• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 132
  • 49
  • 36
  • 7
  • 7
  • 7
  • 7
  • 7
  • 6
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 274
  • 274
  • 70
  • 67
  • 41
  • 36
  • 28
  • 26
  • 24
  • 24
  • 21
  • 20
  • 18
  • 17
  • 16
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
271

Characterization And Lime Stabilization Studies On Artificially Lead Contaminated Soils

Gaurave, Kumar 07 1900 (has links) (PDF)
Hazardous waste substances are solid, semi-solid or non-aqueous liquids that exhibit characteristics of corrosivity, reactivity, ignitability, toxicity and infectious property. Major available options for management of hazardous waste include direct disposal into landfill or chemical treatment/stabilization of wastes prior to landfill disposal. Hazardous wastes are accepted for direct disposal in engineered landfills if they conform to the chemical concentration limit criterion (determined by water leach test followed by estimation of the concentration of the contaminant) and compressive strength (the material should have compressive strength > 50 kPa) criterion. Lead is classified as extremely toxic metal. Elevated levels of lead in water (surface and ground water) primarily arise from industrial discharges, and aerial deposition. During its residence in surface water bodies, the lead may interact detrimentally with aquatic life or be abstracted into public water supplies. According to National drinking water standards, the permissible limit of lead in drinking water is 0.05 mg/l. Deposition of air-borne lead, disposal of sewage sludge on land and disposal of industrial effluents on lands are major sources of lead contamination of soils. When incorporated in soil, lead is of very low mobility. Lead retained in soils can be slowly leached to the groundwater thereby impacting human health if consumed for potable needs. Alternatively lead deposited in soils can be absorbed by vegetation (crops/trees) and can impact human health on their consumption. Given the negative impacts of lead contamination on human health, the strong affinity of soils to retain deposited lead and the possible release for human consumption, this thesis focuses on characterization and chemical stabilization of artificially lead contaminated soils in the context of their disposal in hazardous waste landfills. The main objectives of the thesis are: characterize artificially lead contaminated soils for water leachability of lead and undrained strength characteristics as per CPCB (Central Pollution Control Board) guidelines in the context of disposal criteria in hazardous waste landfills. Artificially lead contaminated soils in compacted and slurry states are used in the thesis. Red soil (from Bangalore District, Karnataka) and river sand are used in the preparation of compacted and slurry specimens. The red soil and red soil-sand specimens are artificially contaminated in the laboratory by employing aqueous lead salt solutions as remolding fluids. Lead concentrations of 160 to 10000 mg/l are used in this study. The results of characterization studies with artificially lead contaminated soils help identify contaminated soil materials that require chemical stabilization prior to disposal into engineered landfills. Based on the results of characterization studies with artificially lead contaminated soils, lime stabilization coupled with steam curing technique is resorted to immobilize lead in the red soil-sand slurry specimens and mobilize adequate undrained strength to meet the criteria for disposal of lead contaminated soils in hazardous landfills. After this first introductory chapter, a detailed review of literature is performed towards highlighting the need to undertake chemical stabilization of artificially lead contaminated soils in Chapter 2. Chapter 3 presents a detailed experimental program of the study. Chapter 4 presents the physico-chemical and mechanical characterization of the artificially lead contaminated soils. The ability of artificially contaminated soils to release (artificially added) lead during water leaching is explained using lead speciation results performed using the Visual MINTEQ program. Experimental results illustrated that contamination of compacted red soil and red soil + sand specimens with significant lead concentrations (21 to 1300 mg/kg) resulted in major fractions of the added lead being retained in the precipitated state. Results of water leach tests revealed that lead concentrations released in the water leachates are far less than (0.0011 to 0.48 mg/l) limits prescribed by CPCB (2 mg/l) for direct disposal of lead contaminated materials into hazardous waste landfills. Unconfined compressive strengths developed by the lead contaminated red soil and red soil-sand specimens were significantly higher (100-2700 kPa) than the strength requirement (> 50 kPa) for direct disposal of hazardous wastes in engineered landfills. Lead contamination did not affect the unconfined compression strengths of the specimens as matric suction prevalent in the unsaturated compacted soils had an overriding influence on the cementation bond strength created by the lead precipitates. Visual Minteq tool was helpful in predicting the amount of added lead that was converted to insoluble precipitate form. However the amounts of water leachable lead determined experimentally and predicted by Visual Minteq were very different-Visual Minteq predicted much higher amounts of water leachable lead than experimentally determined. Experimental results revealed that the levels of lead released by the red soil-sand slurries in water leach tests were in excess (13 to 36 mg/l) of the permissible lead concentration (2 mg/l) for direct disposal of hazardous waste in landfills. Owing to water contents generally being in excess of their liquid limit water contents (w/wL ratio > 1) the slurry specimens exhibited undrained strengths below 1 kPa. Lime stabilization and steam curing of the contaminated slurry specimens was therefore resorted to control the leachibility of lead and increase undrained strengths to acceptable limits. Chapter 5 deals with lime stabilization of artificially contaminated slurries that do not meet the leachate quality (lead concentration in water < 2 mg/l) or compressive strength (> 50 kPa). Procedures are evolved for lime stabilization of such artificially contaminated soils to meet both the water leachate quality and compressive strength criteria. Lime stabilization together with steam curing of the lead contaminated slurry specimens effectively immobilized the added lead (2500 mg/kg) and imparted adequate compressive strengths to the contaminated red soil-sand slurry specimens. The lime stabilized contaminated specimens released marginal lead concentrations (0.03 to 0.45 mg/l) in the water leach; these values are much lower than permissible limit (2 mg/l) for disposal in hazardous landfills or values exhibited by the unstabilized specimens (13 to 38 mg/l). Lime addition rendered the contaminated specimens strongly alkaline (pH values ranged between 10.68 and 11.66). Combination of the experimental and Visual Minteq results suggested that precipitation of lead as hydrocerrusite in the alkaline environments (pH 10.68 to 11.95) is not the sole factor for marginal release of lead in water leach tests of the 4, 7 and 10 % lime stabilized contaminated specimens. It is possible that fraction of lead ions are entrapped within the cemented soil matrix. Water leach tests performed at range of pH values (pH 2.5 to 9.6) with 7 % lime stabilized specimens suggested that immobilization of lead as hydrocerrusite or as entrapment in the cemented soil mass in the lime stabilized specimens is practically irreversible even on exposure to extreme pH conditions. The lime stabilized contaminated specimens developed unconfined compressive strengths ranging from 100 kPa (4 % lime stabilized 40 % red soil-60 % sand specimen) to 1000 kPa (10 % lime stabilized 100 % red soil specimen). The significant growth of compressive strength upon lime stabilization is attributed to growth of inter-particle cementation bonds by the CAH (calcium aluminate hydrate) and CSH (calcium silicate hydrate) compounds formed by lime-clay reactions, slight reduction in void ratios and growth of strong inter-particle cementation bonds the during steam curing at 800C. The results of this thesis bring out a procedure to immobilize high concentrations of lead and develop adequate compressive strength of lead contaminated slurry specimens by lime stabilization + steam curing technique. The red soil acted as pozzolana in reactions with lime, while, steam curing accelerated the lime-soil reactions. The procedure can be extended to non-organic slurry wastes that are devoid of pozzolanic material (example, lead contaminated smelting sands). In slurry wastes devoid of pozzolana, materials such as fly ash can be added and the reactions between lime and fly ash would immobilize lead + develop adequate compressive strength. Also, similar to the methodology being adaptable for any non-organic slurries, it can also be extended to other toxic metal bearing wastes, example, zinc, cadmium and nickel.
272

