• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • 1
  • Tagged with
  • 7
  • 7
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Théories de cordes : solutions exactes, déformations marginales.

Orlando, Domenico 06 October 2006 (has links) (PDF)
L'objet de cette these est l'etude d'environnements de cordes, principalement caracterisés par leurs proprietes geometriques et leur structure integrable. Les modeles de Wess-Zumino-Witten sont l'archetype de ce type de solution. Ils decrivent la propagation de la corde sur une variete de groupe et appartiennent aux classes de theories des champs conformes bidimensionnelles qui disposent d'algebres de courants affines. Nous etudions l'espace des modules de ces solutions grace a l'outil des deformations marginales persistantes. Les deformations "asymetriques" retiennent tout particulierement notre attention parce qu'outre leurs proprietes d'integrabilite, elles possedent une interpretation remarquable du point de vue spatio-temporel. Dans la suite, nous abandonnons momentanement les systemes critiques pour etudier des excursions hors des points fixes conformes. Nous analysons l'evolution et la relaxation des perturbations sous le flot de renormalisation, vers des situations d'equilibre plus symetriques. Dans la derniere partie de ce travail, nous abordons, dans l'approximation de supergravite, la recherche de solutions avec champs de Ramond-Ramond. Nous mettons en evidence des solutions factorisees d'espaces de courbure constante qui contiennent des plans hyperboliques.
2

Approche algébro-géométrique aux équations d'Einstein et d'Einstein-Maxwell : cas stationnaire avec symétrie axiale

Klein, Christian 04 December 2002 (has links) (PDF)
Ce travail présente une discussion d'aspects mathématiques et <br /> physiques des solutions des équations d'Einstein et d'Einstein-Maxwell <br /> dans le cas stationnaire avec symétrie axiale, obtenues <br /> par des méthodes de la géométrie algébrique. <br /> Puisque dans ce cas les <br /> équations sont équivalentes aux systèmes <br /> d'Ernst complètement intégrables, les méthodes de <br /> Riemann-Hilbert peuvent être appliquées pour construire des <br /> solutions vérifiant des conditions aux limites données. <br /> Nous démontrons ici que des <br /> problèmes de Riemann-Hilbert avec des conditions analytiques peuvent <br /> être résolus sur des surfaces de Riemann. Sur des surfaces <br /> non-compactes, nous prouvons l'existence de solutions en utilisant la <br /> théorie des <br /> espaces fibrés. Les surfaces de Riemann<br /> sont compactes si les conditions aux limites du <br /> problème de Riemann-Hilbert sont des fonctions <br /> rationnelles ce qui permet de <br /> trouver des solutions explicites (dues à Korotkin) <br /> sous forme de fonctions thêta hyper-elliptiques. <br /> Grâce à <br /> l'identité de Fay, toutes les composantes de la métrique <br /> correspondant à ces solutions sont <br /> données sous forme de fonctions thêta. <br /> Nous discutons les singularités de ces solutions et nous <br /> identifions une sous-classe qui est régulière à <br /> l'extérieur d'un contour pouvant représenter la surface <br /> extrême <br /> d'une distribution de matière. Comme exemple astrophysique <br /> nous considérons le cas des <br /> disques de poussière qui peuvent servir de modèles pour <br /> certaines <br /> galaxies et pour la matière dans des disques d'accrétion autour <br /> de trous noirs. Les solutions sous forme de fonctions <br /> thêta et leurs dérivées sont reliées par des conditions <br /> algébriques qui déterminent les classes de problèmes <br /> aux limites <br /> pouvant être résolus sur une surface de Riemann donnée. <br /> Nous établissons ces relations qui sont <br /> utilisées pour <br /> résoudre des problèmes aux limites décrivant des disques de poussière. <br /> La solution explicite pour un disque de poussière avec deux <br /> composantes en contre-rotation est donnée. Cette solution contient <br /> un disque statique de Morgan et Morgan et le disque en rotation <br /> rigide avec une seule composante comme cas limites. Nous discutons la <br /> métrique, les cas limites, les moments multipolaires et le <br /> tenseur d'impulsion-énergie. Les fonctions thêta sont évaluées <br /> numériquement avec l'utilisation des méthodes spectrales. Le cas des trous <br /> noirs avec un disque annulaire statique est aussi discuté. Nous <br /> prouvons l'existence et l'unicité des solutions en appliquant un théorème <br /> dû à Poole, et nous donnons des solutions approchées. Des <br /> solutions explicites sont présentées pour des disques annulaires infinis. <br /> Dans le cas stationnaire, nous montrons que <br /> des solutions hyper-elliptiques sur des <br /> surfaces dégénérées ont le même horizon que la solution de <br /> Kerr avec un disque infini autour. <br /> Nous discutons le cas d'une surface de genre deux quand les solutions <br /> peuvent être données sous forme de fonctions élémentaires <br /> en détail. Pour les équations d'Einstein-Maxwell, nous <br /> construisons des solutions hyper-elliptiques avec charges. Nous <br /> exploitons la symétrie des équations pour construire ces solutions <br /> à partir des solutions sans champs <br /> électromagnétiques en utilisant une transformation de Harrison. Les <br /> disques de poussière avec charge en contre-rotation sont <br /> également discutés.
3

