• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 752
  • 84
  • 67
  • 62
  • 47
  • 19
  • 13
  • 13
  • 12
  • 10
  • 8
  • 8
  • 7
  • 6
  • 6
  • Tagged with
  • 1370
  • 1370
  • 266
  • 236
  • 217
  • 207
  • 192
  • 185
  • 184
  • 167
  • 156
  • 148
  • 130
  • 120
  • 118
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
581

Spatially resolved charge transport and recombination in metal-halide perovskite films and solar cells

Tainter, Gregory Demaray January 2018 (has links)
Metal-halide perovskites show great promise as solution-processable semiconductors for efficient solar cells and LEDs. In particular, the diffusion range of photogenerated carriers is unexpectedly long and the luminescence yield is remarkably high. While much effort has been made to improve device performance, the barriers to improving charge transport and recombination properties remain unidentified. I first explore charge transport by investigating a back-contact architecture for measurement. In collaboration with the Snaith group at Oxford, we develop a new architecture to isolate charge carriers. We prepare thin films of perovskite semiconductors over laterally-separated electron- and hole-selective materials of SnOₓ and NiOₓ, respectively. Upon illumination, electrons (holes) generated over SnOₓ (NiOₓ) rapidly transfer to the buried collection electrode, leaving holes (electrons) to diffuse laterally as majority carriers in the perovskite layer. We characterise charge transport parameters of electrons and holes, separately, and demonstrate that grain boundaries do not prevent charge transport. Our results show that the low mobilities found in applied-field techniques do not reflect charge diffusivity in perovskite solar cells at operating conditions. We then use the back-contact architecture to investigate recombination under large excess of one charge carrier type. Recombination velocities under these conditions are found to be below 2 cm s⁻¹, approaching values of high quality silicon and an order of magnitude lower than under common bipolar conditions. Similarly, diffusion lengths of electrons and holes exceed 12 μm, an order of magnitude higher than reported in perovskite devices to date. We report back-contact solar cells with short-circuit currents as high as 18.4 mA cm⁻², giving 70% external charge-collection efficiency. We then explore the behaviour of charge carriers in continuously illuminated metal-halide perovskite devices. We show that continuous illumination of perovskite devices gives rise to a segregated charge carrier population, and we find that the distance photo-induced charges travel increases significantly under these conditions. Finally, we examine intermittancy in the photoluminescence intensity of metal-halide perovskite films.
582

Efficiency-Limiting Recombination Mechanisms in High-Quality Crystalline Silicon for Solar Cells

January 2018 (has links)
abstract: Recent technology advancements in photovoltaics have enabled crystalline silicon (c-Si) solar cells to establish outstanding photoconversion efficiency records. Remarkable progresses in research and development have been made both on the silicon feedstock quality as well as the technology required for surface passivation, the two dominant sources of performance loss via recombination of photo-generated charge carriers within advanced solar cell architectures. As these two aspects of the solar cell framework improve, the need for a thorough analysis of their respective contribution under varying operation conditions has emerged along with challenges related to the lack of sensitivity of available characterization techniques. The main objective of my thesis work has been to establish a deep understanding of both “intrinsic” and “extrinsic” recombination processes that govern performance in high-quality silicon absorbers. By studying each recombination mechanism as a function of illumination and temperature, I strive to identify the lifetime limiting defects and propose a path to engineer the ultimate silicon solar cell. This dissertation presents a detailed description of the experimental procedure required to deconvolute surface recombination contributions from bulk recombination contributions when performing lifetime spectroscopy analysis. This work proves that temperature- and injection-dependent lifetime spectroscopy (TIDLS) sensitivity can be extended to impurities concentrations down to 109 cm-3, orders of magnitude below any other characterization technique available today. A new method for the analysis of TIDLS data denominated Defect Parameters Contour Mapping (DPCM) is presented with the aim of providing a visual and intuitive tool to identify the lifetime limiting impurities in silicon material. Surface recombination velocity results are modelled by applying appropriate approaches from literature to our experimentally evaluated data, demonstrating for the first time their capability to interpret temperature-dependent data. In this way, several new results are obtained which solve long disputed aspects of surface passivation mechanisms. Finally, we experimentally evaluate the temperature-dependence of Auger lifetime and its impact on a theoretical intrinsically limited solar cell. These results decisively point to the need for a new Auger lifetime parameterization accounting for its temperature-dependence, which would in turn help understand the ultimate theoretical efficiency limit for a solar cell under real operation conditions. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2018
583

