• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 42
  • 13
  • 8
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 86
  • 86
  • 27
  • 25
  • 19
  • 11
  • 10
  • 9
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Venomics of Sea Anemones: A Bioinformatic Approach to Tissue Specific Venom Composition and Toxin Gene Family Evolution.

Macrander, Jason C. 26 September 2016 (has links)
No description available.
72

Phylogeny and Molecular Evolution of the Voltage-gated Sodium Channel Gene scn4aa in the Electric Fish Genus Gymnotus

Xiao, Dawn Dong-yi 19 March 2014 (has links)
Analyses of the evolution and function of voltage-gated sodium channel proteins (Navs) have largely been limited to mutations from individual people with diagnosed neuromuscular disease. This project investigates the carboxyl-terminus of the Nav paralog (locus scn4aa 3’) that is preferentially expressed in electric organs of Neotropical weakly-electric fishes (Order Gymnotiformes). As a model system, I used the genus Gymnotus, a diverse clade of fishes that produce species-specific electric organ discharges (EODs). I clarified evolutionary relationships among Gymnotus species using mitochondrial (cytochrome b, and 16S ribosome) and nuclear (rag2, and scn4aa) gene sequences (3739 nucleotide positions from 28 Gymnotus species). I analyzed the molecular evolution of scn4aa 3’, and detected evidence for positive selection at eight amino acid sites in seven Gymnotus lineages. These eight amino acid sites are located in motifs that may be important for modulation of EOD frequencies.
73

Phylogeny and Molecular Evolution of the Voltage-gated Sodium Channel Gene scn4aa in the Electric Fish Genus Gymnotus

Xiao, Dawn Dong-yi 19 March 2014 (has links)
Analyses of the evolution and function of voltage-gated sodium channel proteins (Navs) have largely been limited to mutations from individual people with diagnosed neuromuscular disease. This project investigates the carboxyl-terminus of the Nav paralog (locus scn4aa 3’) that is preferentially expressed in electric organs of Neotropical weakly-electric fishes (Order Gymnotiformes). As a model system, I used the genus Gymnotus, a diverse clade of fishes that produce species-specific electric organ discharges (EODs). I clarified evolutionary relationships among Gymnotus species using mitochondrial (cytochrome b, and 16S ribosome) and nuclear (rag2, and scn4aa) gene sequences (3739 nucleotide positions from 28 Gymnotus species). I analyzed the molecular evolution of scn4aa 3’, and detected evidence for positive selection at eight amino acid sites in seven Gymnotus lineages. These eight amino acid sites are located in motifs that may be important for modulation of EOD frequencies.
74

Expressão dos genes codificadores de canais de sódio Nav 1.7, Nav 1.8 e Nav 1.9 em portadores da Síndrome de Ardência Bucal / Expression of coding genes sodium channel Nav 1.7, Nav 1.8 and Nav 1.9 in patients with Burning Mouth Syndrome

