Spelling suggestions: "subject:"cource separation"" "subject:"bource separation""
91 |
Factor analysis of dynamic PET imagesCruz Cavalcanti, Yanna 31 October 2018 (has links)
La tomographie par émission de positrons (TEP) est une technique d'imagerie nucléaire noninvasive qui permet de quantifier les fonctions métaboliques des organes à partir de la diffusion d'un radiotraceur injecté dans le corps. Alors que l'imagerie statique est souvent utilisée afin d'obtenir une distribution spatiale de la concentration du traceur, une meilleure évaluation de la cinétique du traceur est obtenue par des acquisitions dynamiques. En ce sens, la TEP dynamique a suscité un intérêt croissant au cours des dernières années, puisqu'elle fournit des informations à la fois spatiales et temporelles sur la structure des prélèvements de traceurs en biologie \textit{in vivo}. Les techniques de quantification les plus efficaces en TEP dynamique nécessitent souvent une estimation de courbes temps-activité (CTA) de référence représentant les tissus ou une fonction d'entrée caractérisant le flux sanguin. Dans ce contexte, de nombreuses méthodes ont été développées pour réaliser une extraction non-invasive de la cinétique globale d'un traceur, appelée génériquement analyse factorielle. L'analyse factorielle est une technique d'apprentissage non-supervisée populaire pour identifier un modèle ayant une signification physique à partir de données multivariées. Elle consiste à décrire chaque voxel de l'image comme une combinaison de signatures élémentaires, appelées \textit{facteurs}, fournissant non seulement une CTA globale pour chaque tissu, mais aussi un ensemble des coefficients reliant chaque voxel à chaque CTA tissulaire. Parallèlement, le démélange - une instance particulière d'analyse factorielle - est un outil largement utilisé dans la littérature de l'imagerie hyperspectrale. En imagerie TEP dynamique, elle peut être très pertinente pour l'extraction des CTA, puisqu'elle prend directement en compte à la fois la non-négativité des données et la somme-à-une des proportions de facteurs, qui peuvent être estimées à partir de la diffusion du sang dans le plasma et les tissus. Inspiré par la littérature de démélange hyperspectral, ce manuscrit s'attaque à deux inconvénients majeurs des techniques générales d'analyse factorielle appliquées en TEP dynamique. Le premier est l'hypothèse que la réponse de chaque tissu à la distribution du traceur est spatialement homogène. Même si cette hypothèse d'homogénéité a prouvé son efficacité dans plusieurs études d'analyse factorielle, elle ne fournit pas toujours une description suffisante des données sousjacentes, en particulier lorsque des anomalies sont présentes. Pour faire face à cette limitation, les modèles proposés ici permettent un degré de liberté supplémentaire aux facteurs liés à la liaison spécifique. Dans ce but, une perturbation spatialement variante est introduite en complément d'une CTA nominale et commune. Cette variation est indexée spatialement et contrainte avec un dictionnaire, qui est soit préalablement appris ou explicitement modélisé par des non-linéarités convolutives affectant les tissus de liaisons non-spécifiques. Le deuxième inconvénient est lié à la distribution du bruit dans les images PET. Même si le processus de désintégration des positrons peut être décrit par une distribution de Poisson, le bruit résiduel dans les images TEP reconstruites ne peut généralement pas être simplement modélisé par des lois de Poisson ou gaussiennes. Nous proposons donc de considérer une fonction de coût générique, appelée $\beta$-divergence, capable de généraliser les fonctions de coût conventionnelles telles que la distance euclidienne, les divergences de Kullback-Leibler et Itakura-Saito, correspondant respectivement à des distributions gaussiennes, de Poisson et Gamma. Cette fonction de coût est appliquée à trois modèles d'analyse factorielle afin d'évaluer son impact sur des images TEP dynamiques avec différentes caractéristiques de reconstruction. / Thanks to its ability to evaluate metabolic functions in tissues from the temporal evolution of a previously injected radiotracer, dynamic positron emission tomography (PET) has become an ubiquitous analysis tool to quantify biological processes. Several quantification techniques from the PET imaging literature require a previous estimation of global time-activity curves (TACs) (herein called \textit{factors}) representing the concentration of tracer in a reference tissue or blood over time. To this end, factor analysis has often appeared as an unsupervised learning solution for the extraction of