Spelling suggestions: "subject:"cocial recommended"" "subject:"bsocial recommended""
1 |
最大化顧客參與行為於推薦平台: 以品牌合作角度塑造達人知識 / Maximizing Customer Engagement Behavior through Recommender System: Framing Maven Knowledge with Brand Alliance Perspective巫承安, Wu, Cheng An Unknown Date (has links)
在這個充滿繁多新媒體時代,使用者面臨到眾多資料和快速變動的環境,使用者在媒體的使用行為和選擇上更加依賴各種推薦平台的建議。除此之外,隨著社群媒體的興起,許多的推薦平台整合了社群的人們關係來提供更準確的建議和選擇。雖然推薦系統在影響使用者的使用行為有顯著的效果,然而企業和品牌卻鮮少去關注或了解如何增加顧客參與行為在整合社群媒體的推薦平台上。顧客參與行為並不只有傳統的交易行為,而是包含了所有直接和間接影響企業品牌的行為,像是使用者回饋、口碑傳播等。而且,現今尚未有清楚明確的定義哪些關鍵因素,會影響顧客參與行為在社群化推薦推薦系統,來藉此獲得顧客關注,形成正向生態系統。
本研究中,我們根據達人在社群化推薦平台中具有重要的影響力的觀點,以促進重塑達人知識來改變原有達人的行為和態度,藉此影響所有一般使用者在社群化推薦平台的顧客參與行為。我們提出新的架構和系統來幫助中小型商家在推薦平台上影響更多的推薦達人,獲得更多的顧客參與。我們建立商家參與後台來幫助中小型商家可以洞悉達人的行為,我們也建立了重新塑造資訊的系統,提供達人所需要的訊息文章,藉此來改變達人的知識和行為。此研究發現,達人的行為會受到娛樂型、知識型和激勵型的文章訊息影響行為,一般使用者也會受到達人行為影響。此外我們藉由品牌合作角度來幫助得到更多的顧客參與行為,我們發現中小型商家可以在社群化推薦平台獲得顧客參與且建立一個正向機制循環。 / With the highly dynamic trend of service economy, the firms are increasingly to co-create value with brand alliance to advance their competition advantage. On the other hand, with the massive information on the new media, the referrals provided by recommender systems in combination with social media have significantly impact on customer behavior. In light of these trends, the markers and firms should aim to increase the customer engagement behavior (CEB) which goes beyond the traditional transactions including purchase and non-purchase behavior on social recommenders.
In this research, we focus on the role of mavens who are powerful influencers on the social recommender. We propose a new conceptual framework for facilitating to impact the maven’s knowledge and behavior and increase the CEB on the social recommender for Small/Middle Enterprise (SME). We establish the SME support engagement site for increasing the CEB on social recommender and framing knowledge context to influence maven for achieving the insight of the maven’s behavior. As the result of research, we discover that maven engagement behavior would be influenced by the entertainment, information and incentive types in context from the brand alliance perspective and the non-maven are willing to be affected by maven behavior. Moreover, with this discovery, the SME can increase the customer engagement behavior on the social recommender
|
2 |
Assessing and improving recommender systems to deal with user cold-start problemPaixão, Crícia Zilda Felício 06 March 2017 (has links)
Sistemas de recomendação fazem parte do nosso dia-a-dia. Os métodos usados nesses
sistemas tem como objetivo principal predizer as preferências por novos itens baseado no
perĄl do usuário. As pesquisas relacionadas a esse tópico procuram entre outras coisas
tratar o problema do cold-start do usuário, que é o desaĄo de recomendar itens para
usuários que possuem poucos ou nenhum registro de preferências no sistema.
