Spelling suggestions: "subject:"solvable"" "subject:"evolvable""
41 |
Exact Supersymmetric Solution Of Schrodinger Equation For Some PotentialsAktas, Metin 01 January 2005 (has links) (PDF)
Exact solution of the Schrö / dinger equation with some potentials is obtained. The normal and supersymmetric cases are considered. Deformed ring-shaped potential is solved in the parabolic and spherical coordinates. By taking appropriate values for the parameter q, similar results are obtained for Hulthé / n and exponential type screened potentials. Similarly, Morse, Pö / schl-Teller and Hulthé / n potentials are solved for the supersymmetric case. Supersymmetric solution of PT-/non-PT-symmetric and non-Hermitian Morse potential is also studied. The Nikiforov-Uvarov and Hamiltonian Hierarchy methods are used in the calculations. Eigenfunctions and corresponding energy eigenvalues are calculated analytically. Results are in good agreement with ones obtained before.
|
42 |
Résultats exacts et mécanismes de fusion pour les systèmes bidimensionnels / Exact results and melting theories in two-dimensional systemsSalazar, Robert 13 December 2017 (has links)
Les systèmes de nombreuses particules peuvent présenter des comportements variés en fonction du type d’interaction entre ses composants.Dans certaines situations, des structures macroscopiques hautement ordonnées peuvent émerger de telles interactions. Le problème de l’identification des mécanismes qui activent l’ordre microscopique dans les systèmes bidimensionnels a fait l’objet d’études théoriques et expérimentales. Il y a plusieurs décennies, il a été montré que les systèmes bidimensionnels avec des interactions de paramètres d’ordre suffisamment court et d’ordre continu n’ont pas d’ordre à longue portée (ils n’ont pas de phase solide). D’autre part, des études numériques sur des systèmes sans ordre positionnel ont montré que de tels systèmes pourraient présenter des transitions de phase. Cette contradiction apparente dans les systèmes bidimensionnels a été expliquée dans la transition KT (Kosterlitz-Thouless) proposée pour le modèle XY. Depuis lors, on a commencé à observer que les systèmes sans ordre positionnel pouvaient montrer des transitions de phase quand ils avaient un ordre de demi-longue portée (ODLP). Ce type d’ordre est associé à l’ordre d’orientation du système qui est perdu lorsque les défauts topologiques activés par les fluctuations thermiques sont divisés en paires produisant une transition. D’autre part, les systèmes bidimensionnels avec ordre de position à la température T = 0 peuvent être fusionnés dans un scénario comprenant trois phases : solide / hexatique / liquide dont les transitions sont dues à la division en deux étapes de défauts topologiques à deux températures différentes (Théorie de Kosterlitz-Thouless-Halperin-Nelson-Young KTHNY).Ce travail se concentre sur l’ étude du plasma d’un composant bidimensionnel (PUC2d), un système classique de N charges ponctuelles identiques qui interagissent à travers un potentiel électrique et immergées dans une surface bidimensionnelle avec densité de charge opposée. Le système est un cristal à T = 0 qui commence à fondre si T est suffisamment élevé. Si le potentiel d’interaction entre les particules est logarithmique,alors le système dans le plan et la sphère a une solution exacte pour une valeur spéciale de T située dans la phase fluide. Dans cette étude, un formalisme analytique est utilisé pour déterminer exactement les propriétés thermodynamiques et structurelles qui permettent de suivre le comportement du PUC2d en la phase désordonnée jusqu’`a ce que celui-ci cristallise avec la restriction de N pas très grand. Par le formalisme, nous trouvons des connexions intéressantes avec l’ensemble de Ginibre défini dans la théorie des matrices aléatoires.Nous avons effectué des simulations de Monte Carlo pour modéliser le PUC2d avec des interactions potentiel en inverse de distance et des conditions aux limites périodiques dans le plan. Trois phases sont identifiées incluant la phase hexatique pour des systèmes suffisamment grands. Nous avons déterminé par l’analyse de taille finie et la méthode multi-histogramme que la transition hexatique/ liquide est de premier ordre faible. Finalement,une étude statistique sur les arrangements de défauts (clusters) lors de la fusion cristalline est effectuée, confirmant en détail la théorie de KTHNY et décrivant des alternatives pour la détection de transitions en deux dimensions. / Many particle systems may exhibit interesting properties depending on the interaction between their constituents. Among them, it is possible to find situations where highly ordered microscopic structures may emerge from these interactions. The central problem to identify the mechanisms which activate the ordered particle arrangements has been the subject matter of theoretical and experimental studies. In the past decades, it was rigorously proved that systems in two dimensions with sufficiently short-range interactions and continuous degrees of freedom do not have long-range order. In contrast, numerical studies of systems featuring lack of positional order in two dimensions showed evidence of phase transitions. This apparent contradiction was explained by the Kosterlitz-Thouless (KT)-transition for the XY-model showing that transitions may take place in positional isotropic bidimensional systems if they still have quasi-long range (QLR) order. Such QLR order associated to the orientational order of the system, is lost when topological defects activated by thermal fluctuations begin to unbind in pairs producing a transition. On the other hand, two-dimensional systems with positional order at vanishing temperature may show a melting scenario including three phases solid/hexatic/fluid with transitions driven by a unbinding mechanism of topological defects according to the Kosterlitz-Thouless-Halperin-Nelson-Young (KTHNY)-theory.This work is focused on the study of the two dimensional one component plasma 2dOCPa system of N identical punctual charges interacting with an electric potential in a two-dimensional surface with neutralizing background. The system is a crystal at vanishing temperature and it melts at sufficiently high temperature. If the interaction potential is logarithmic, then the system on the flat plane and the sphere is exactly solvable at a special temperature located at the fluid phase. We use analytical approaches to compute exactly thermodynamic variables and structural properties which enables to study the crossover behaviour from a disordered phases to crystals for small systems finding interesting connections with the Ginibre Ensemble of the random matrix theory.We perform numerical Monte Carlo simulations of the 2dOCP with inverse power law interactions and periodic boundary conditions finding a hexatic phase for sufficiently large systems. It is found a weakly first order transition for the hexatic/fluid transition by using finite size analysis and the multi-histogram method. Finally, a statistical analysis of clusters of defects during melting confirms in a detailed way the predictions of the KTHNY-theory but also provides alternatives to detect transitions in two-dimensional systems.