factors and their respective fractions in each voxel. Inspired by the hyperspectral unmixing literature, this manuscript addresses two main drawbacks of general factor analysis techniques applied to dynamic PET. The first one is the assumption that the elementary response of each tissue to tracer distribution is spatially homogeneous. Even though this homogeneity assumption has proven its effectiveness in several factor analysis studies, it may not always provide a sufficient description of the underlying data, in particular when abnormalities are present. To tackle this limitation, the models herein proposed introduce an additional degree of freedom to the factors related to specific binding. To this end, a spatially-variant perturbation affects a nominal and common TAC representative of the high-uptake tissue. This variation is spatially indexed and constrained with a dictionary that is either previously learned or explicitly modelled with convolutional nonlinearities affecting non-specific binding tissues. The second drawback is related to the noise distribution in PET images. Even though the positron decay process can be described by a Poisson distribution, the actual noise in reconstructed PET images is not expected to be simply described by Poisson or Gaussian distributions. Therefore, we propose to consider a popular and quite general loss function, called the $\beta$-divergence, that is able to generalize conventional loss functions such as the least-square distance, Kullback-Leibler and Itakura-Saito divergences, respectively corresponding to Gaussian, Poisson and Gamma distributions. This loss function is applied to three factor analysis models in order to evaluate its impact on dynamic PET images with different reconstruction characteristics.
|
92 |
Spatial separation of sound sources / Séparation spatiale des sources sonoresDong, Bin 14 April 2014 (has links)
La séparation aveugle de sources est une technique prometteuse pour l'identification, la localisation, et la classification des sources sonores. L'objectif de cette thèse est de proposer des méthodes pour séparer des sources sonores incohérentes qui peuvent se chevaucher à la fois dans les domaines spatial et fréquentiel par l'exploitation de l'information spatiale. De telles méthodes sont d'intérêt dans les applications acoustiques nécessitant l'identification et la classification des sources sonores ayant des origines physiques différentes. Le principe fondamental de toutes les méthodes proposées se décrit en deux étapes, la première étant relative à la reconstruction du champ source (comme par exemple à l'aide de l'holographie acoustique de champ proche) et la seconde à la séparation aveugle de sources. Spécifiquement, l'ensemble complexe des sources est d'abord décomposé en une combinaison linéaire de fonctions de base spatiales dont les coefficients sont définis en rétropropageant les pressions mesurées par un réseau de microphones sur le domaine source. Cela conduit à une formulation similaire, mais pas identique, à la séparation aveugle de sources. Dans la seconde étape, ces coefficients sont séparés en variables latentes décorrélées, affectées à des “sources virtuelles” incohérentes. Il est montré que ces dernières sont définies par une rotation arbitraire. Un ensemble unique de sources sonores est finalement résolu par la recherche de la rotation (par gradient conjugué dans la variété Stiefel des matrices unitaires) qui minimise certains critères spatiaux, tels que la variance spatiale, l'entropie spatiale, ou l'orthogonalité spatiale. Il en résulte la proposition de trois critères de séparation à savoir la “moindre variance spatiale”, la “moindre entropie spatiale”, et la “décorrélation spatiale”, respectivement. De plus, la condition sous laquelle la décorrélation classique (analyse en composantes principales) peut résoudre le problème est établit de une manière rigoureuse. Le même concept d'entropie spatiale, qui est au cœur de cette thèse, est également exploité dans la définition d'un nouveau critère, la courbe en L entropique, qui permet de déterminer le nombre de sources sonores actives sur le domaine source d'intérêt. L'idée consiste à considérer le nombre de sources qui réalise le meilleur compromis entre une faible entropie spatiale (comme prévu à partir de sources compactes) et une faible entropie statistique (comme prévu à partir d'une faible erreur résiduelle). / Blind source separation is a promising technique for the identification, localization, and ranking of sound sources. The aim of this dissertation is to offer methods for separating incoherent sound sources which may overlap in