Carvalho, Vanessa Juliana Gomes 20 January 2016 (has links)
A síndrome de ardência bucal (SAB) é uma condição caracterizada pelo sintoma de ardência na mucosa oral, na ausência de qualquer sinal clínico. Sua etiologia é desconhecida e, até o momento, não dispõe de tratamento efetivo. Há entretanto características de doença neuropática que justificam investigações nesse sentido. O objetivo desse estudo foi mensurar a expressão gênica dos receptores de canais de sódio, Nav 1.7, Nav 1.8 e Nav 1.9, nos pacientes portadores de SAB. A casuística foi composta por dois grupos sendo o grupo de estudo composto por 12 pacientes portadores de SAB, selecionados através do critério estabelecido pela International Headache Society, em 2013 e o grupo controle composto por 4 pacientes não portadores de SAB. As amostras analisadas foram coletadas do dorso lingual, por meio de biópsia realizada com punch de 3 mm e profundidade de 3 mm, estas foram submetidas ao método de análise RT-PCR em tempo real. A expressividade dos genes de canais de sódio foi avaliada nos indivíduos portadores de SAB em relação aos do grupo controle, sendo esta calculada a partir da normalização dos dados da quantificação destes com os da expressão do gene constitutivo (GAPDH), pelo método de Cicle Threshold comparativo e analisados estatisticamente por meio do teste estatístico Mann-Whitnney. Observou-se o aumento da expressão gênica do Nav 1.7 (fold-change = 38.70) e diminuição da expressão gênica do Nav 1.9 (fold-change = 0.89), porém sem diferenças estatisticamente significativas entre os grupos analisados. O gene Nav 1.8 não foi expresso em nenhuma das amostras analisadas. O Nav 1.7 expressa-se tanto em neurônios nociceptivos quanto no sistema nervoso autônomo e mutações no Nav 1.9 tem sido associada a perda de percepção dolorosa. Os resultados obtidos embora não estatisticamente significativos são compatíveis com as características da doença, justificando a extensão dos estudos na linha expressão de genes codificadores dos canais de sódio em pacientes com SAB. / Burning mouth syndrome (BMS) is a condition characterized by symptoms of burning in the oral mucosa, in the absence of any clinical signs. Its etiology is unknown and so far, it has no effective treatment. It is important to mention that BMS exhibits some traits of a neuropathic disease, what justifies a thorough investigation of this subject.The objective of this study was to measure the gene expression of the sodium channel receptors, Nav 1.7, Nav 1.8 and Nav 1.9, in patients with BMS.The sample was composed of two groups, being the study group formed by 12 patients with SAB, selected according to the criteria established by the International Headache Society in 2013, while the compound control group had 4 patients without SAB. The analyzed samples were collected from the tongue, by the biopsy technique with a 3 mm punch and 3mm depth. These samples were processed in real time, following the guidelines set forth by the RT-PCR method. The expressiveness of the sodium channels was evaluated in the individuals with BMS in relation to control group, which was calculated from the normalization of these data with the quantification of the expression of a constitutive gene (GAPDH) by the Cycle Threshold comparative methods and statistically compared by Man-Whitnney test. We observed an increased gene expression of Nav 1.7 (fold-change = 38.70) and a decreased gene expression of Nav 1.9 (fold-change = 0.89), but no statistically significant differences between the groups. Nav 1.8 gene was not expressed in any of the samples. Nav 1.7 is expressed in both nociceptive neurons as the autonomic nervous system and changes in Nav 1.9 has been associated with loss of pain perception. The results although not statistically significant are consistent with the disease characteristics, justifying the extension line of the studies on the expression of genes encoding the sodium channel in patients with SAB.
75

Biophysical Studies On The Plastic And Cooperative Properties Of Single Voltage Gated Na+ And Leak K+ Ion Channels

Nayak, Tapan Kumar 11 1900 (has links)
Ion channels are fundamental molecules in the nervous system that catalyze the flux of ions across the cell membrane. There are mounting evidences suggesting that the kinetic properties of ion channels undergo activity-dependent changes in various pathophysiological conditions. Here such activity-dependent changes were studied in case of two different ion channels; the rat brain derived voltage-gated Na+ channel, rNav1.2 and the human background leak K+ channel, hTREK1 using the single channel patch-clamp technique. Our results on the voltage-gated Na+ channel (Chapter III) illustrated that sustained membrane depolarization, as seen in pathophysiological conditions like epilepsy, induced a defined non-linear variation in the unitary conductance, activation, inactivation and recovery kinetic properties of the channel. Signal processing tools attributed a pseudo-oscillatory nature to the non-linearity observed in the channel properties. Prolonged membrane depolarization also induced a “molecular memory” phenomenon, characterized by clustering of dwell time events and strong autocorrelation in the dwell time series. The persistence of such molecular memory was found to be dependent on the duration of depolarization. Similar plastic changes were observed in case of the hTREK1 channel in presence of saturating concentrations of agonist, trichloroethanol (TCE) (Chapter IV). TREK1 channel behaves similar to single enzyme molecules with a single binding site for the substrate K+ ion whereas TCE acts as an allosteric activator of the channel. We observed that with increasing concentration of TCE (10 M to 10 mM) the catalytic turnover rate exhibited progressive departure from monoexponential to multi-exponential distribution suggesting the presence of ‘dynamic disorder’ analogous to single enzyme molecules. In addition, we observed the induction of strong correlation in successive waiting times and flux intensities, exemplified by distinct mode switching between high and low flux activity, which implied the induction of memory in single ion channel. Our observation of such molecular memory in two different ion channels in different experimental conditions highlights the importance and generality of the phenomenon which is normally hidden under the ensemble behaviour of ion channels. In the final part of the work (chapter V) we observed strong negative cooperativity and half-of-sites saturation kinetics in the interaction of local anesthetic, lidocaine with hTREK1 channel. We also mapped the specific anesthetic binding site in the c-terminal domain of the channel. Further, single channel analysis and the heterodimer studies enabled us to propose a model for this interaction and provide a plausible paradigm for the inhibitory action of lidocaine on hTREK1.
76

