combining using antenna arrays that can be mounted on handheld radios. Handheld arrays show great promise for improving the coverage, capacity, and power efficiency of wireless communication systems.
Diversity experiments using a handheld antenna array testbed (HAAT) are reported here. These experiments indicate that signals received by the antennas in two-element handheld antenna arrays with spacing of 0.15 wavelength or greater can be combined to provide 7-9 dB diversity gain against fading at the 99% reliability level in non line-of-sight multipath channels. Thus, peer-to-peer systems of handheld transceivers that use antenna arrays can achieve reliability comparable to systems of single-antenna handheld units, with only one-fifth the transmitter power, resulting in lower overall power consumption and increased battery life. Similar gains were observed for spatial, polarization, and pattern diversity.
Adaptive beamforming with single- and multi-polarized four-element arrays of closely spaced elements was investigated by experiment using the HAAT, and by computer simulation using a polarization-sensitive vector multipath propagation simulator developed for this purpose. Small and handheld adaptive arrays were shown to provide 25 to 40 dB or more of interference rejection in the presence of a single interferer in rural, suburban, and urban channels including line-of-sight and non line-of-sight cases. In multipath channels, these performance levels were achieved even when there was no separation between the transmitters in azimuth angle as seen from the receiver, and no difference in the orientations of the two transmitting antennas. This interference rejection capability potentially allows two separate spatial channels to coexist in the same time/frequency channel, doubling system capacity. / Ph. D.
|
124 |
Branched amphotericin functional poly(N-isopropyl acrylamide): an antifungal polymerSwift, Thomas, Caseley, Emily, Pinnock, A., Shepherd, J., Shivshetty, N., Garg, P., Ian Douglas, C.W., MacNeil, S., Rimmer, Stephen 22 February 2021 (has links)
Yes / Branched poly(N-isopropylacrylamide) was functionalized with Amphotericin B (AmB) at the chain ends to produce an antifungal material. The polymer showed antifungal properties against AmB-sensitive strains of Candida albicans, Fusarium keratoplasticum and Aspergillus flavus (minimal inhibitory concentration ranged from 5 to 500 µg ml−1) but was not effective against an AmB resistant strain of C. albicans nor against Candida tropicalis. The polymer end groups bound to the AmB target, ergosterol, and the fluorescence spectrum of a dye used as a solvatochromic probe, Nile red, was blue shifted indicating that segments of the polymer became desolvated on binding. The polymer was less toxic to corneal and renal epithelial cells and explanted corneal tissue than the free drug. Also, the polymer did not induce reactive oxygen species release from peripheral blood mononuclear cells, nor did it cause a substantial release of the proinflammatory cytokines, tumour necrosis factor-α and interleukin-1β (at 0.5 mg ml−1). / Welcome Trust DBT Alliance (0998800/B/12/Z) and MRC (UK) (grant no. 16038)
|
125 |
Diagnosing the growth management disconnect between policy and practice in the greater Orlando metropolitan areaHeine, Karen M. 01 January 2009 (has links)
Regionalism and smart growth are two planning principles that in recent years have garnered more support from academia and environmental groups. In spite of this support, the mitigation of sprawl at the local level seems to be stymied. Central Florida's projected population increase and current patterns of sprawl provide an appropriate context to study the public policy/citizen participation disconnect. Understanding the disconnect between the state's enactment of policy regarding growth management and the ability of local planners to successfully curb sprawl will contribute to promoting comprehensive 'management of Florida's natural resources while accommodating the population growth that is expected to continue, in Central Florida. Research into why these ideas are getting lost in the translation from policy to practice is necessary to assist cities in better serving their citizenry. A survey was mailed to city planners in eighteen local governments within the four counties that make up the greater Orlando metropolitan area. These counties are Orange, Seminole, Lake, and Osceola. Local planners often act as the intermediary between policy formulation and public perception of those planning policies. Since planners must blend their implementation of state mandated policy with informing the public of the associated benefits, focusing the research on their opinions will provide a new perspective on the effectiveness of state-mandated growth management at the local level.