both the space and frequency domains by exploiting spatial information. This is found of interest in acoustical applications involving the identification and ranking of sound sources stemming from different physical origins. The fundamental principle of all proposed methods proceeds in two steps, the first one being reminiscent to source reconstruction (e.g. as in near-field acoustical holography) and the second one to blind source separation. Specifically, the source mixture is first expanded into a linear combination of spatial basis functions whose coefficients are set by backpropagating the pressures measured by an array of microphones to the source domain. This leads to a formulation similar, but no identical, to blind source separation. In the second step, these coefficients are blindly separated into uncorrelated latent variables, assigned to incoherent “virtual sources”. These are shown to be defined up to an arbitrary rotation. A unique set of sound sources is finally recovered by searching for that rotation (conjugate gradient descent in the Stiefel manifold of unitary matrices) which minimizes some spatial criteria, such as spatial variance, spatial entropy, or spatial orthogonality. This results in the proposal of three separation criteria coined “least spatial variance”, “least spatial entropy”, and “spatial decorrelation”, respectively. Meanwhile, the condition under which classical decorrelation (principal component analysis) can solve the problem is deduced in a rigorous way. The same concept of spatial entropy, which is central to the dissertation, is also exploited in defining a new criterion, the entropic L-curve, dedicated to determining the number of active sound sources on the source domain of interest. The idea consists in considering the number of sources that achieves the best compromise between a low spatial entropy (as expected from compact sources) and a low statistical entropy (as expected from a low residual error).
|
93 |
Contribution au modèle direct cérébral par stimulation électrique de profondeur et mesures SEEG : application à l'épilepsie / Contribution to the cerebral forward model by depth electric stimulation and SEEG measurements : Application in epilepsyHofmanis, Janis 20 November 2013 (has links)
La thérapie de l'épilepsie par résection partielle exige l'identification des structures cérébrales qui sont impliquées dans la genèse des crises d'épilepsie focales. Plusieurs modalités telles que l'IRM, le PET SCAN, la sémiologie de la crise et l'électrophysiologie sont exploitées par les experts pour contribuer à la localisation de la zone épileptogène. L'EEG du scalp est la modalité qui procure la résolution temporelle à l'échelle des processus électrophysiologiques étudiés. Cependant du fait du positionnement des capteurs sur le scalp, sa résolution spatiale et, plus précisément, de profondeur est très médiocre. Dans certain cas (épilepsies pharmaco-résistantes), et pour palier à cette déficience spatiale, il est possible d'avoir recours à la SEEG. La SEEG permet des mesures électrophysiologiques intracérébrales : la résolution spatiale et donc anatomique est excellente dans l'axe de la microélectrode. La définition de la zone épileptogène, comme celle proposée par Talairach et Bancaud, est une définition électro-clinique basée sur les résultats d'enregistrements de SEEG intracérébraux. Elle tient compte non seulement de la localisation anatomique de la décharge épileptique partielle, mais également de l'évolution dynamique de cette décharge, c'est à dire les réseaux neurologiques actifs durant la période intercritique-critique et des symptômes cliniques. Récemment, il a été proposé une technique de diagnostic complémentaire de localisation de la zone épileptogénique employant la stimulation électrique cérébrale de profondeur (Deep Brain Stimulation). Cette source exogène peut activer les réseaux épileptiques et produire une réaction électrophysiologique telle qu'une crise d'épilepsie. Elle permet également de mettre en exergue les zones fonctionnelles cognitives. Cette source exogène est parfaitement définie spatialement et temporellement. Ainsi, la stimulation, couplée aux mesures SEEG, contribue à la modélisation de la propagation électrique cérébrale et, par voie de conséquence, à la compréhension du processus épileptique. De plus, ce travail sur le modèle de propagation directe apporte une aide à la résolution du problème inverse et donc à la localisation de sources. Les différentes tâches accomplies au cours de cette thèse sont les suivantes : création d'une base de données réelles à partir de 3000 stimulations et mesures SEEG