Rôle du canal sodique Nav1.9 dans la douleur inflammatoire, dans la perception du froid et dans l'hypersensibilité au froid induite par l'oxaliplatine

Lolignier, Stéphane 16 December 2011 (has links) (PDF)
Les canaux sodiques dépendants du voltage, ou canaux Nav, jouent un rôle capital dans l'excitabilité neuronale, dans la genèse et dans la propagation des potentiels d'action. Le canal Nav1.9 se distingue par une expression restreinte aux nocicepteurs et par des propriétés électrophysiologiques uniques qui, si elles excluent sa contribution à la phase dépolarisante du potentiel d'action, lui confèreraient un rôle dans la modulation de l'excitabilité des nocicepteurs. Ce travail de thèse vise à caractériser son implication dans la physiopathologie de la douleur par une approche comportementale, moléculaire et fonctionnelle. La première partie de ce travail consiste à étudier la contribution du canal Nav1.9 à la douleur inflammatoire. Nous avons donc réalisé différents tests comportementaux chez des souris knock-out (KO) et des rats traités par antisens (knock-down) modèles de douleur inflammatoire (aigu, subaigu, chronique). L'expression du canal ainsi que ses propriétés électrophysiologiques sont ensuite analysées chez ces mêmes modèles animaux. Notre premier constat est que le canal Nav1.9 n'est pas impliqué dans la réponse à une stimulation mécanique ou thermique chaude nociceptive chez des animaux sains. En revanche, l'hypersensibilité douloureuse thermique et mécanique induite par une inflammation subaiguë (carragénine intraplantaire) ou chronique (monoarthrite) est significativement réduite chez la souris KO Nav1.9. Un résultat similaire est obtenu par traitement antisens chez le rat, sur le modèle d'inflammation subaiguë. Chez la souris, suite à l'induction d'une inflammation subaiguë, une légère diminution suivie d'une forte augmentation de l'expression protéique du canal Nav1.9 est observée dans les ganglions rachidiens innervant la patte enflammée. Une augmentation de la quantité de canaux est également observée au niveau des troncs nerveux cutanés innervant cette même zone. Les canaux néosynthétisés ne contribuent pas au courant sodique enregistré en patch clamp dans les corps cellulaires des neurones des ganglions rachidiens, mais nos données suggèrent qu'ils sont exportés en direction des terminaisons nerveuses, où ils pourraient devenir fonctionnels et augmenter l'excitabilité cellulaire. La deuxième partie de ce travail de thèse consiste à caractériser l'implication de canal Nav1.9 dans la perception du froid et dans l'hypersensibilité au froid induite par l'oxaliplatine. Nous avons en effet observé de manière inattendue que les souris KO Nav1.9 présentent des seuils de douleur au froid (<10°C) plus élevés que les souris sauvages. Ce phénomène est confirmé par plusieurs tests comportementaux chez les souris KO et chez des rats traités par antisens anti-Nav1.9. L'oxaliplatine, prescrit dans le traitement des cancers colorectaux, est connu pour induire une hypersensibilité au froid invalidante chez la majorité des patients. Nous avons donc décidé d'étudier la contribution du canal Nav1.9 à ce symptôme. Suite à une injection unique d'oxaliplatine, une forte hypersensibilité au froid apparait chez les souris dès 20°C. Nous montrons que le KO Nav1.9 permet de supprimer l'hypersensibilité au froid aux températures normalement non douloureuses (20 et 15°C, allodynie), et de réduire l'hypersensibilité aux températures douloureuses (10 et 5°C, hyperalgie). Le même effet est observé chez le rat après traitement antisens. En conclusion, ce travail permet de mettre en évidence l'intérêt du canal Nav1.9 en tant que cible pharmacologique potentielle pour le traitement de douleurs inflammatoires et de l'hypersensibilité au froid induite par l'oxaliplatine. Il est de plus intéressant de constater que les seuils de réponse à des stimuli nociceptifs ne sont pas perturbés chez les souris KO Nav1.9 saines, à l'exception de la douleur provoquée par des températures froides extrêmes. Le blocage du canal Nav1.9 aurait donc des propriétés anti-hyperalgiques plutôt qu'antalgique, ce qui est conceptuellement intéressant.
77

