Spelling suggestions: "subject:"cource separation"" "subject:"bource separation""
111 |
Separação cega de sinais de fala utilizando detectores de voz. / Blind separation of speech signals using voice detectors.Ronaldo Alencar da Rocha 28 January 2014 (has links)
Neste trabalho contemplamos o emprego de detectores de voz como uma etapa de pré- processamento de uma técnica de separação cega de sinais implementada no domínio do tempo, que emprega estatísticas de segunda ordem para a separação de misturas convolutivas e determinadas. Seu algoritmo foi adaptado para realizar a separação tanto em banda cheia quanto em sub-bandas, considerando a presença e a ausência de instantes de silêncio em misturas de sinais de voz. A ideia principal consiste em detectar trechos das misturas que contenham atividade de voz, evitando que o algoritmo de separação seja acionado na ausência de voz, promovendo ganho de desempenho e redução do custo computacional. / In this work we contemplate the use of voice detectors as a preprocessing step of a time-domain blind source separation technique, employing second order statistics in the separation of convolutive and determined mixtures. This algorithm is adapted to perform the separation both in fullband and in subbands, considering the presence and the absence of a moments of silence in mixtures of voice signals. The main idea aims at detect portions of the mixtures containing voice activity, avoiding that the separation algorithm is triggered in the absence of voice, promoting performance improvement and reduced computational cost.
|
112 |
Análise de componentes esparsos locais com aplicações em ressonância magnética funcional / Local sparse component analysis: an application to funcional magnetic resonance imagingGilson Vieira 13 October 2015 (has links)
Esta tese apresenta um novo método para analisar dados de ressonância magnética funcional (FMRI) durante o estado de repouso denominado Análise de Componentes Esparsos Locais (LSCA). A LSCA é uma especialização da Análise de Componentes Esparsos (SCA) que leva em consideração a informação espacial dos dados para reconstruir a informação temporal de fontes bem localizadas, ou seja, fontes que representam a atividade de regiões corticais conectadas. Este estudo contém dados de simulação e dados reais. Os dados simulados foram preparados para avaliar a LSCA em diferentes cenários. Em um primeiro cenário, a LSCA é comparada com a Análise de Componentes Principais (PCA) em relação a capacidade de detectar fontes locais sob ruído branco e gaussiano. Em seguida, a LSCA é comparada com o algoritmo de Maximização da Expectativa (EM) no quesito detecção de fontes dinâmicas locais. Os dados reais foram coletados para fins comparativos e ilustrativos. Imagens de FMRI de onze voluntários sadios foram adquiridas utilizando um equipamento de ressonância magnética de 3T durante um protocolo de estado de repouso. As imagens foram pré-processadas e analisadas por dois métodos: a LSCA e a Análise de Componentes Independentes (ICA). Os componentes identificados pela LSCA foram comparados com componentes comumente reportados na literatura utilizando a ICA. Além da comparação direta com a ICA, a LSCA foi aplicada com o propósito único de caracterizar a dinâmica das redes de estado de repouso. Resultados simulados mostram que a LSCA é apropriada para identificar fontes esparsas locais. Em dados de FMRI no estado de repouso, a LSCA é capaz de identificar as mesmas fontes que são identificadas pela ICA, permitindo uma análise mais detalhada das relações entre regiões dentro de e entre componentes e sugerindo que muitos componentes identificados pela ICA em FMRI durante o estado de repouso representam um conjunto de componentes esparsos locais. Utilizando a LSCA, grande parte das fontes identificadas pela ICA podem ser decompostas em um conjunto de fontes esparsas locais que não são necessariamente independentes entre si. Além disso, as fontes identificadas pela LSCA aproximam muito melhor o sinal temporal observado nas regiões representadas por seus componentes do que as fontes identificadas pela ICA. Finalmente, uma análise mais elaborada utilizando a LSCA permite estimar também relações dinâmicas entre os componentes previamente identificados. Assim, a LSCA permite identificar relações clássicas bem como relações causais entre componentes do estado de repouso. As principais implicações desse resultado são que diferentes premissas permitem decomposições aproximadamente equivalentes, entretanto, critérios menos restritivos tais como esparsidade e localização permitem construir modelos mais compactos e biologicamente