pour 42 patients explorés ; extraction par séparation des signaux de propagation de la stimulation électrique (DBS) des mesures multidimensionnelles SEEG : 5 méthodes ont été développées ou adaptées et ont été validées au cours d'une première phase en simulation puis sur des signaux réels SEEG dans une seconde phase ; localisation des électrodes de SEEG dans le repère anatomique de l'IRM et du CT Scanner en y ajoutant une étape de segmentation de la matière grise et blanche, du liquide céphalorachidien et de l'os ; discussion sur de nombreux modèles de propagation réalistes ou non réalistes proposés dans la littérature, à la fois sur le plan du raffinement du modèle mais également sur les implantations numériques possibles : modèles de milieu, sphériques et réalistes infinis basés sur MRI et CT du patient ; comparaison entre les résultats générés par les modèles de sources et de milieux et les données obtenues après séparation de la stimulation électrique in vivo chez l'homme ; validation des modèles de tête FEM en intégrant les conductivités des milieux (CSF), gris et blancs céphalo-rachidiens et perspectives envisagées / The study of epilepsy requires the identification of cerebral structures which are involved in generation of seizures and connexion processes. Several methods of clinical investigation contributed to these studies : imaging (PET, MRI), electrophysiology (EEG, SEEG, MEG). The EEG provides a temporal resolution enough to analyze these processes. However, the localization of deep sources and their dynamical properties are difficult to understand. SEEG is a modality of intracerebral electrophysiological and anatomical high temporal resolution reserved for some difficult cases of pre-surgical diagnosis : drug-resistant epilepsy. The definition of the epileptogenic zone, as proposed by Talairach and Bancaud is an electro-clinical definition based on the results of intracerebral SEEG recordings. It takes into account not only the anatomical localization of partial epileptic discharge, but also the dynamic evolution of this discharge (active neural networks at the time of seizure) and clinical symptoms. Recently, a novel diagnostic technique allows an accurate localization of the epileptogenic zone using Depth Brain Stimulation (DBS). This exogenous source can activate the epileptic networks and generate an electrophysiological reaction. Therefore, coupling DBS with SEEG measurements is very advantageous : firstly, to contribute to the modeling and understanding of the (epileptic) brain and to help the diagnosis, secondly, to access the estimation of head model as an electrical conductor (conductive properties of tissues). In addition, supplementary information about head model improves the solution to the inverse problem (source localization methods) used in many applications in EEG and SEEG. The inverse solution requires repeated computation of the forward problem, i.e. the simulation of EEG and SEEG fields for a given dipolar source in the brain using a volume-conduction model of the head. As for DBS, the location of source is well defined. Therefore, in this thesis, we search for the best head model for the forward problem from real synchronous measurements of EEG and SEEG with DBS in several patients. So, the work of the thesis breaks up into different parts for which we need to accomplish the following tasks : Creation of database 3000 DBS measurements for 42 patients ; Extraction of DBS signal from SEEG and EEG measurements using multidimensional analysis : 5 methods have been developed or adapted and validate first in a simulation study and, secondly, in a real SEEG application ; Localization of SEEG electrodes in MR and CT images, including segmentation of brain matter ; SEEG forward modeling using infinite medium, spherical and realistic models based on MRI and CT of the patient ; Comparison between different head models and validation with real in vivo DBS measurements ; Validation of realistic 5-compartment FEM head models by incorporating the conductivities of cerebrospinal fluid (CSF), gray and white matters
|
94 |
Contribution à la détection et à l'analyse des signaux EEG épileptiques : débruitage et séparation de sources / Contribution to the detection and analysis of epileptic EEG signals : denoising and source separationRomo Vazquez, Rebeca del Carmen 24 February 2010 (has links)