Tin Catalyst preparation for Silicon Nanowire synthesis

Modiba, Fortunate Mofao January 2018 (has links)
>Magister Scientiae - MSc / Solar cells offer SA an additional energy source. While Si cells are abundantly available they are not at an optimal efficiency and the cost is still high. One technology that can enhance their performance is SiNW. However, material properties such as the diameter, porosity and length determine their effectiveness during application to solar cell technology. One method of growing SiNW uses Sn catalysts on a Si substrate. As the properties of the Sn nanoparticle govern the properties of the SiNW, this thesis investigates their formation and properties by depositing a Sn layer on a Si wafer and then subjecting it to different temperatures, during process the layer forms into nanoparticles. At each temperature the morphology, composition and crystallinity will be determined using XPS, SEM, TEM and EDS. Thus, in Chapter 1 there is an overview, Chapter 2 deals with techniques used in this study, Chapter 3 will give the quantitative and qualitative results on the XPS analysis and Chapter 4 will illustrate the structural behaviour of the annealed Sn film samples.
584

A comparative study of ZnO i-layer deposited with ALD and PVD for CIGS solar cells

Johansson Byberg, Joel January 2019 (has links)
Two identified setbacks for CIGS based devices in order to obtain higher efficiency are parasitic absorption in the window layer structure and losses in open-circuit voltage due to bad interfaces. This study investigated how the performance of the solar cell is affected by depositing intrinsic ZnO (i-ZnO) and ZnMgO with atomic layer deposition (ALD) instead of the conventional sputtering. No significant improvement in fill factor was obtained by the use of ALD compared to sputtering, leading to the conclusion that pinholes in the sputtered film are not a detrimental factor for the cell. As the thickness of the i-layer increased, an increase in FF was observed for the ALD-deposited i-layer, whereas a decrease was observed for the sputtered i-layer. The open-circuit voltage was considered constant between the two series with only small fluctuations, indicating that the defect chemistry of the i-ZnO/CdS interface was not improved with the use of ALD. In this study it is shown that a gain in short-circuit current can be obtained for CIGS solar cells in the high energy region of the spectrum by reducing the thickness of the i-ZnO, as well as alloying the ZnO with Mg. When compared with a baseline layer sample with a sputtered i-layer thickness of around 90 nm, the estimated gain in short-circuit current density without a loss in fill factor was 0.14 and 0.20 mA/cm2 for ALD and sputtering, respectively. For the series with a ZnMgO i-layer, the highest estimated gain was 0.17 mA/cm2. This was observed for the sample with a 4:1 (Zn:Mg) pulse ratio, whereas higher Mg contents yielded a too high band gap that resulted in an electron blocking barrier.
585

Building-Integrated Photovoltaics for a Habitat on Mars : A Design Proposal Based on the Optimal Location and Placement of Integrated Solar Cells

Schylander, Anna January 2019 (has links)
The ever-increasing challenges that we face with our consumption of resources on Earth are factors which have prompted researchers to show interest in studying the possibilities of human habitat on other celestial bodies. Mars is a stone planet and is at such distance from the sun that it could be feasible for future settlements with the right technology and solutions. Future missions to Mars rely on solar panels as their primary power system. Utilizing solar architecture is a solution that reduces both a building’s energy consumption and the extent of environmental damage fossil fuels are causing the Earth. This leads to extensive opportunities to explore how we can increase the use of renewable energy using new technologies developed for use on Earth but also for use in the space industry.   This study used a qualitative method through literature studies and semi-structured interviews as well as a quantitative method through calculations. The literature study was meant to act as a theoretical base for this study and for the interviews by creating an understanding of the world’s usage of renewable and non-renewable energy sources and how solar power works by the means of photovoltaic cells. The interviews were held to identify the opportunities and obstacles regarding a solar power system on Mars as well as the usage of BIPV (building-integrated photovoltaics) in extreme environments. Mathematical calculations were based on the fundamental geometric shape of a cylinder where the walls were set to be the varying parameter. Six locations on Mars with different coordinates and underlying matters were selected to the study based on the knowledge collected from the literature study and the interviews.   Aspects that needs to be considered for building-integrated photovoltaics placed on a building’s envelope on Mars are several. Some of the most crucial are: dust deposition and dust in the atmosphere, a climate with major temperature extremes, the habitats location on the planet and the amount of output energy provided by BIPV partly affected by the Mars-Sun distance. If the fundamental geometric shape of the building is a cylinder, the building’s shape would to form as a truncated cone with smaller wall slopes the closer the equator the habitat is located. If the habitat is placed far away from the equator the walls’ slope, the optimal tilt angle of the photovoltaic module, would be steeper and increase with the higher latitude. The maximized power by using BIPV on a building on Mars is provided as close to the equator as possible due to the big amount of sunlight reaching the surface. If BIPV could be used on the Martian surface is still a relatively extensive hypothesis. Studies about Mars and other planets tend to result in this kind of approach because of the many insecurities that cannot be proven before humans get to the planet or detailed tests have been accomplished and analyzed. A solar power system shows great opportunities for future human missions to Mars but BIPV is not considered an option in the near future without further research and development verifying the option.
586