Investigation of rockfall and slope instability with advanced geotechnical methods and ASTER images

Sengani, Fhatuwani 03 1900 (has links)
The objective of this thesis was to identify the mechanisms associated with the recurrence of rock-slope instability along the R518 and R523 roads in Limpopo. Advanced geotechnical methods and ASTER imagery were used for the purpose while a predictive rockfall hazard rating matrix chart and rock slope stability charts for unsaturated sensitive clay soil and rock slopes were to be developed. The influence of extreme rainfall on the slope stability of the sensitive clay soil was also evaluated. To achieve the above, field observations, geological mapping, kinematic analysis, and limit equilibrium were performed. The latter involved toppling, transitional and rotational analyses. Numerical simulation was finally resorted to. The following software packages were employed: SWEDGE, SLIDE, RocData, RocFall, DIPS, RocPlane, and Phase 2. The simulation outputs were analyzed in conjunction with ASTER images. The advanced remote sensing data paved the way for landslide susceptibility analysis. From all the above, rockfall hazard prediction charts and slope stability prediction charts were developed. Several factors were also shown by numerical simulation to influence slope instability in the area of study, i.e. sites along the R518 and R523 roads in the Thulamela Municipality. The most important factors are extreme rainfall, steep slopes, geological features and water streams in the region, and improper road construction. Owing to the complexity of the failure mechanisms in the study area, it was concluded that both slope stability prediction charts and rock hazard matrix charts are very useful. They indeed enable one to characterize slope instability in sensitive clay soils as well as rockfall hazards in the study area. It is however recommended that future work is undertaken to explore the use of sophisticated and scientific methods. This is instrumental in the development of predictive tools for rock deformation and displacement in landslide events. / Electrical and Mining Engineering / D. Phil. (Mining Engineering)
273

Utilización de mezclas de residuos para la obtención de cementos de activación alcalina: aplicación en morteros y suelos estabilizados