Dynamique de N pôles à intensités variables

Soulière, Anik January 2007 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal.
4

Contribution à l'étude théorique de la localisation plastique dans les poreux

Willot, François 26 January 2007 (has links) (PDF)
Ce travail s'inscrit dans la thématique classique en mécanique théorique de l'homogénéisation de milieux hétérogènes, dans le cadre notoirement problématique d'un contraste infini entre deux phases en présence (l'une étant la porosité du milieu), et d'un comportement non-linéaire, celui de la phase solide plastique. Il traite de la question d'une prise en compte correcte du phénomène de localisation de la déformation plastique en présence de porosité dans la loi de comportement effective du milieu poreux, en particulier dans la limite non-triviale des porosités faibles. Cette question, importante pour la bonne compréhension de l'endommagement ductile, est examinée tant d'un point de vue numérique que théorique, dans le cadre restreint de systèmes bi-dimensionnels, dans une approche en déformation de la plasticité. L'approche numérique utilise des calculs quasi-exacts des champs de contrainte et de déformation par méthode de Transformée de Fourier Rapide sur des systèmes périodiques (réseau de pores) ou aléatoires (désordre sans corrélations spatiales), menée au moyen d'une fonction de Green particulière. L'approche théorique repose sur des calculs exacts, possibles dans certain cas, ainsi que sur l'exploitation de méthodes d'homogénéisation non-linéaires récentes, dites « de second ordre ». La qualité de l'homogénéisation non-linéaire du milieu poreux est évaluée en deux étapes, d'abord au moyen d'une étude de l'homogénéisation linéaire anisotrope qui la sous-tend, puis de la mise en oeuvre non-linéaire proprement dite. La nature et la signification des singularités qui apparaissent dans la théorie, dans la limite des faibles porosités, confirmée par les calculs numériques, sont élucidées en partie. Enfin, des observations originales sur la relation entre l'organisation de la plasticité dans un milieu poreux aléatoire, et certaines caractéristiques de la courbe de déformation macroscopique sont présentées.
5

Finite-Amplitude Waves in Deformed Elastic Materials / Ondes d'amplitude finie dans des matériaux élastiques déformés

Rodrigues Ferreira, Elizabete 10 October 2008 (has links)
Le contexte de cette thèse est la théorie de l'élasticité non linéaire, appelée également "élasticité finie". On y présente des résultats concernant la propagation d'ondes d'amplitude finie dans des matériaux élastiques non linéaires soumis à une grande déformation statique homogène. Bien que les matériaux considérés soient isotropes, lors de la propagation d'ondes un comportement anisotrope dû à la déformation statique se manifeste. Après un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie. Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen. En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie. Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche. The context of this thesis is the non linear elasticity theory, also called "finite elasticity". Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation. After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited. In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model. In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux. Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited.
6

Sur le développement de certaines méthodes analytiques spectrales pour la diffraction par des objets génériques comportant des singularités de géométrie et/ou de matériaux en 2D et 3D

Bernard, J.M.L. 26 January 2007 (has links) (PDF)
De nombreux ouvrages d'électromagnétisme ou d'acoustique classent les méthodes de résolution des problèmes de diffraction suivant le qualificatif d'analytique ou de numérique. Les premières donnent des formes explicites exactes ou asymptotiques des champs tandis que les secondes aboutissent à des expressions implicites en champ que l'on résout numériquement. Cette présentation se rapporte à certaines de nos publications relatives à la première catégorie. On y présente les solutions originales, exactes ou asymptotiques, de problèmes de diffraction d'une onde par des corps élémentaires comportant une ou plusieurs discontinuités de géométrie et/ou de matériau en 2D et 3D, en régime stationnaire ou instationnaire. Plusieurs de ces problèmes ainsi traités deviennent de nouveaux cas canoniques. On notera que les problèmes étudiés ne sont pas solubles par les méthodes classiques de séparation des variables.<br />Indiquons par ailleurs qu'étant donné la complexité des problèmes posés, nous avons proscrit les arguments heuristiques qui limitent trop souvent le domaine de validité de nombreuses méthodes analytiques.
7

Finite-amplitude waves in deformed elastic materials / Onde d'amplitude finie dans des matériaux élastiques déformés