mais plausíveis. / This thesis presents Local Sparse Component Analysis (LSCA), a new method for analyzing resting state functional magnetic resonance imaging (fMRI) datasets. LSCA, a extension of Sparse Component Analysis (SCA), takes into account data spatial information to reconstruct temporal sources representing connected regions of significant activity. This study contains simulation data and real data. The simulated data were prepared to evaluate the LSCA in different scenarios. In the first scenario, the LSCA is compared with Principal Component Analysis (PCA) for detecting local sources under Gaussian white noise. Then, LSCA is compared with the expectation maximization algorithm (EM) for detecting the dynamics of local sources. Real data were collected for comparative and illustrative purposes. FMRI images from eleven healthy volunteers were acquired using a 3T MRI scanner during a resting state protocol. Images were preprocessed and analyzed using LSCA and Independent Components Analysis (ICA). LSCA components were compared with commonly reported ICA components. In addition, LSCA was applied for characterizing the dynamics of resting state networks. Simulated results have shown that LSCA is suitable for identifying local sparse sources.For real resting state FMRI data, LSCA is able to identify the same sources that are identified using ICA, allowing detailed functional connectivity analysis of the identified regions within and between components. This suggests that ICA resting state networks can be further decomposed into local sparse components that are not necessarily independent from each other. Moreover, LSCA sources better represent local FMRI signal oscillations than ISCA sources. Finally, brain connectivity analysis shows that LSCA can identify both instantaneous and causal relationships between resting state components. The main implication of this study is that independence and sparsity are equivalent assumptions in resting state FMRI. However, less restrictive criteria such as sparsity and source localization allow building much more compact and biologically plausible brain connectivity models.
|
113 |
Um estudo sobre separação cega de fontes e contribuições ao caso de misturas não-lineares / A study on blind source separation and contributions to the nonlinear caseDuarte, Leonardo Tomazeli, 1982- 08 February 2006 (has links)
Orientadores: João Marcos Travassos Romano, Romis Ribeiro de Faissol Attux / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-06T23:03:11Z (GMT). No. of bitstreams: 1
Duarte_LeonardoTomazeli_M.pdf: 2778720 bytes, checksum: ff42018b4aa2d824cd1f001655a42ddf (MD5)
Previous issue date: 2006 / Resumo: O presente trabalho tem como objetivo a realização de um estudo sobre o problema de separação cega de fontes. Em uma primeira parte, considera-se o caso clássico em que o sistema misturador é de natureza linear. Na seqüência, a extensão ao caso não-linear é tratada. Em particular, enfatizamos uma importante classe de modelos não-lineares, os modelos com não-linearidade posterior (PNL). Com o intuito de contornar uma dificuldade relacionada à convergência para mínimos locais no treinamento de sistemas separadores PNL, uma nova técnica é proposta. Tal solução se baseia no uso de um algoritmo evolutivo na etapa de treinamento e de um estimador de entropia baseado em estatísticas de ordem. A eficácia do algoritmo proposto é verificada através de simulações em diferentes cenários / Abstract: The aim of this work is to study the problem of blind source separation (BSS). In a first part, the classical case in which the mixture system is of linear nature is considered. Afterwards, the nonlinear extension of the BSS problem is addressed. In special, an important class of nonlinear models, the post-nonlinear (PNL) models, is emphasized. In order to overcome a problem related to the convergence to local minima in the training of a PNL separating system, a novel technique is proposed. The bases of such solution are the application of an evolutionary algorithm in the training stage and the use of an entropy estimator based on order statistics. The efficacy of the proposal is attested by simulations conducted in different scenarios / Mestrado / Telecomunicações e Telemática / Mestre em Engenharia Elétrica
|
114 |
Proposta de metodos de separação cega de fontes para misturas convolutivas e não-lineares / Proposal of blind source separation methods for convolutive and nonlinear mixturesSuyama, Ricardo 09 August 2018 (has links)
Orientador: João Marcos Travassos Romano / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-09T16:56:34Z (GMT). No. of bitstreams: 1