Uma forma de tratar o cold-start do usuário é buscar inferir as preferências dos usuários
a partir de informações adicionais. Dessa forma, informações adicionais de diferentes tipos
podem ser exploradas nas pesquisas. Alguns estudos usam informação social combinada
com preferências dos usuários, outros se baseiam nos clicks ao navegar por sites Web,
informação de localização geográĄca, percepção visual, informação de contexto, etc. A
abordagem típica desses sistemas é usar informação adicional para construir um modelo
de predição para cada usuário. Além desse processo ser mais complexo, para usuários
full cold-start (sem preferências identiĄcadas pelo sistema) em particular, a maioria dos
sistemas de recomendação apresentam um baixo desempenho. O trabalho aqui apresentado,
por outro lado, propõe que novos usuários receberão recomendações mais acuradas
de modelos de predição que já existem no sistema.
Nesta tese foram propostas 4 abordagens para lidar com o problema de cold-start
do usuário usando modelos existentes nos sistemas de recomendação. As abordagens
apresentadas trataram os seguintes aspectos:
o Inclusão de informação social em sistemas de recomendação tradicional: foram investigados
os papéis de várias métricas sociais em um sistema de recomendação de
preferências pairwise fornecendo subsidíos para a deĄnição de um framework geral
para incluir informação social em abordagens tradicionais.
o Uso de similaridade por percepção visual: usando a similaridade por percepção
visual foram inferidas redes, conectando usuários similares, para serem usadas na
seleção de modelos de predição para novos usuários.
o Análise dos benefícios de um framework geral para incluir informação de redes
de usuários em sistemas de recomendação: representando diferentes tipos de informação
adicional como uma rede de usuários, foi investigado como as redes de
usuários podem ser incluídas nos sistemas de recomendação de maneira a beneĄciar
a recomendação para usuários cold-start.
o Análise do impacto da seleção de modelos de predição para usuários cold-start:
a última abordagem proposta considerou que sem a informação adicional o sistema
poderia recomendar para novos usuários fazendo a troca entre os modelos já
existentes no sistema e procurando aprender qual seria o mais adequado para a
recomendação.
As abordagens propostas foram avaliadas em termos da qualidade da predição e da
qualidade do ranking em banco de dados reais e de diferentes domínios. Os resultados
obtidos demonstraram que as abordagens propostas atingiram melhores resultados que os
métodos do estado da arte. / Recommender systems are in our everyday life. The recommendation methods have as
main purpose to predict preferences for new items based on userŠs past preferences. The
research related to this topic seeks among other things to discuss user cold-start problem,
which is the challenge of recommending to users with few or no preferences records.
One way to address cold-start issues is to infer the missing data relying on side information.
Side information of different types has been explored in researches. Some
studies use social information combined with usersŠ preferences, others user click behavior,
location-based information, userŠs visual perception, contextual information, etc. The
typical approach is to use side information to build one prediction model for each cold
user. Due to the inherent complexity of this prediction process, for full cold-start user in
particular, the performance of most recommender systems falls a great deal. We, rather,
propose that cold users are best served by models already built in system.
In this thesis we propose 4 approaches to deal with user cold-start problem using
existing models available for analysis in the recommender systems. We cover the follow
aspects:
o Embedding social information into traditional recommender systems: We investigate
the role of several social metrics on pairwise preference recommendations and
provide the Ąrst steps towards a general framework to incorporate social information
in traditional approaches.
o Improving recommendation with visual perception similarities: We extract networks
connecting users with similar visual perception and use them to come up with
prediction models that maximize the information gained from cold users.
o Analyzing the beneĄts of general framework to incorporate networked information
into recommender systems: Representing different types of side information as a
user network, we investigated how to incorporate networked information into recommender
systems to understand the beneĄts of it in the context of cold user
recommendation.
o Analyzing the impact of prediction model selection for cold users: The last proposal
consider that without side information the system will recommend to cold users
based on the switch of models already built in system.