Rodrigues Ferreira, Elizabete 10 October 2008 (has links)
Le contexte de cette thèse est la théorie de l'élasticité non linéaire, appelée également "élasticité finie". On y présente des résultats concernant la propagation d'ondes d'amplitude finie dans des matériaux élastiques non linéaires soumis à une grande déformation statique homogène. Bien que les matériaux considérés soient isotropes, lors de la propagation d'ondes un comportement anisotrope dû à la déformation statique se manifeste. <p><p>Après un rappel des équations de base de l'élasticité non linéaire (Chapitre 1), on considère tout d'abord la classe générale des matériaux incompressibles. Pour ces matériaux, on montre que la propagation d'ondes transversales polarisées linéairement est possible pour des choix appropriés des directions de polarisation et de propagation. De plus, on propose des généralisations des modèles classiques de "Mooney-Rivlin" et "néo-Hookéen" qui conduisent à de nouvelles solutions. Bien que le contexte soit tri-dimensionnel, il s'avère que toutes ces ondes sont régies par des équations d'ondes scalaires non linéaires uni-dimensionelles. Dans le cas de solutions du type ondes simples, on met en évidence une propriété remarquable du flux et de la densité d'énergie. <p><p>Dans les Chapitres 3 et 4, on se limite à un modèle particulier de matériaux compressibles appelé "modèle restreint de Blatz-Ko", qui est une version compressible du modèle néo-Hookéen. <p><p>En milieu infini (Chapitre 3), on montre que des ondes transversales polarisées linéairement, faisant intervenir deux variables spatiales, peuvent se propager. Bien que la théorie soit non linéaire, le champ de déplacement de ces ondes est régi par une version anisotrope de l'équation d'onde bi-dimensionnelle classique. En particulier, on présente des solutions à symétrie "cylindrique elliptique" analogues aux ondes cylindriques. Comme cas particulier, on obtient aussi des ondes planes inhomogènes atténuées à la fois dans l'espace et dans le temps. De plus, on montre que diverses superpositions appropriées de solutions sont possibles. Dans chaque cas, on étudie les propriétés du flux et de la densité d'énergie. En particulier, dans le cas de superpositions il s'avère que des termes d'interactions interviennent dans les expressions de la densité et du flux d'énergie. <p><p>Finalement (Chapitre 4), on présente une solution exacte qui constitue une généralisation non linéaire de l'onde de Love classique. On considère ici un espace semi-infini, appelé "substrat" recouvert par une couche. Le substrat et la couche sont constitués de deux matériaux restreints de Blatz-Ko pré-déformés. L'onde non linéaire de Love est constituée d'un mouvement non atténué dans la couche et d'une onde plane inhomogène dans le substrat, choisies de manière à satisfaire aux conditions aux limites. La relation de dispersion qui en résulte est analysée en détail. On présente de plus des propriétés générales du flux et de la densité d'énergie dans le substrat et dans la couche. <p><p><p>The context of this thesis is the non linear elasticity theory, also called "finite elasticity".<p>Results are obtained for finite-amplitude waves in non linear elastic materials which are first subjected to a large homogeneous static deformation. Although the materials are assumed to be isotropic, anisotropic behaviour for wave propagation is induced by the static deformation. <p><p>After recalling the basic equations of the non linear elasticity theory (Chapter 1), we first consider general incompressible materials. For such materials, linearly polarized transverse plane waves solutions are obtained for adequate choices of the polarization and propagation directions (Chapter 2). Also, extensions of the classical Mooney-Rivlin and neo-Hookean models are introduced, for which more solutions are obtained. Although we use the full three dimensional elasticity theory, it turns out that all these waves are governed by scalar one-dimensional non linear wave equations. In the case of simple wave solutions of these equations, a remarkable property of the energy flux and energy density is exhibited.<p><p>In Chapter 3 and 4, a special model of compressible material is considered: the special Blatz-Ko model, which is a compressible counterpart of the incompressible neo-Hookean model. <p><p>In unbounded media (Chapter 3), linearly polarized two-dimensional transverse waves are obtained. Although the theory is non linear, the displacement field of these waves is governed by a linear equation which may be seen as an anisotropic version of the classical two-dimensional wave equation. In particular, solutions analogous to cylindrical waves, but with an "elliptic cylindrical symmetry" are presented. Special solutions representing "damped inhomogeneous plane waves" are also derived: such waves are attenuated both in space and time. Moreover, various appropriate superpositions of solutions are shown to be possible. In each case, the properties of the energy density and the energy flux are investigated. In particular, in the case of superpositions, it is seen that interaction terms enter the expressions for the energy density and the energy flux. <p><p>Finally (Chapter 4), an exact finite-amplitude Love wave solution is presented. Here, an half-space, called "substrate", is assumed to be covered by a layer, both made of different prestrained special Blatz-Ko materials. The Love surface wave solution consists of an unattenuated wave motion in the layer and an inhomogeneous plane wave in the substrate, which are combined to satisfy the exact boundary conditions. A dispersion relation is obtained and analysed. General properties of the energy flux and the energy density in the substrate and the layer are exhibited. <p><p><p><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.0984 seconds