Suyama_Ricardo_D.pdf: 28793623 bytes, checksum: cf06bdad425402b4624bbd169bfad249 (MD5)
Previous issue date: 2007 / Resumo: O problema de separação cega de fontes (BSS - Blind Source Separation) vem despertando o interesse de um número crescente de pesquisadores. Esse destaque é devido, em grande parte, à formulação abrangente do problema, que torna possível o uso das técnicas desenvolvidas no contexto de BSS nas mais diversas áreas de aplicação. O presente trabalho tem como objetivo propor novos métodos de solução do problema de separação cega de fontes, nos casos de mistura convolutiva e mistura não-linear. Para o primeiro caso propomos um método baseado em predição não-linear, cujo intuito é eliminar o caráter convolutivo da mistura e, dessa forma, separar os sinais utilizando ferramentas bem estabelecidas no contexto de misturas lineares sem memória. No contexto de misturas não-lineares, propomos uma nova metodologia para separação de sinais em um modelo específico de mistura denominado modelo com não-linearidade posterior (PNL - Post Nonlinear ). Com o intuito de minimizar problemas de convergência para mínimos locais no processo de adaptação do sistema separador, o método proposto emprega um algoritmo evolutivo como ferramenta de otimização, e utiliza um estimador de entropia baseado em estatísticas de ordem para avaliar a função custo. A eficácia de ambos os métodos é verificada através de simulações em diferentes cenários / Abstract: The problem of blind source separation (BSS) has attracted the attention of agrowing number of researchers, mostly due to its potential applications in a significant number of different areas. The objective of the present work is to propose new methods to solve the problem of BSS in the cases of convolutive mixtures and nonlinear mixtures. For the first case, we propose a new method based on nonlinear prediction filters. The nonlinear structure is employed to eliminate the convolutive character of the mixture, hence converting the problem into an instantaneous mixture, to which several well established tools may be used to recover the sources. In the context of nonlinear mixtures, we present a new methodology for signal separation in the so-called post-nonlinear mixing models (PNL). In order to avoid convergence to local minima, the proposed method uses an evolutionary algorithm to perform the optimization of the separating system. In addition to that, we employ an entropy estimator based on order-statistics to evaluate the cost function. The effectiveness of both methods is assessed through simulations in different scenarios / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
|
115 |
Blind source separation in the context of polynomial mixtures = Separação cega de fontes no contexto de misturas polinomiais / Separação cega de fontes no contexto de misturas polinomiaisAndo, Rafael Assato, 1986- 23 August 2018 (has links)
Orientadores: Romis Ribeiro de Faissol Attux, Leonardo Tomazeli Duarte / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Elétrica e de Computação / Made available in DSpace on 2018-08-23T17:30:21Z (GMT). No. of bitstreams: 1
Ando_RafaelAssato_M.pdf: 1700685 bytes, checksum: 9befef5632e55e27a24af3e73c648c47 (MD5)
Previous issue date: 2013 / Resumo: Neste trabalho, estudamos o problema de BSS no contexto de misturas polinomiais sob três perspectivas: uma teórica - voltada ao estudo de separabilidade estrutural -, uma ligada à proposta de novas abordagens - especialmente como extensões de metodologias baseadas em redes recorrentes - e uma relacionada ao tratamento de problemas práticos como redução do efeito show-through na digitalização de documentos. A primeira dessas perspectivas levou à proposta de uma nova abordagem do problema de separação não-linear baseada numa formulação do problema instantâneo de inversão como uma tarefa de solução de um sistema de equações algébricas não-lineares. Essa abordagem levou à proposição de novos métodos para lidar com o problema LQ e também pode ser aplicada a outros modelos de mistura. A segunda perspectiva levou à construção de um arcabouço para tratamento do problema LQ baseado numa rede imunológica artificial, o qual trouxe uma menor demanda por informação a priori sobre o problema e provê maior robustez em termos de convergência global. Por fim, a aplicação do ferramental desenvolvido a problemas práticos de tratamento de imagens levou a um desempenho bastante satisfatório, encorajando a extensão futura para outros cenários de teste (como sensores químicos) / Abstract: In this work, the BSS problem in the context of polynomial mixtures will be studied