Expressão dos genes codificadores de canais de sódio Nav 1.7, Nav 1.8 e Nav 1.9 em portadores da Síndrome de Ardência Bucal / Expression of coding genes sodium channel Nav 1.7, Nav 1.8 and Nav 1.9 in patients with Burning Mouth Syndrome

Vanessa Juliana Gomes Carvalho 20 January 2016 (has links)
A síndrome de ardência bucal (SAB) é uma condição caracterizada pelo sintoma de ardência na mucosa oral, na ausência de qualquer sinal clínico. Sua etiologia é desconhecida e, até o momento, não dispõe de tratamento efetivo. Há entretanto características de doença neuropática que justificam investigações nesse sentido. O objetivo desse estudo foi mensurar a expressão gênica dos receptores de canais de sódio, Nav 1.7, Nav 1.8 e Nav 1.9, nos pacientes portadores de SAB. A casuística foi composta por dois grupos sendo o grupo de estudo composto por 12 pacientes portadores de SAB, selecionados através do critério estabelecido pela International Headache Society, em 2013 e o grupo controle composto por 4 pacientes não portadores de SAB. As amostras analisadas foram coletadas do dorso lingual, por meio de biópsia realizada com punch de 3 mm e profundidade de 3 mm, estas foram submetidas ao método de análise RT-PCR em tempo real. A expressividade dos genes de canais de sódio foi avaliada nos indivíduos portadores de SAB em relação aos do grupo controle, sendo esta calculada a partir da normalização dos dados da quantificação destes com os da expressão do gene constitutivo (GAPDH), pelo método de Cicle Threshold comparativo e analisados estatisticamente por meio do teste estatístico Mann-Whitnney. Observou-se o aumento da expressão gênica do Nav 1.7 (fold-change = 38.70) e diminuição da expressão gênica do Nav 1.9 (fold-change = 0.89), porém sem diferenças estatisticamente significativas entre os grupos analisados. O gene Nav 1.8 não foi expresso em nenhuma das amostras analisadas. O Nav 1.7 expressa-se tanto em neurônios nociceptivos quanto no sistema nervoso autônomo e mutações no Nav 1.9 tem sido associada a perda de percepção dolorosa. Os resultados obtidos embora não estatisticamente significativos são compatíveis com as características da doença, justificando a extensão dos estudos na linha expressão de genes codificadores dos canais de sódio em pacientes com SAB. / Burning mouth syndrome (BMS) is a condition characterized by symptoms of burning in the oral mucosa, in the absence of any clinical signs. Its etiology is unknown and so far, it has no effective treatment. It is important to mention that BMS exhibits some traits of a neuropathic disease, what justifies a thorough investigation of this subject.The objective of this study was to measure the gene expression of the sodium channel receptors, Nav 1.7, Nav 1.8 and Nav 1.9, in patients with BMS.The sample was composed of two groups, being the study group formed by 12 patients with SAB, selected according to the criteria established by the International Headache Society in 2013, while the compound control group had 4 patients without SAB. The analyzed samples were collected from the tongue, by the biopsy technique with a 3 mm punch and 3mm depth. These samples were processed in real time, following the guidelines set forth by the RT-PCR method. The expressiveness of the sodium channels was evaluated in the individuals with BMS in relation to control group, which was calculated from the normalization of these data with the quantification of the expression of a constitutive gene (GAPDH) by the Cycle Threshold comparative methods and statistically compared by Man-Whitnney test. We observed an increased gene expression of Nav 1.7 (fold-change = 38.70) and a decreased gene expression of Nav 1.9 (fold-change = 0.89), but no statistically significant differences between the groups. Nav 1.8 gene was not expressed in any of the samples. Nav 1.7 is expressed in both nociceptive neurons as the autonomic nervous system and changes in Nav 1.9 has been associated with loss of pain perception. The results although not statistically significant are consistent with the disease characteristics, justifying the extension line of the studies on the expression of genes encoding the sodium channel in patients with SAB.
78