The research intends to show that the only way comprehensive growth management will truly combat sprawl in the greater Orlando MSA is with support from both an informed and active citizenry, and state policy makers who are willing to not only allocate the funding necessary to promote all parts of the 1985 Growth Management Act and its subsequent amendments, but who also work in concert with local efforts in comprehensive planning.
|
126 |
RFID based Smart goods and infrastructurePirazadeh, Nima, Pirazadeh, Laleh January 2009 (has links)
This report mainly focuses on RFID based smart goods and their effect on supply chainintelligence and local decision making. In today’s supply chain for making any decision, it isrequired to make a connection to central data bank system. Among some vertical transactionsbetween a special supply chain level and central part, decision is made. As it will be discussedin the report this structure has many disadvantages. The report tries to introduce a smartinfrastructure that is based on decentralized decision making enabled with smart goods.In this report several ways of distributing intelligence and providing smart logistic system withthe help of different technologies will be discussed and compared according to theiradvantages and disadvantages. The report introduces a smart infrastructure containing smartgoods, RFID tags and readers that supports local decision making idea and intelligencedistribution concept. Also smart freight benefits and possibilities in supply chain are discussedin the report.
|
127 |
Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering InfrastructureKhalifa, Tarek 21 May 2013 (has links)
Utility companies (electricity, gas, and water suppliers), governments, and
researchers recognize an urgent need to deploy communication-based systems to
automate data collection from smart meters and sensors, known as Smart Metering
Infrastructure (SMI) or Automatic Meter Reading (AMR). A smart metering system
is envisaged to bring tremendous benefits to customers, utilities, and
governments. The advantages include reducing peak demand for energy, supporting
the time-of-use concept for billing, enabling customers to make informed
decisions, and performing effective load management, to name a few.
A key element in an SMI is communications between meters and utility servers.
However, the mass deployment of metering devices in the grid calls for studying
the scalability of communication protocols. SMI is characterized by the
deployment of a large number of small Internet Protocol (IP) devices sending
small packets at a low rate to a central server. Although the individual
devices generate data at a low rate, the collective traffic produced is
significant and is disruptive to network communication functionality. This
research work focuses on the scalability of the transport layer
functionalities. The TCP congestion control mechanism, in particular, would be
ineffective for the traffic of smart meters because a large volume of data
comes from a large number of individual sources. This situation makes the TCP
congestion control mechanism unable to lower the transmission rate even when
congestion occurs. The consequences are a high loss rate for metered data and
degraded throughput for competing traffic in the smart metering network.
To enhance the performance of TCP in a smart metering infrastructure (SMI), we
introduce a novel TCP-based scheme, called Split- and Aggregated-TCP (SA-TCP).
This scheme is based on the idea of upgrading intermediate devices in SMI
(known in the industry as regional collectors) to offer the service of
aggregating the TCP connections. An SA-TCP aggregator collects data packets
from the smart meters of its region over separate TCP connections; then it
reliably forwards the data over another TCP connection to the utility server.
The proposed split and aggregated scheme provides a better response to traffic
conditions and, most importantly, makes the TCP congestion control and flow
control mechanisms effective. Supported by extensive ns-2 simulations, we show
the effectiveness of the SA-TCP approach to mitigating the problems in terms of
the throughput and packet loss rate performance metrics.
A full mathematical model of SA-TCP is provided. The model is highly accurate
and flexible in predicting the behaviour of the two stages, separately and
combined, of the SA-TCP scheme in terms of throughput, packet loss rate and
end-to-end delay. Considering the two stages of the scheme, the modelling
approach uses Markovian models to represent smart meters in the first stage and
SA-TCP aggregators in the second. Then, the approach studies the interaction of
smart meters and SA-TCP aggregators with the network by means of standard
queuing models. The ns-2 simulations validate the math model results.
A comprehensive performance analysis of the SA-TCP scheme is performed. It
studies the impact of varying various parameters on the scheme, including the
impact of network link capacity, buffering capacity of those RCs that act as
SA-TCP aggregators, propagation delay between the meters and the utility
server, and finally, the number of SA-TCP aggregators. The performance results
show that adjusting those parameters makes it possible to further enhance
congestion control in SMI. Therefore, this thesis also formulates an
optimization model to achieve better TCP performance and ensures satisfactory
performance results, such as a minimal loss rate and acceptable end-to-end
delay. The optimization model also considers minimizing the SA-TCP scheme
deployment cost by balancing the number of SA-TCP aggregators and the link
bandwidth, while still satisfying performance requirements.
|
128 |
Design and Analysis of a Novel Split and Aggregated Transmission Control Protocol for Smart Metering InfrastructureKhalifa, Tarek 21 May 2013 (has links)
Utility companies (electricity, gas, and water suppliers), governments, and
researchers recognize an urgent need to deploy communication-based systems to
automate data collection from smart meters and sensors, known as Smart Metering
Infrastructure (SMI) or Automatic Meter Reading (AMR). A smart metering system
is envisaged to bring tremendous benefits to customers, utilities, and
governments. The advantages include reducing peak demand for energy, supporting
the time-of-use concept for billing, enabling customers to make informed
decisions, and performing effective load management, to name a few.