Nanocompósitos metálicos para aplicações em processos fotoquímicos intensificados: efeitos de plasmon em fotocatálise / Applications of metallic nanocomposites in enhanced photochemical processes: plasmon effects in photocatalysis

Souza, Michele Lemos de 16 October 2013 (has links)
Na presente tese de doutorado, foram exploradas possibilidades para a aplicação de nanopartículas (NPs) metálicas plasmônicas (fenômenos ópticos intensificados) em processos de fotocatálise e em células solares de Si. Estratégias foram exploradas para a imobilização das NPs plasmônicas em TiO2 Degussa P25 (mistura anatase:rutila 4:1) para captação da radiação eletromagnética UV/visível e somente visível em processos fotocatalíticos; e de NPs de Cu em células solares de Si para processos de fotoconversão, contribuindo com a compreensão dos fenômenos de intensificação local de energia mediados pelas NPs, o qual ainda está em debate no cenário científico. Compósitos de P25+NPs Ag de diferentes arquiteturas (fios, esferas e fotorreduzidas), de P25+NPs Ag recoberta com uma camada de SiO2 e de P25+NPs Au foram desenvolvidos. A caracterização dos materiais foi realizada por meio de técnicas de espectroscopia UV-VIS, IR e Raman, área superficial, DRX e de microscopia eletrônica de varredura e de transmissão. Os efeitos das propriedades plasmônicas dessas nanopartículas foram avaliados na eficiência de fotodegradação de três corantes (alizarina vermelha S, vermelho do Congo e fenossafranina) e de fenol. Todos os materiais plasmônicos apresentaram bom desempenho catalítico, aumentando consideravelmente a velocidade e a porcentagem de fotodegradação sob radiação UV/visível, mas principalmente sob radiação visível (onde a fotodegradação catalisada por P25 é limitada). A comparação entre a fotodegradação de fenol pelo compósito P25+NPs Ag esferas e P25+NPs Ag@SiO2 permitiu concluir que a transferência de carga não é o fenômeno que governa o aumento da eficiência catalítica em comparação à fotodegradação catalisada por P25. O fenômeno de intensificação de radiação eletromagnética localizada por meio de LSPR foi observado também em células solares de silício de primeira geração (wafer) contendo NPs de Cu imobilizadas em sua superfície. Aumentos na densidade de corrente de curto-circuito de cerca de 8 % na região acima de 750 nm e de até 16% na potência destas células solares foram observados. / In this thesis, we explored possibilities for the application of metallic plasmonic nanoparticles (NPs) resulting in intensified optical phenomena processes in photocatalysis and Si solar cell. Different strategies were explored for the immobilization of plasmonic NPs on TiO2 Degussa P25 (mixture anatase: rutile 4:1) to capture electromagnetic radiation UV / visible and visible only in photocatalytic processes; and Cu NPs in Si solar cell for photoconversion processes, contributing with the understanding of the phenomena related to the localized ressonance energy mediated by NPs, which is still under debate in the scientific field. Composites of P25+Ag NPs of various architectures (wires, spheres and photoreduced) P25+Ag NPs coated with a layer of SiO2 and P25+Au NPs were developed. The material characterization was performed by means of UV-VIS, IR and Raman spectroscopies, BET surface area, XRD and scanning and transmission electron microscopy. The effects of plasmonic nanoparticles properties were evaluated in the photodegradation efficiency of three textile dyes (Alizarin Red S, Congo red and phenosafranine) and phenol. All plasmonic materials showed good catalytic performance, greatly increasing the kinetic and percentage of photodegradation under UV/visible, but mostly under visible light (where the photodegradation catalyzed by P25 is limited). The comparison between the photodegradation of phenol by P25+Ag sphere NPs and P25+Ag@SiO2 composite showed that the charge transfer is not the phenomenon that governs the increase in catalytic efficiency when compared to the photodegradation catalyzed by P25. The phenomenon of near field intensification through LSPR was also observed in first generation Si solar cells (wafer) containing Cu NPs immobilized on its surface. Increases in the short-circuit current density of about 8% in the region above 750 nm and up to 16% in the power of these solar cells were observed.
587