Cosa Martínez, Juan 05 September 2022 (has links)
Tesis por compendio / [ES] Esta tesis englobada dentro del programa de doctorado en ingeniería de la construcción sigue la línea de investigación en sostenibilidad y gestión de la construcción. Las investigaciones se han centrado en el desarrollo de cementos de activación alcalina (CAA) obtenidos a partir de residuos con el fin de reducir tanto el coste económico como medioambiental. Este hecho implicaría la reducción en el uso tanto de materias primas, en el caso de los precursores, como de reactivos químicos en el caso de los activadores. La tesis doctoral que se presenta estudia el uso de diferentes mezclas de residuos como precursores: cerámica sanitaria, catalizador gastado de craqueo catalítico, escoria de alto horno y ceniza volante de central térmica en la preparación de morteros. Así mismo, utiliza también CAA, obtenidos a partir de residuos en la estabilización de suelos. En este último caso también se han usado residuos en la preparación de activadores como son las cenizas obtenidas en la combustión de biomasa. Los resultados obtenidos ponen de manifiesto la viabilidad en el uso de residuos para la preparación de CAA, y la posibilidad incluso de ser usados en contextos de subdesarrollo. / [CA] Aquesta tesi englobada dins del programa de doctorat en enginyeria de la construcció segueix la línia d'investigació en sostenibilitat i gestió de la construcció. Les investigacions s'han centrat en el desenvolupament de ciments d'activació alcalina (CAA) obtinguts a partir de residus amb la finalitat de reduir tant el cost econòmic com mediambiental. Aquest fet implicaria la reducció en l'ús tant de matèries primeres, en el cas dels precursors, com de reactius químics en el cas dels activadors. La tesi doctoral que es presenta estudia l'ús de diferents mescles de residus com a precursors: ceràmica sanitària, catalitzador gastat de craqueig catalític, escòria d'alt forn i cendra volant de central tèrmica en la preparació de morters. Així mateix, utilitza també CAA, obtinguts a partir de residus en l'estabilització de sòls. En aquest últim cas també s'han usat residus en la preparació d'activadors com són les cendres obtingudes en la combustió de biomassa. Els resultats obtinguts posen de manifest la viabilitat en l'ús de residus per a la preparació de CAA, i la possibilitat de ser usats fins i tot en contextos de subdesenvolupament. / [EN] This doctoral thesis encompassed within the doctoral program in construction engineering follows the research line in sustainability and construction management. The research has focused on the development of alkaline activated cements (AAC) obtained from waste to reduce the economic and environmental cost. This fact would imply a reduction in the use of raw materials in the case of precursors, and chemical reagents in the case of activators. The doctoral thesis that is presented studies the use of different waste mixtures as precursors: sanitary ceramics, spent fluid cracking catalyst, blast furnace slag and fly ash from thermal power plants in the preparation of mortars. Likewise, also is used CAA obtained from residues in soil stabilization. In the latter case, residues have also been used in the activators preparation, such as the ashes obtained in the combustion of biomass. The results obtained show the viability in the use of residues for CAA preparation, and the possibility of being used even in underdeveloped contexts. / Agradecer al Ministerio de Ciencia e Innovación por el soporte a mi investigación, mediante los fondos del proyecto APLIGEO BIA2015-70107-R y los fondos FEDER. También a las empresas: Ideal Standard por suministrar residuos de cerámica sanitaria, Omya Clariana S.A. por suministrar catalizador gastado del craqueo catalítico, a Balalva S.L. por suministrar cenizas volantes, a Cementval por suministrar escorias de alto horno, a Heineken España S.A. por el suministro de residuo del filtrado de cerveza (tierras diatomeas), a DACSA GROUP por la ceniza de cáscara de arroz, y a PAVASAL por suministrar suelo de tipo dolomítico. Támbien al servicio de Microscopía electrónica y al Instituto de Ciencia y Técnología del Hormigón de la Universitat Politècnica de València. / Cosa Martínez, J. (2022). Utilización de mezclas de residuos para la obtención de cementos de activación alcalina: aplicación en morteros y suelos estabilizados [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/185221 / TESIS / Compendio
274

Stavebně technologický projekt výrobní a administrativní haly ATX / Building Construction Project for Industrial and Administrative Building ATX

Šrámek, Jiří January 2019 (has links)
The subject of this master’s thesis is a solution of chosen parts of building construction project. The project solves industrial hall that contains productions and administrative space. This thesis includes technological regulations for substructure, study of performing the main technological stages, design of using machines, checking and testing plans. Other phrases parts are time schedules, budget, calculations, design of site equipment including engineering report and report for performing access road. Starting materials, which were used for this thesis, were engineering report also including working drawings.

Page generated in 0.0774 seconds