We evaluated the proposed approaches in terms of prediction quality and ranking
quality in real-world datasets under different recommendation domains. The experiments
showed that our approaches achieve better results than the comparison methods. / Tese (Doutorado)
|
3 |
Um modelo de negociação de privacidade para sistemas de recomendação socialRocha, Ânderson Kanegae Soares 27 February 2015 (has links)
Made available in DSpace on 2016-06-02T19:06:22Z (GMT). No. of bitstreams: 1
6770.pdf: 4215500 bytes, checksum: 31340bf5dc86076ef8911622315ba83c (MD5)
Previous issue date: 2015-02-27 / Financiadora de Estudos e Projetos / The high rate of growth and variety of information available on the Internet can overwhelm users, not leading them to the best decisions. In this context, social recommender systems play an important role on helping users against the effects of information overload. However, these systems need for data collection from its users social context motivates privacy concerns and may discourage its use. Thus, this dissertation presents a privacy negotiation model for social recommender systems to enable user to control his own privacy from the perspective of computer science. So, the user can decide to provide access to their data considering the personalization benefits that the system can offer him in exchange and is not forced to fully accept the privacy policies though. In this model, the privacy control is possible by means of a user interface design pattern using privacy negotiation techniques. The SocialRecSys social recommender system is an implementation of this model that was used in an evaluation with 32 users. The results showed that users are not satisfied with traditional interfaces and the model can better deal with the potentially different privacy preferences of each user. The results also indicated the high usability of the user interfaces of this model, which increase the flexibility of the systems regarding the configuration options of privacy preferences without harm the usage easiness of it. The implementation of this model shows that this is an alternative to reduce the concerns of privacy of social recommender systems users by increasing the flexibility and providing them a better understanding of the recommender systems. So users can feel encouraged to share their data in social recommender systems and take advantage of its personalization benefits. / A alta taxa de crescimento e variedade de informações disponíveis na Internet podem sobrecarregar os usuários, levando-os a não tomar as melhores decisões. Nesse contexto, os sistemas de recomendação social desempenham um importante papel ao auxiliar os usuários contra os efeitos da sobrecarga de informação. No entanto, a necessidade desses sistemas de coletar dados do contexto social dos seus usuários motiva preocupações de privacidade e pode desencorajar o seu uso. Assim, esta dissertação apresenta um modelo de negociação de privacidade para sistemas de recomendação social visando possibilitar ao usuário o controle de sua própria privacidade sob a perspectiva da ciência da computação. Desse modo o usuário pode decidir fornecer acesso aos seus dados considerando os benefícios de personalização que o sistema pode lhe oferecer em troca e ele não é obrigado a aceitar completamente as politicas de privacidade. Nesse modelo, o controle de privacidade é possível por meio de um padrão de projeto de interface de usuário que faz uso de técnicas de negociação de privacidade. O sistema de recomendação social SocialRecSys é uma implementação desse modelo e foi utilizado em uma avaliação com 32 usuários. Os resultados evidenciaram que os usuários não estão satisfeitos com as interfaces tradicionais e que o modelo apresentado pode tratar melhor as potencialmente diferentes preferências de privacidade de cada usuário. Os resultados também indicam a alta usabilidade das interfaces de usuário desse modelo. São interfaces que aumentam a flexibilidade dos sistemas em relação às opções de configuração de preferências de privacidade, sem tornar mais complexo o uso desses sistemas. A implementação do modelo proposto se mostra uma alternativa para reduzir as preocupações com privacidade dos usuários de sistemas de recomendação social, aumentando a flexibilidade e provendo aos usuários maior entendimento desses sistemas. Assim, os usuários podem se sentir encorajados a compartilhar seus dados com os sistemas de recomendação social e desfrutar de seus benefícios de personalização.
|
4 |
Anwendungsübergreifende Web-2.0-KollaborationsmusterPietschmann, Stefan, Tietz, Vincent 30 April 2014 (has links) (PDF)
No description available.
|
5 |
Anwendungsübergreifende Web-2.0-KollaborationsmusterPietschmann, Stefan, Tietz, Vincent January 2008 (has links)
No description available.
|
Page generated in 0.0717 seconds