|
43 |
Superintégrabilité avec séparation de variables en coordonnées polaires et intégrales du mouvement d’ordre supérieur à deuxTremblay, Frédérick 10 1900 (has links)
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture. / In this thesis, we propose new superintegrable systems separable in polar coordinates. After the introduction, in chapter 2, we present a complete classification of all separable systems in polar coordinates which admit a third order integral in addtion to the second order one responsible for the separation of variables. New potentials expressed in terms of the sixth Painlevé transcendent and of the Weierstrass elliptic function are obtained. In chapter 3 we introduce an infinite family of integrable and exactly sovable classical and quantum systems separable in polar coordinates. This family is described in term of a parameter k. The energy spectrum and the wave functions of the quantum systems are obtained. A conjecture postulating the superintegrability of these systems is formulated and is verified for the first cases k = 1,2,3,4. The order of the integrals is 2k where k ∈ ℕ. The algebraic structure of the family of quantum systems is formulated in term of a hidden algebra where the number of generators depends on the parameter k. A quasi-exactly solvable and integrable generalization of the family of potentials is proposed. Finally in chapter 4, the classical trajectories of the family of systems are calculated for all the rational cases k ∈ ℚ. Those are expressed in term of Chebyshev polynomials. We plot the curves associated with the trajectories for k=1,2,3,4,1/2, 1/3 and 3/2. The bounded curves are closed and periodic in the two dimensional phase space. Those results obtained reinforce the possible veracity of the conjecture.
|
44 |
Optimisation quadratique en variables binaires : quelques résultats et techniquesMbuntcha Wuntcha, Calvin January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal.
|
45 |
Nilálgebras comutativas de potências associativas e o problema de Albert / Commutative power-associative nilalgebras and Albert\'s problemVanegas, Elkin Oveimar Quintero 12 September 2016 (has links)
Neste trabalho será provado que as álgebras comutativas de potências associativas de dimensão n e nilíndice n-3, assim como, álgebras de dimensão 9 sobre C, são solúveis, estendendo os resultados conhecidos ao famoso Problema de Albert. Logo depois de estudar o problema de Albert, será dada uma descrição das tabelas de multiplicação para as álgebras comutativas de potências associativas de dimensão n maior do que 12 e nilíndice n-1 sobre um corpo de característica diferente de 2,3 e 5. / We will prove that commutative power-associative nilalgebras both of dimension n and nilindex n-3, or of dimension 9 over C, are solvable. This solve an specific case of famous Albert\'s problem. After that, we will make a description about multiplications of commutative power-associative nilalgebras of dimension n (greater or igual that 12) and nilindex n-1 over a field of characteristic diferent from 2,3 and 5.