under three perspectives: a theoretical one, regarding the structural separability analysis; another related to the proposal of new methodologies - especially as extensions of algorithms based on recurrent networks - and finally, one regarding the solutions to real world problems, such as the reduction of the show-through effect produced by digitally scanning documents. The first such perspectives led to the proposal of a new approach to the nonlinear BSS problem, based on a formulation to the instantaneous inversion problem as the solution of a non-linear algebraic equation system. This approach led to the proposal of new methods to deal with the LQ problem, which may also be applied to other mixing models. The second perspective led to the development of an algorithm based on artificial immune system (AIS) to solve the LQ model, requiring less a priori information about the problem and providing better robustness in terms of global convergence. Finally, the application of the pro-posed methods to the practical problem of image treatment presented a very satisfactory performance, encouraging the possible extension to other test scenarios in the future, such as chemical sensors / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
|
116 |
Sobre separação cega de fontes : proposições e analise de estrategias para processamento multi-usuarioCavalcante, Charles Casimiro 30 April 2004 (has links)
Orientadores: João Marcos Travassos Romano, Francisco Rodrigo Porto Cavalcanti / Tese (doutorado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-04T00:19:46Z (GMT). No. of bitstreams: 1
Cavalcante_CharlesCasimiro_D.pdf: 8652621 bytes, checksum: bf432c4988b60a8e2465828f4f748b47 (MD5)
Previous issue date: 2004 / Resumo: Esta tese é dedicada ao estudo de tecnicas de separação cega de fontes aplicadas ao contexto de processamento multiusuario em comunicações digitais. Utilizando estrategias de estimação da função de densidade de probabilidade (fdp), são propostos dois metodos de
processamento multiusuario que permitem recuperar os sinais transmitidos pela medida de similaridade de Kullback-Leibler entre a fdp dos sinais a saida do dispositivo de separação e um modelo parametrico que contem as caracteristicas dos sinais transmitidos. Alem desta medida de similaridade, são empregados diferentes metodos que garantem a descorrelação
entre as estimativas das fontes de tal forma que os sinais recuperados sejam provenientes de diferentes fontes. E ainda realizada a analise de convergencia dos metodos e suas equivalencias com tecnicas classicas resultando em algumas importantes relações entre criterios cegos e
supervisionados, tais como o criterio proposto e o criterio de maxima a posteriori. Estes novos metodos aliam a capacidade de recuperação da informação uma baixa complexidade computacional. A proposição de metodos baseados na estimativa da fdp permitiu a realização de um estudo sobre o impacto das estatisticas de ordem superior em algoritmos adaptativos para separação cega de fontes. A utilização da expansão da fdp em series ortonormais permite avaliar atraves dos cumulantes a dinamica de um processo de separação de fontes. Para tratar com problemas de comunicação digital e proposta uma nova serie ortonormal, desenvolvida em torno de uma função de densidade de probabilidade dada por um somatorio de gaussianas. Esta serie e utilizada para evidenciar as diferenças em relação ao desempenho em tempo real ao se reter mais estatisticas de ordem superior. Simulações computacionais são realizadas para evidenciar o desempenho das propostas frente a tecnicas conhecidas da literatura em varias situações de necessidade de alguma estrategia de recuperação de sinais / Abstract: This thesis is devoted to study blind source separation techniques applied to multiuser processing in digital communications. Using probability density function (pdf) estimation strategies, two multiuser processing methods are proposed. They aim for recovering transmitted signal by using the Kullback-Leibler similarity measure between the signals pdf and a parametric model that contains the signals characteristics. Besides the similarity measure, different methods are employed to guarantee the decorrelation of the sources estimates, providing that the recovered signals origin from different sources. The convergence analysis of the methods as well as their equivalences with classical techniques are presented,
resulting on important relationships between blind and supervised criteria such as the proposal and the maximum a posteriori one. Those new methods have a good trade-off between the recovering ability and computational complexity. The proposal os pdf estimation-based methods had allowed the investigation on the impact of higher order statistics on adaptive