A key element in an SMI is communications between meters and utility servers.
However, the mass deployment of metering devices in the grid calls for studying
the scalability of communication protocols. SMI is characterized by the
deployment of a large number of small Internet Protocol (IP) devices sending
small packets at a low rate to a central server. Although the individual
devices generate data at a low rate, the collective traffic produced is
significant and is disruptive to network communication functionality. This
research work focuses on the scalability of the transport layer
functionalities. The TCP congestion control mechanism, in particular, would be
ineffective for the traffic of smart meters because a large volume of data
comes from a large number of individual sources. This situation makes the TCP
congestion control mechanism unable to lower the transmission rate even when
congestion occurs. The consequences are a high loss rate for metered data and
degraded throughput for competing traffic in the smart metering network.
To enhance the performance of TCP in a smart metering infrastructure (SMI), we
introduce a novel TCP-based scheme, called Split- and Aggregated-TCP (SA-TCP).
This scheme is based on the idea of upgrading intermediate devices in SMI
(known in the industry as regional collectors) to offer the service of
aggregating the TCP connections. An SA-TCP aggregator collects data packets
from the smart meters of its region over separate TCP connections; then it
reliably forwards the data over another TCP connection to the utility server.
The proposed split and aggregated scheme provides a better response to traffic
conditions and, most importantly, makes the TCP congestion control and flow
control mechanisms effective. Supported by extensive ns-2 simulations, we show
the effectiveness of the SA-TCP approach to mitigating the problems in terms of
the throughput and packet loss rate performance metrics.
A full mathematical model of SA-TCP is provided. The model is highly accurate
and flexible in predicting the behaviour of the two stages, separately and
combined, of the SA-TCP scheme in terms of throughput, packet loss rate and
end-to-end delay. Considering the two stages of the scheme, the modelling
approach uses Markovian models to represent smart meters in the first stage and
SA-TCP aggregators in the second. Then, the approach studies the interaction of
smart meters and SA-TCP aggregators with the network by means of standard
queuing models. The ns-2 simulations validate the math model results.
A comprehensive performance analysis of the SA-TCP scheme is performed. It
studies the impact of varying various parameters on the scheme, including the
impact of network link capacity, buffering capacity of those RCs that act as
SA-TCP aggregators, propagation delay between the meters and the utility
server, and finally, the number of SA-TCP aggregators. The performance results
show that adjusting those parameters makes it possible to further enhance
congestion control in SMI. Therefore, this thesis also formulates an
optimization model to achieve better TCP performance and ensures satisfactory
performance results, such as a minimal loss rate and acceptable end-to-end
delay. The optimization model also considers minimizing the SA-TCP scheme
deployment cost by balancing the number of SA-TCP aggregators and the link
bandwidth, while still satisfying performance requirements.
|
129 |
SGMIee â Software de GestÃo da MediÃÃo Inteligente de Energia ElÃtrica / SGMIee - Electricity Smart Metering Management SoftwareReginaldo Silva dos Anjos 29 November 2013 (has links)
CoordenaÃÃo de AperfeiÃoamento de Pessoal de NÃvel Superior / A modernizaÃÃo dos sistemas elÃtricos de potÃncia à nos dias atuais um tema de relevÃncia, com destaque à participaÃÃo do consumidor na geraÃÃo de energia elÃtrica e gestÃo da energia consumida. A automaÃÃo da MediÃÃo Inteligente à uma das principais vertentes e o precursor das Redes ElÃtricas Inteligentes. Considerando-se este cenÃrio, neste trabalho, apresenta-se um software de gestÃo da mediÃÃo inteligente de energia elÃtrica, denominado SGMIee. Trata-se de uma ferramenta computacional, desenvolvida com tecnologias computacionais de cÃdigo aberto e gratuito, utilizada para a aquisiÃÃo, armazenamento, processamento, visualizaÃÃo e gerenciamento das informaÃÃes registradas em uma infraestrutura de mediÃÃo inteligente de eletricidade. A plataforma Java e a estrutura de banco de dados MySQL sÃo as principais tecnologias utilizadas no desenvolvimento do software. O SGMIee tem sido aplicado a um sistema de mediÃÃo inteligente de energia elÃtrica instalado na infraestrutura do Departamento de Engenharia ElÃtrica (DEE), do Centro de Tecnologia (CT), da Universidade Federal do Cearà (UFC). O sistema de mediÃÃo inteligente de energia elÃtrica utilizado à composto