|
46 |
Superintégrabilité avec séparation de variables en coordonnées polaires et intégrales du mouvement d’ordre supérieur à deuxTremblay, Frédérick 10 1900 (has links)
Dans cette thèse, nous proposons de nouveaux résultats de systèmes superintégrables séparables en coordonnées polaires. Dans un premier temps, nous présentons une classification complète de tous les systèmes superintégrables séparables en coordonnées polaires qui admettent une intégrale du mouvement d'ordre trois. Des potentiels s'exprimant en terme de la sixième transcendante de Painlevé et de la fonction elliptique de Weierstrass sont présentés. Ensuite, nous introduisons une famille infinie de systèmes classiques et quantiques intégrables et exactement résolubles en coordonnées polaires. Cette famille s'exprime en terme d'un paramètre k. Le spectre d'énergie et les fonctions d'onde des systèmes quantiques sont présentés. Une conjecture postulant la superintégrabilité de ces systèmes est formulée et est vérifiée pour k=1,2,3,4. L'ordre des intégrales du mouvement proposées est 2k où k ∈ ℕ. La structure algébrique de la famille de systèmes quantiques est formulée en terme d'une algèbre cachée où le nombre de générateurs dépend du paramètre k. Une généralisation quasi-exactement résoluble et intégrable de la famille de potentiels est proposée. Finalement, les trajectoires classiques de la famille de systèmes sont calculées pour tous les cas rationnels k ∈ ℚ. Celles-ci s'expriment en terme des polynômes de Chebyshev. Les courbes associées aux trajectoires sont présentées pour les premiers cas k=1, 2, 3, 4, 1/2, 1/3 et 3/2 et les trajectoires bornées sont fermées et périodiques dans l'espace des phases. Ainsi, les résultats obtenus viennent renforcer la possible véracité de la conjecture. / In this thesis, we propose new superintegrable systems separable in polar coordinates. After the introduction, in chapter 2, we present a complete classification of all separable systems in polar coordinates which admit a third order integral in addtion to the second order one responsible for the separation of variables. New potentials expressed in terms of the sixth Painlevé transcendent and of the Weierstrass elliptic function are obtained. In chapter 3 we introduce an infinite family of integrable and exactly sovable classical and quantum systems separable in polar coordinates. This family is described in term of a parameter k. The energy spectrum and the wave functions of the quantum systems are obtained. A conjecture postulating the superintegrability of these systems is formulated and is verified for the first cases k = 1,2,3,4. The order of the integrals is 2k where k ∈ ℕ. The algebraic structure of the family of quantum systems is formulated in term of a hidden algebra where the number of generators depends on the parameter k. A quasi-exactly solvable and integrable generalization of the family of potentials is proposed. Finally in chapter 4, the classical trajectories of the family of systems are calculated for all the rational cases k ∈ ℚ. Those are expressed in term of Chebyshev polynomials. We plot the curves associated with the trajectories for k=1,2,3,4,1/2, 1/3 and 3/2. The bounded curves are closed and periodic in the two dimensional phase space. Those results obtained reinforce the possible veracity of the conjecture.
|
47 |
Optimisation quadratique en variables binaires : quelques résultats et techniquesMbuntcha Wuntcha, Calvin January 2009 (has links)
Thèse numérisée par la Division de la gestion de documents et des archives de l'Université de Montréal
|
48 |
Exact Supersymmteric Solutions Of The Quantum MechanicsFaridfathi, Gholamreza 01 June 2005 (has links) (PDF)
The supersymmetric solutions of PT-/non-PT symmetric and Hermitian/non-Hermitian
forms of quantum systems are obtained by solving the SchrÄ / odinger equation with the
deformed Morse, Hulth¶ / en, PÄ / oschl-Teller, Hyperbolic Kratzer-like, Screened Coulomb,
and Exponential-Cosine Screened Coulomb (ECSC) potentials. The Hamiltonian hi-
erarchy method is used to get the real energy eigenvalues and corresponding wave
functions.
|
49 |
Stochastická dynamika a energetika biomolekulárních systémů / Stochastic dynamics and energetics of biomolecular systemsRyabov, Artem January 2014 (has links)
Title: Stochastic dynamics and energetics of biomolecular systems Author: Artem Ryabov Department: Department of Macromolecular Physics Supervisor: prof. RNDr. Petr Chvosta, CSc., Department of Macromolecular Physics Abstract: The thesis comprises exactly solvable models from non-equilibrium statistical physics. First, we focus on a single-file diffusion, the diffusion of particles in narrow channel where particles cannot pass each other. After a brief review, we discuss open single-file systems with absorbing boundaries. Emphasis is put on an interplay of absorption process at the boundaries and inter-particle entropic repulsion and how these two aspects affect the dynam- ics of a given tagged particle. A starting point of the discussions is the exact distribution for the particle displacement derived by order-statistics argu- ments. The second part of the thesis is devoted to stochastic thermodynam- ics. In particular, we present an exactly solvable model, which describes a Brownian particle diffusing in a time-dependent anharmonic potential. The potential has a harmonic component with a time-dependent force constant and a time-independent repulsive logarithmic barrier at the origin. For a particular choice of the driving protocol, the exact work characteristic func- tion is obtained. An asymptotic analysis of...
|
50 |
Nilálgebras comutativas de potências associativas e o problema de Albert / Commutative power-associative nilalgebras and Albert\'s problemElkin Oveimar Quintero Vanegas 12 September 2016 (has links)
Neste trabalho será provado que as álgebras comutativas de potências associativas de dimensão n e nilíndice n-3, assim como, álgebras de dimensão 9 sobre C, são solúveis, estendendo os resultados conhecidos ao famoso Problema de Albert. Logo depois de estudar o problema de Albert, será dada uma descrição das tabelas de multiplicação para as álgebras comutativas de potências associativas de dimensão n maior do que 12 e nilíndice n-1 sobre um corpo de característica diferente de 2,3 e 5. / We will prove that commutative power-associative nilalgebras both of dimension n and nilindex n-3, or of dimension 9 over C, are solvable. This solve an specific case of famous Albert\'s problem. After that, we will make a description about multiplications of commutative power-associative nilalgebras of dimension n (greater or igual that 12) and nilindex n-1 over a field of characteristic diferent from 2,3 and 5.
|
Page generated in 0.0374 seconds