algorithms for blind source separation. Using pdf orthonormal series expansion we are able to evaluate through cumulants the dynamics of a source separation process. To be able to deal with digital communication signals, a new orthonormal series expansion is proposed. Such expansion is developed in terms of a Gaussian mixture pdf. This new expansion is used to evaluate the differences in real time processing when we retain more higher order statistics. Computational simulations are carried out to stress the performance of the proposals, faced to well known techniques reported in the literature, under the situations where a recovering signal strategy is required. / Doutorado / Telecomunicações e Telemática / Doutor em Engenharia Elétrica
|
117 |
Dictionary learning methods for single-channel source separation / Méthodes d'apprentissage de dictionnaire pour la séparation de sources audio avec un seul capteurLefèvre, Augustin 03 October 2012 (has links)
Nous proposons dans cette thèse trois contributions principales aux méthodes d'apprentissage de dictionnaire. La première est un critère de parcimonie par groupes adapté à la NMF lorsque la mesure de distorsion choisie est la divergence d'Itakura-Saito. Dans la plupart des signaux de musique on peut trouver de longs intervalles où seulement une source est active (des soli). Le critère de parcimonie par groupe que nous proposons permet de trouver automatiquement de tels segments et d'apprendre un dictionnaire adapté à chaque source. Ces dictionnaires permettent ensuite d'effectuer la tâche de séparation dans les intervalles où les sources sont mélangés. Ces deux tâches d'identification et de séparation sont effectuées simultanément en une seule passe de l'algorithme que nous proposons. Notre deuxième contribution est un algorithme en ligne pour apprendre le dictionnaire à grande échelle, sur des signaux de plusieurs heures. L'espace mémoire requis par une NMF estimée en ligne est constant alors qu'il croit linéairement avec la taille des signaux fournis dans la version standard, ce qui est impraticable pour des signaux de plus d'une heure. Notre troisième contribution touche à l'interaction avec l'utilisateur. Pour des signaux courts, l'apprentissage aveugle est particulièrement dificile, et l'apport d'information spécifique au signal traité est indispensable. Notre contribution est similaire à l'inpainting et permet de prendre en compte des annotations temps-fréquences. Elle repose sur l'observation que la quasi-totalité du spectrogramme peut etre divisé en régions spécifiquement assignées à chaque source. Nous décrivons une extension de NMF pour prendre en compte cette information et discutons la possibilité d'inférer cette information automatiquement avec des outils d'apprentissage statistique simples. / In this thesis we provide three main contributions to blind source separation methods based on NMF. Our first contribution is a group-sparsity inducing penalty specifically tailored for Itakura-Saito NMF. In many music tracks, there are whole intervals where only one source is active at the same time. The group-sparsity penalty we propose allows to blindly indentify these intervals and learn source specific dictionaries. As a consequence, those learned dictionaries can be used to do source separation in other parts of the track were several sources are active. These two tasks of identification and separation are performed simultaneously in one run of group-sparsity Itakura-Saito NMF. Our second contribution is an online algorithm for Itakura-Saito NMF that allows to learn dictionaries on very large audio tracks. Indeed, the memory complexity of a batch implementation NMF grows linearly with the length of the recordings and becomes prohibitive for signals longer than an hour. In contrast, our online algorithm is able to learn NMF on arbitrarily long signals with limited memory usage. Our third contribution deals user informed NMF. In short mixed signals, blind learning becomes very hard and sparsity do not retrieve interpretable dictionaries. Our contribution is very similar in spirit to inpainting. It relies on the empirical fact that, when observing the spectrogram of a mixture signal, an overwhelming proportion of it consists in regions where only one source is active. We describe an extension of NMF to take into account time-frequency localized information on the absence/presence of each source. We also investigate inferring this information with tools from machine learning.