La spasticité après lésion de la moelle épinière : Identification des mécanismes moléculaires et ioniques sous-jacents / Spasticity after spinal cord injury : ionic and molecular mechanisms implicated

Plantier, Vanessa 14 December 2015 (has links)
La spasticité est l’une des nombreuses complications motrices qui peuvent apparaître après une lésion de la moelle épinière. Elle est présente dans 75 % des patients médullo-lésés et se caractérise par une hypertonie musculaire en réponse à un réflexe d’étirement. Les traitements actuels, qui ciblent les symptômes et non les causes de la spasticité, sont peu efficaces. Bien que les mécanismes neurologiques qui sous-tendent la spasticité soient complexes et restent en grande partie méconnus, un certain consensus se dégage sur le fait qu’elle est associée à une hyperexcitabilité intrinsèque des motoneurones et à une levée de l’inhibition des réflexes spinaux. L’hyperexcitabilité motoneuronale se manifeste par une décharge soutenue de potentiels de plateau et résulte en partie d’une augmentation des courants entrants persistants sodiques (INaP). La désinhibition découle, en partie, d’une baisse de l’expression des cotransporteurs potassium-chlorure de type 2 (KCC2) à la membrane des motoneurones, modifiant ainsi le gradient électrochimique des ions Cl- et donnant un caractère excitateur aux deux principaux neurotransmetteurs inhibiteurs que sont le GABA et la glycine. Néanmoins, les mécanismes à l’origine des dérégulations du courant INaP et des co-transporteurs KCC2 ne sont toujours pas élucidés. / Spasticity is commonly caused by several pathologies and specifically after a spinal cord injury (SCI). Spasticity is usually associated with hypertonia, clonus, muscle spasm and pain. The present thesis aims to identify the upstream mechanism in the pathophysiology of spasticity Calpain, a calcium-activated cysteine protease, has been shown to participate in the development of the inflammatory processes after SCI. Of special interest, some determinants governing the inactivation of sodium (Na+) channels are sensitive to proteases and their proteolytic cleavage prevents inactivation of Na+ channels. As a result, INaP is strongly increased. It is worth mentioning that the C-terminal domain of KCC2 is also sensitive to proteases which alter KCC2 ability to extrude Cl- ions. Among the different proteases, calpains are able to truncate both Na+ channels and KCC2 transporters. This led us to consider the exciting possibility that a proteolytic cleavage of both Na+ channels and KCC2 by calpains could compose an upstream inflammatory mechanism contributing to the development of spasticity after SCI. My thesis demonstrates that the cleavage of Na+ channels and KCC2 by calpain after SCI, is responsible for the upregulation of INaP and disinhibition of motoneurons, that both act synergistically to generate spasticity. Calpain inhibition by MDL28170 reduced the cleavage of both Na+channels and KCC2 associated with a respective downregulation of INaP, hyperpolarizing shift of the EIPSP, and an alleviation of spasticity. The thesis represents a significant breakthrough by opening novel perspectives to develop therapies.
79

Microtransplantation of Rat Brain Neurolemma into Xenopus Laevis Oocytes to Study the Effect of Environmental Toxicants on Endogenous Voltage-Sensitive Ion Channels