Modeling the peak absorption of MEH-PPV in various solvents using Density Functional Theory

Moore, Corell H 01 January 2019 (has links)
Density Functional Theory (DFT) and time-dependent Density Functional Theory (TD-DFT) are powerful tools for modeling orbital energy in conjugated molecules and have been useful tools for research in organic photovoltaics. In this work, DFT is first used to explain the red shift in the absorption spectrum and increased absorption observed in MEH-PPV. Initially, the modeling of the red-shift in the absorption peak of MEH-PPV is studied using Gaussian 03 software with the global hybrid functional B3LYP for exchange-correlation and the 6-31G basis set. DFT and TD-DFT are used to separately study the effects of polymer chain length, carbon-carbon double-bond stretching, and the polymer in solution vs. in gas space on red shift in absorption spectrum. Next, Gaussian 09 software and the same B3LYP functional and 6-31G basis set are used to study interchain and intrachain interactions of MEH-PPV in solution. The red shift in the absorption peaks for three MEH-PPV configurations (single-chain pentamer, two stacked pentamers, and decamer) are compared with experimental results for five different solvents (chloroform, toluene, xylene, dichloromethane, and chlorobenzene). This investigation indicates that inter-chain interactions dominate in “good” aromatic solvents as compared to “poor” non-aromatic solvents. The results suggest that inter-chain charge transfer interactions play a critical role in real solutions and inter-chain aggregation takes precedence over intra-chain aggregation in aromatic solvents. In the final section of the study, accurate values for the range-separation parameter (w) for three lengths of MEH-PPV polymer (trimer, tetramer, and pentamer) in five different solvents (chloroform, chlorobenzene, xylene, Tetrahydrofuran, and dichloromethane) are reported using the range-separated functionals wB97XD and CAM-B3LYP. Using these data, range separation parameters are predicted and used for longer polymer chains in chloroform solution. The differences in the range separation parameters for the different solvents is statistically significant and gives further insight into the polymer/solvent interaction.
588

Incorporation of Gold Nanowires into Photovoltaic Devices

Gordon, Scott W 23 May 2019 (has links)
To this day, fossil fuels still make up over 80% of the earth’s energy production. Many sources of renewable energy are available, but photovoltaics is the only source with the capacity proven to meet the increasing world energy needs. Third generation devices such as dye-sensitized and organic solar cells have gained much interest due to their cost effectiveness and flexibility but have yet to become commercially viable. Here methods have been studied to improve these devices with the use of Gold nanowire arrays. These additions provide plasmonic and light scattering enhancements in dye-sensitized solar cells. Different TiO2 deposition methods have been studied to protect the gold from the redox couple in the electrolyte. Several novel methods have been undertaken to incorporate gold nanowire arrays in organic solar cells with some success. Structural characterization shows the proposed architecture is achieved, but working devices met suffered from low success rate.
589

Cellules solaires organiques à base de molécules bio-inspirées / Bio-inspired small molecules for organic solar cells