|
118 |
Analyse de scène sonore multi-capteurs : un front-end temps-réel pour la manipulation de scène / Multi-sensor sound scene analysis : a real-time front-end for scene manipulationBaque, Mathieu 09 June 2017 (has links)
La thèse s’inscrit dans un contexte d’essor de l’audio spatialisé (5.1, Dolby Atmos...). Parmi les formats audio 3D existants, l’ambisonie permet une représentation spatiale homogène du champ sonore et se prête naturellement à des manipulations : rotations, distorsion du champ sonore. L’objectif de cette thèse est de fournir un outil d’analyse et de manipulation de contenus audio (essentiellement vocaux) au format ambisonique. Un fonctionnement temps-réel et en conditions acoustiques réelles sont les principales contraintes à respecter. L’algorithme mis au point est basé sur une analyse en composantes indépendantes (ACI) appliquée trame à trame qui permet de décomposer le champ acoustique en un ensemble de contributions, correspondant à des sources (champ direct) ou à de la réverbération. Une étape de classification bayésienne, appliquée aux composantes extraites, permet alors l’identification et le dénombrement des sources sonores contenues dans le mélange. Les sources identifiées sont localisées grâce à la matrice de mélange obtenue par ACI, pour fournir une cartographie de la scène sonore. Une étude exhaustive des performances est menée sur des contenus réels en fonction de plusieurs paramètres : nombre de sources, environnement acoustique, longueur des trames, ou ordre ambisonique utilisé. Des résultats fiables en terme de localisation et de comptage de sources ont été obtenus pour des trames de quelques centaines de ms. L’algorithme, exploité comme prétraitement dans un prototype d’assistant vocal domestique, permet d’améliorer significativement les performances de reconnaissance, notamment en prise de son lointaine et en présence de sources interférentes. / The context of this thesis is the development of spatialized audio (5.1 contents, Dolby Atmos...) and particularly of 3D audio. Among the existing 3D audio formats, Ambisonics and Higher Order Ambisonics (HOA) allow a homogeneous spatial representation of a sound field and allows basics manipulations, like rotations or distorsions. The aim of the thesis is to provides efficient tools for ambisonics and HOA sound scene analyse and manipulations. A real-time implementation and robustness to reverberation are the main constraints to deal with. The implemented algorithm is based on a frame-by-frame Independent Component Analysis (ICA), wich decomposes the sound field into a set of acoustic contributions. Then a bayesian classification step is applied to the extracted components to identify the real sources and the residual reverberation. Direction of arrival of the sources are extracted from the mixing matrix estimated by ICA, according to the ambisonic formalism, and a real-time cartography of the sound scene is obtained. Performances have been evaluated in different acoustic environnements to assess the influence of several parameters such as the ambisonic order, the frame length or the number of sources. Accurate results in terms of source localization and source counting have been obtained for frame lengths of a few hundred milliseconds. The algorithm is exploited as a pre-processing step for a speech recognition prototype and allows a significant increasing of the recognition results, in far field conditions and in the presence of noise and interferent sources.
|
119 |
Determination of end user power load profiles by parallel evolutionary computing / Détermination de profils de consommation électrique par évolution artificielle parallèleKrüger, Frédéric 17 February 2014 (has links)
Il est primordial, pour un distributeur d’énergie électrique, d’obtenir des estimations précises de la demande en énergie de leurs réseaux. Des outils statistiques tels que des profils de consommation électrique offrent des estimations de qualité acceptable. Ces profils ne sont cependant généralement pas assez précis, car ils ne tiennent pas compte de l’influence de facteurs tels que la présence de chauffage électrique ou le type d’habitation. Il est néanmoins possible d’obtenir des profils précis en utilisant uniquement les historiques de consommations d’énergie des clients, les mesures desdéparts 20kV, et un algorithme génétique de séparation de sources. Un filtrage et un prétraitement des données a permis de proposer à l’algorithme génétique de séparation de sources des données adaptées. La séparation de sources particulièrement bruitées est résolue par un algorithme génétique complètement parallélisé sur une carte GPGPU. Les profils de consommation électrique obtenus correspondent aux attentes initiales, et démontrent une amélioration considérable de la précision des estimations de courbes de charge de départs 20kV et de postes de transformation moyenne tension-basse tension. / Precise estimations of the energy demand of a power network are paramount for electrical distribution companies. Statistical tools such as load profiles offer acceptable estimations. These load profiles are, however, usually not precise enough for network engineering at the local level, as they do not take into account factors such as the presence of electrical heating devices or the type of housing. It is however possible to obtain accurate load profiles with no more than end user energy consumption histories, 20kV feeder load measurements, a blind source separation and a genetic algorithm. Filtering and preliminary treatments performed on the data allowed the blind source separation to work with adequate information. The blind source separation presented in this document is successfully solved by a completely parallel genetic algorithm running on a GPGPU card. The power load profiles obtained match the requirements, and demonstrate a considerable improvement in the forecast of 20kV feeder as well as MV substation load curves.