Murenzi, Edwin 11 July 2017 (has links)
Microtransplantation of mammalian neurolemma into Xenopus laevis oocytes has been used to study ion channels in terms of their structure and function in the central nervous system. Use of microtransplanted neurolemma is advantageous in that tissue can be obtained from various sources, ion channels and receptors are present in their native configuration and they can be used to evaluate numerous channelpathies caused by environmental toxicants. Here we show that Xenopus oocytes injected with fragments of rat brain neurolemma successfully express functional native ion channels that are assembled in their own plasma membrane. Using a high throughput two electrode voltage clamp (TEVC) electrophysiological system, currents that were sensitive to tetrodotoxin (TTX), omega-conotoxin MVIIC, and tetraethylammonium (TEA) were detected, indicating the presence of multiple voltage-sensitive ion channels (voltage-sensitive sodium, calcium and potassium channels, respectively). In this current research, a “proof-of-principle” experiment was conducted where TTX-sensitive voltage-sensitive sodium channel (VSSC) currents were measured. VSSCs are a well-established site of action for 1,1,1-trichloro-2,2-di(4-chlorophenyl)ethane (DDT) but not for its non-toxic metabolite 1,1-bis-(4-chlorophenyl)-2,2-dichloroethene (DDE). A differential sensitivity of DDT versus DDE on TTX-sensitive sodium current in neurolemma-injected oocytes was determined. DDT elicited an increase in depolarization-dependent, TTX-sensitive sodium current while DDE had no significant effect. Additionally, DDT resulted in a slowing of sodium channel inactivation kinetics whereas DDE has no similar effect. These results are consistent with the findings obtained using heterologous expression of single isoforms of rat brain VSSCs by injecting cRNA into Xenopus oocytes. By demonstrating the classic structural activity relationship of DDT and DDE on mammalian voltage-gated sodium channels isolated in rat brain neurolemma, this study supports the use of automated high-throughput electrophysiology to study the effects of various environmental toxicants on multiple mammalian cellular targets. More importantly, using rat brain neurolemma ensures that the proteins of interest have been transcribed and have undergone all the necessary post-translational modifications before they were injected and expressed in the Xenopus oocytes which is not the case for traditional heterologous expression.
80

Modulation de la stabilité de l'ARNm alphaENaC dans les cellules épithéliales alvéolaires : détermination du rôle des séquences 3' non traduites