Archet, Florence 18 December 2018 (has links)
Face à la croissance de la demande énergétique, les énergies alternatives, telles que l’énergie photovoltaïque, représentent des solutions réalistes. Cette dernière nécessite des matériaux efficaces pour la capture des photons et leur conversion en électricité.Les cellules solaires organiques (CSOs) sont basées sur les propriétés semiconductrices de certaines molécules ou de certains polymères π-conjugués. Dans le domaine des CSOs, les efforts de recherche actuels se concentrent selon trois axes : la réduction des coûts, l’augmentation de la durée de vie des cellules solaires et l’augmentation des rendements de conversion photovoltaïque. Les récentsdéveloppements ont conduit à une complexification des architectures des CSOs ainsi que des semi-conducteurs organiques utilisés, induisant une augmentation des coûts de fabrication. Dans une logique de développement économiquement efficace et écologiquement soutenable, il est nécessaire aujourd’hui de se concentrer sur des semi-conducteurs organiques viables économiquement et dont la synthèse est respectueuse de l’environnement. Ce travail doctoral a pour but de développer de nouveaux matériaux semi-conducteurs organiques bio-inspirés et bas coût. Les molécules étudiées présentent une structure donneur-accepteur-donneur. Leur squelette est celui de la curcumine, molécule qui donne sa couleur au curcuma. Le groupement accepteur est un difluorure de bore. Les groupements donneurs quant à eux varient suivant les semi-conducteurs. Les propriétés optoélectroniques de dix-sept dérivés curcuminoïdes ont été étudiées. Plusieurs d’entre eux se sont démarqués : ceux avec des groupements anthracène, ceux avec des dérivés thiophènes, enfin et impact sur les performances photovoltaïques de la formulation de l’encre utilisée pour le dépôt de la couche a été étudié en détail. Différents matériaux accepteurs ont été testés, de même que l’utilisation de mélanges ternaires. Pour l’un de dérivés curcuminoïde en combinaison avec du PC61BM, des rendements supérieurs à 4 % ont été obtenus avec des tensions de circuit ouvert supérieures à 1,0 V. Au regard de la simplicité structurale de ce semi-conducteur, ces résultats figurent à notre connaissance parmi les meilleurs reportés dans la littérature. Les phénomènes photophysiques ont également été étudiés par spectroscopie d’absorption des espèces transitoires. Enfin, le procédé de fabrication a été rapproché des conditions industrielles en éliminant les solvants halogénés utilisés et en travaillant à l’air ambiant. Finalement, bien qu’intéressantes, les propriétés photovoltaïques restent limitées pour une application industrielle du fait de la faible mobilité des trous de ces matériaux. / To face the growing needs in energy, renewable energies like solar photovoltaic represent realistic solutions. Photovoltaic energy requires efficient materials to absorb photons and to convert them into electricity. Organic solar cells (OSCs) are based on semiconducting π-conjugated polymer or small molecules. Current research in this field focuses on three main topics: the reduction of costs, the increase of device lifetime and the increase of power conversion efficiency. This last issue led to an increase in the complexity of OSCs architecture as well as organic semi-conductors, leading to anincrease in manufacturing costs. In order to develop sustainable and eco-friendly processes, it is now important to work on cost effective semi-conductors obtained fromgreen synthetic methodology. The aim of this thesis was to develop new bio-inspired organic semi-conductors. These materials are potentially low cost. Molecules studied present donor-acceptor-donor structure. They have the skeleton of curcumine. Curcumine is a natural yellow dye present in curcuma. Acceptor group is boron difluoride. Donor groups vary depending on the curcuminoid derivative. Optoelectronicproperties of seventeen semi-conductors were studied. Several of them stood out: those with anthracene groups, those with thiophene derivatives, finally and especially, those with triphenylamine groups. For this last family, the impact on the photovoltaic performances of the ink formulation used for deposition has been deeply studied. Several acceptor materials were tested, as well as ternary blend. For one curcuminoid derivative combined with PC61BM, efficiency above 4% has been achieved with open circuit voltage up to 1.0 V. Due to the very simple chemical structure of the donor, this represents one of the best result reported in literature to our knowledge. Transient species were also studied by ultrafast spectroscopy. The fabrication process was also changed to eliminate halogenated solvent and to enable processing in ambient air like in industrial process. Finally, photovoltaic properties observed are interesting. Nevertheless, they are not sufficient for industrial application due to low hole mobility in these materials.
590

Characterization of Cadmium Zinc Telluride Solar Cells by RF Sputtering

Subramanian, Senthilnathan 24 June 2004 (has links)
High efficiency solar cells can be attained by the development of two junctions one stacked on top of each other into tandem structures. So that, if a photon is not able to excite an electron-hole pair in the top cell can create a pair in the bottom cell, which has a smaller bandgap. For a two junction tandem device structure, the bandgap of the top cell should be 1.6-1.8eV and for the bottom cell should be 1eV to attain efficiencies in the range of 25%. Cadmium Zinc Telluride which has a tunable bandgap of 1.45- 2.2eV is a candidate for the top cell of the tandem structure. Cadmium Zinc Telluride (Cd1-xZnxTe) films were deposited by co-sputtering of CdTe and ZnTe. Deposition of Cd1-xZnxTe was studied in Ar and Ar/N2 ambient. Characterization of the films was done using transmission response, X-ray diffraction (XRD), Atomic Force Microscopy (AFM), Secondary Electron Microscopy (SEM), current-voltage (I-V) and spectral response measurements. CZT deposited on CdS/SnO2 substrates showed improved performance compared to other heterojunction partners. Doped graphite and copper were utilized as back contacts for CZT devices. Post deposition annealing treatments with ZnCl2 on CZT films were done and their effect on the devices was also studied. The best combination of Voc and Jsc were 530mV and 3.66mA/cm² respectively.

Page generated in 0.0484 seconds