|
120 |
Séparation aveugle de source : de l'instantané au convolutif / Blind source separation : from instantaneous to convolutiveFeng, Fangchen 29 September 2017 (has links)
La séparation aveugle de source consiste à estimer les signaux de sources uniquement à partir des mélanges observés. Le problème peut être séparé en deux catégories en fonction du modèle de mélange: mélanges instantanés, où le retard et la réverbération (effet multi-chemin) ne sont pas pris en compte, et des mélanges convolutives qui sont plus généraux mais plus compliqués. De plus, le bruit additif au niveaux des capteurs et le réglage sous-déterminé, où il y a moins de capteurs que les sources, rendent le problème encore plus difficile.Dans cette thèse, tout d'abord, nous avons étudié le lien entre deux méthodes existantes pour les mélanges instantanés: analyse des composants indépendants (ICA) et analyse des composant parcimonieux (SCA). Nous avons ensuite proposé une nouveau formulation qui fonctionne dans les cas déterminés et sous-déterminés, avec et sans bruit. Les évaluations numériques montrent l'avantage des approches proposées.Deuxièmement, la formulation proposés est généralisés pour les mélanges convolutifs avec des signaux de parole. En intégrant un nouveau modèle d'approximation, les algorithmes proposés fonctionnent mieux que les méthodes existantes, en particulier dans des scénarios bruyant et / ou de forte réverbération.Ensuite, on prend en compte la technique de décomposition morphologique et l'utilisation de parcimonie structurée qui conduit à des algorithmes qui peuvent mieux exploiter les structures des signaux audio. De telles approches sont testées pour des mélanges convolutifs sous-déterminés dans un scénario non-aveugle.Enfin, en bénéficiant du modèle NMF (factorisation en matrice non-négative), nous avons combiné l'hypothèse de faible-rang et de parcimonie et proposé de nouvelles approches pour les mélanges convolutifs sous-déterminés. Les expériences illustrent la bonne performance des algorithmes proposés pour les signaux de musique, en particulier dans des scénarios de forte réverbération. / Blind source separation (BSS) consists of estimating the source signals only from the observed mixtures. The problem can be divided into two categories according to the mixing model: instantaneous mixtures, where delay and reverberation (multi-path effect) are not taken into account, and convolutive mixtures which are more general but more complicated. Moreover, the additive noise at the sensor level and the underdetermined setting, where there are fewer sensors than the sources, make the problem even more difficult.In this thesis, we first studied the link between two existing methods for instantaneous mixtures: independent component analysis (ICA) and sparse component analysis (SCA). We then proposed a new formulation that works in both determined and underdetermined cases, with and without noise. Numerical evaluations show the advantage of the proposed approaches.Secondly, the proposed formulation is generalized for convolutive mixtures with speech signals. By integrating a new approximation model, the proposed algorithms work better than existing methods, especially in noisy and/or high reverberation scenarios.Then, we take into account the technique of morphological decomposition and the use of structured sparsity which leads to algorithms that can better exploit the structures of audio signals. Such approaches are tested for underdetermined convolutive mixtures in a non-blind scenario.At last, being benefited from the NMF model, we combined the low-rank and sparsity assumption and proposed new approaches for under-determined convolutive mixtures. The experiments illustrate the good performance of the proposed algorithms for music signals, especially in strong reverberation scenarios.
|
Page generated in 0.1112 seconds