Migneault, Francis 12 1900 (has links)
Le transport actif de sodium par les cellules épithéliales alvéolaires est le principal mécanisme impliqué dans la régulation du niveau de liquide dans le poumon distal. Le canal épithélial sodique (ENaC) exprimé par les cellules épithéliales alvéolaires est essentiel à la résorption du liquide des poumons à la naissance ainsi que la résolution de l'œdème pulmonaire chez l'adulte. L'activité et l'expression du canal ENaC sont modulées par de nombreux stress pathophysiologiques. L'inflammation pulmonaire constitue un facteur important dans l'inhibition de l'expression du canal ENaC et pourrait favoriser la formation d'œdème pulmonaire. Nous avons précédemment démontré que différentes cytokines pro-inflammatoires, ainsi que les lipopolysaccharides (LPS) de Pseudomonas aeruginosa, inhibent l'expression de l'ARNm αENaC par des mécanismes de régulation transcriptionnelle et post-transcriptionnelle. Ces résultats suggèrent que les mécanismes qui modulent la stabilité des ARNm αENaC pourraient jouer un rôle important dans la régulation du niveau d’expression du transcrit en condition inflammatoire. Le principal objectif de mes travaux était de caractériser les mécanismes de modulation de l’ARNm αENaC dans les cellules épithéliales alvéolaires lors de différents stress pathophysiologiques et déterminer si cette modulation pouvait s’expliquer en partie par une régulation de la stabilité du transcrit. Mes travaux montrent que les LPS et la cycloheximide inhibent l’expression de l’ARNm αENaC de façon similaire via l’activation des voies de signalisation des MAPK ERK1/2 et p38. Cependant, les mécanismes de modulation de l’expression de l'ARNm αENaC sont différents puisque les LPS répriment la transcription du gène, alors que la cycloheximide diminuerait la stabilité du transcrit via des mécanismes post-transcriptionnels impliquant la région 3' non traduite (3'UTR) de l'ARNm αENaC. Pour mieux étudier le rôle du 3'UTR dans ce processus, nous avons développé un modèle Tet-Off nous permettant de mesurer la demi-vie de l’ARNm αENaC indépendamment de l’utilisation d’un inhibiteur de la transcription comme l'actinomycine D (Act. D). Nous avons montré que la demi-vie de l’ARNm αENaC était de 100min, un temps beaucoup plus court que celui rapporté dans la littérature. Nous avons démontré que l’Act. D a un effet stabilisateur important sur l’ARNm αENaC et qu’il ne peut être utilisé pour évaluer la stabilité du transcrit. À l’aide de différents mutants de délétion, nous avons entrepris de déterminer la nature des régions du 3’UTR impliquées dans la modulation de la stabilité du transcrit. Nous avons trouvé que le 3’UTR joue un rôle à la fois de stabilisation (région 3’UTR proximale) et de déstabilisation (région 3’UTR distale) du transcrit. Notre système nous a finalement permis de confirmer que la diminution de l’ARNm αENaC observée en présence de TNF-α s’expliquait en partie par une diminution importante de la stabilité du transcrit induite par cette cytokine. Enfin, nous avons identifié la nature des protéines pouvant se lier au 3’UTR de l’ARNm αENaC et déterminé lesquelles pouvaient moduler la stabilité du transcrit. Des trois protéines candidates trouvées, nous avons confirmé que la surexpression de DHX36 et TIAL1 diminue le niveau de transcrit par un mécanisme impliquant la stabilité du messager. Les travaux présentés ici montrent la complexité des voies de signalisation induites par différents stress sur les cellules épithéliales alvéolaires et montrent comment la stabilité de l’ARNm αENaC et en particulier, les séquences du 3’UTR jouent un rôle important dans la modulation du niveau de transcrit. Le modèle Tet-Off que nous avons développé permet d’estimer le temps de demi-vie réel de l’ARNm αENaC et montre que le 3’UTR du messager joue un rôle complexe dans la stabilisation du messager en condition de base ainsi qu’en condition pro-inflammatoire. Enfin, nous avons identifié deux protéines liant l’ARNm qui pourraient jouer un rôle important dans la modulation de la stabilité du transcrit. / The epithelial sodium channel (ENaC) expressed in alveolar epithelial cells plays a major role for lung liquid clearance at birth and lung edema resorption in adulthood. The expression and activity of ENaC are inhibited by many pathophysiological stress that could have an impact in the clinical outcome of acute respiratory distress syndrome (ARDS). Pulmonary inflammation is an important factor in this inhibition that may promote or sustain pulmonary edema. We have previously shown that pro-inflammatory cytokines and lipopolysaccharide (LPS) from Pseudomonas aeruginosa inhibit αENaC mRNA expression by transcriptional and post-transcriptional mechanisms, suggesting that a modulation of αENaC mRNA stability could play a role in this process. The main objective of the present work was to characterize how different pathophysiological stress affect αENaC mRNA expression in alveolar epithelial cells and determine whether this modulation could be explained in part by regulating the stability of the transcript. Our study shows that LPS and cycloheximide decrease the level of αENaC mRNA with a similar time course and via the activation of the MAPK ERK1/2 and p38 signaling pathways. Despite similarities, there were important differences in the mechanisms involved in the modulation of αENaC mRNA expression. While LPS repress αENaC mRNA transcription, cycloheximide triggers post-transcriptional mechanisms involving the 3' untranslated region (3'UTR) of αENaC mRNA. To further study the role of αENaC 3'UTR in this process, we developed a Tet-Off model that allows us to measure the half-life of αENaC mRNA regardless of the use of a transcription inhibitor such as actinomycin D (Act. D). Using this system, we showed a 100 min half-life for αENaC mRNA, a much shorter time then the one reported for this mRNA using Act. D. We showed that Act. D has an important stabilizing effect on αENaC mRNA and cannot be used to assess the stability of the transcript. Using deletion mutants of the αENaC 3'UTR region, we determined how different portions of 3'UTR were important in modulating stability of the transcript. We found that the 3'UTR has dual functions, with portions important to promote stabilization (proximal 3'UTR) and others that strongly destabilize (distal 3'UTR) the transcript. Our system also allowed us to confirm that the decreased expression of αENaC mRNA induced by TNF-α results in part by a decreased stability of the mRNA. Finally, we identified several RNA-binding proteins that interact specifically with αENaC 3'UTR and determined if these proteins had an impact on transcript stability. Surexpression of two of these proteins in alveolar epithelial cells, DHX36 and TIAL1 was able to decrease the level of αENaC mRNA via a downregulation of mRNA stability. The work presented here shows the complexity of the signal transduction pathways elicited by different pathological stress conditions in alveolar epithelial cells and is the first to show that αENaC mRNA stability elicited by sequences in 3’UTR plays an important role in modulating the level of the transcript. The Tet-Off model that we developed allows to accurately estimate the half-life of αENaC mRNA and shows that the 3’UTR portion of the mRNA plays a complex role in the modulation of transcript stability in basal and pro-inflammatory conditions. Finally, we identified two putative RNA-binding proteins able to specifically recognize αENaC 3’UTR and modulate the transcript stability.

Page generated in 0.0682 seconds