por 05 unidades de medidores eletrÃnicos inteligentes trifÃsicos, 01 unidade de interface de comunicaÃÃo sem fio, 01 unidade de interface de comunicaÃÃo via porta Ãtica e 01 unidade de equipamento In-Home Display (IHD). A infraestrutura de mediÃÃo inteligente à baseada em uma rede RF e disposta em uma topologia Mesh, sendo utilizados os protocolos ABNT NBR 14522 e ZigBee para a realizaÃÃo da comunicaÃÃo entre os equipamentos do sistema. Dados coletados de 05 medidores eletrÃnicos, instalados em quadros de distribuiÃÃo de baixa tensÃo nas unidades do DEE, foram utilizados para testar e validar as funcionalidades do software proposto, sendo considerados aspectos normativos nacionais da Ãrea durante as anÃlises dos resultados obtidos. As funcionalidades sobre pÃgina fiscal, consumo, faltas de energia, alarmes e grÃficos foram implementadas no SGMIee, possibilitando-se o gerenciamento energÃtico baseado em dados de mediÃÃes e alarmes consultados de forma instantÃnea ou atravÃs de histÃrico. ApÃs as anÃlises, observou-se que os objetivos definidos para o SGMIee foram atendidos, sendo a disponibilizaÃÃo de uma ferramenta computacional para gerir os dados de mediÃÃes de parÃmetros elÃtricos, integrada a um cenÃrio de mediÃÃo inteligente de eletricidade a principal contribuiÃÃo deste trabalho. / The modernization of electric power systems is nowadays a topic of relevance, with emphasis on consumer participation in power generation and management of energy consumption. The automation of Smart Metering is one of the main aspects and the precursor of Smart Grids. Considering this scenario, this paper presents electricity smart metering management software, called SGMIee. It is a computational tool developed with free and open source technologies, used for the acquisition, storage, processing, display and management of recorded information in a smart metering infrastructure for electricity. The Java platform and structure of MySQL database are the main technologies used in software development. The SGMIee has been applied to a smart metering of electricity infrastructure installed in the Department of Electrical Engineering (DEE), the Technology Center (TC), Federal University of Cearà (UFC). The smart metering system used is composed of 05 three-phase smart meters units, 01 wireless communication interface unit, 01 optical interface unit and 01 In-Home Display (IHD) unit. The smart metering infrastructure is based on a RF network and willing in a Mesh topology, protocols being used ABNT NBR 14522 and ZigBee for the realization of communication between the system equipment. Data collected from 05 smart meters installed in low voltage switchboards units DEE, were used to test and validate the functionality of the proposed software, and are considered national normative aspects of the area during the analysis of the results obtained. The features about summary snapshot of electrical quantities measured, consumption, power outages, alarms and charts were implemented in SGMIee, enabling the power management based on measurement data and alarms consulted instantaneously or through history. After the analyzes, it was observed that the objectives for the SGMIee were achieved and the availability of a computational tool for managing measurement data of electrical parameters, integrated with a scenario of electricity smart metering the main contribution of this work.
|
130 |
Industry 4.0 Analysis of the implementation of Industry 4.0 in a medical technology enterprise with a comparison with automotive enterprises and options for improvementWei, Bo, Alius, Kevin January 2021 (has links)
This thesis focuses on the implementation of Industry 4.0 in medical technical industry (med tech). The aim of the thesis is to get a sufficient evaluation on the Industry 4.0 implementation in a German medical technology enterprise, and also to find suggestions for improving the implementation. Two main research questions are studied in this thesis: “What is the maturity level of Industry 4.0 in a German med tech enterprise with comparison to automotive enterprises?” and “How to overcome barriers and improve the Industry 4.0 level in the med tech enterprise?” The thesis uses qualitative analysis with case study as the main research method. Automotive industry is used as reference and supporting the comparative case study. A historical review and a survey with open and closed questions are used for the data collection and analysis. Compared with automotive enterprises, the med tech enterprise is limited in the aspect of smart factory/production with Industry 4.0 implementation by various special regulations, but nevertheless there is much space and potential to develop Industry 4.0 in other aspects like smart business, smart product, and smart customers, as well as some new business modes.
|
Page generated in 0.0495 seconds