L'objectif principal de cette thèse est le pré-traitement des signaux d'électroencéphalographie (EEG). En particulier, elle vise à développer une méthodologie pour obtenir un EEG dit "propre" à travers l'identification et l'élimination des artéfacts extra-cérébraux (mouvements oculaires, clignements, activité cardiaque et musculaire) et du bruit. Après identification, les artéfacts et le bruit doivent être éliminés avec une perte minimale d'information, car dans le cas d'EEG, il est de grande importance de ne pas perdre d'information potentiellement utile à l'analyse (visuelle ou automatique) et donc au diagnostic médical. Plusieurs étapes sont nécessaires pour atteindre cet objectif : séparation et identification des sources d'artéfacts, élimination du bruit de mesure et reconstruction de l'EEG "propre". A travers une approche de type séparation aveugle de sources (SAS), la première partie vise donc à séparer les signaux EEG dans des sources informatives cérébrales et des sources d'artéfacts extra-cérébraux à éliminer. Une deuxième partie vise à classifier et éliminer les sources d'artéfacts et elle consiste en une étape de classification supervisée. Le bruit de mesure, quant à lui, il est éliminé par une approche de type débruitage par ondelettes. La mise en place d'une méthodologie intégrant d'une manière optimale ces trois techniques (séparation de sources, classification supervisée et débruitage par ondelettes) constitue l'apport principal de cette thèse. La méthodologie développée, ainsi que les résultats obtenus sur une base de signaux d'EEG réels (critiques et inter-critiques) importante, sont soumis à une expertise médicale approfondie, qui valide l'approche proposée / The goal of this research is the electroencephalographic (EEG) signals preprocessing. More precisely, we aim to develop a methodology to obtain a "clean" EEG through the extra- cerebral artefacts (ocular movements, eye blinks, high frequency and cardiac activity) and noise identification and elimination. After identification, the artefacts and noise must be eliminated with a minimal loss of cerebral activity information, as this information is potentially useful to the analysis (visual or automatic) and therefore to the medial diagnosis. To accomplish this objective, several pre-processing steps are needed: separation and identification of the artefact sources, noise elimination and "clean" EEG reconstruction. Through a blind source separation (BSS) approach, the first step aims to separate the EEG signals into informative and artefact sources. Once the sources are separated, the second step is to classify and to eliminate the identified artefacts sources. This step implies a supervised classification. The EEG is reconstructed only from informative sources. The noise is finally eliminated using a wavelet denoising approach. A methodology ensuring an optimal interaction of these three techniques (BSS, classification and wavelet denoising) is the main contribution of this thesis. The methodology developed here, as well the obtained results from an important real EEG data base (ictal and inter-ictal) is subjected to a detailed analysis by medical expertise, which validates the proposed approach
|
95 |
Réseaux de neurones profonds pour la séparation des sources et la reconnaissance robuste de la parole / Deep neural networks for source separation and noise-robust speech recognitionAditya Arie Nugraha, . 05 December 2017 (has links)
Dans cette thèse, nous traitons le problème de la séparation de sources audio multicanale par réseaux de neurones profonds (deep neural networks, DNNs). Notre approche se base sur le cadre classique de séparation par algorithme espérance-maximisation (EM) basé sur un modèle gaussien multicanal, dans lequel les sources sont caractérisées par leurs spectres de puissance à court terme et leurs matrices de covariance spatiales. Nous explorons et optimisons l'usage des DNNs pour estimer ces paramètres spectraux et spatiaux. À partir des paramètres estimés, nous calculons un filtre de Wiener multicanal variant dans le temps pour séparer chaque source. Nous étudions en détail l'impact de plusieurs choix de conception pour les DNNs spectraux et spatiaux. Nous considérons plusieurs fonctions de coût, représentations temps-fréquence, architectures, et tailles d'ensembles d'apprentissage. Ces fonctions de coût incluent en particulier une nouvelle fonction liée à la tâche pour les DNNs spectraux: le rapport signal-à-distorsion. Nous présentons aussi une formule d'estimation pondérée des paramètres spatiaux, qui généralise la formulation EM exacte. Sur une tâche de séparation de voix chantée, nos systèmes sont remarquablement proches de la méthode de l'état de l'art actuel et améliorent le rapport source-interférence de 2 dB. Sur une tâche de rehaussement de la parole, nos systèmes surpassent la formation de voies GEV-BAN de l'état de l'art de 14%, 7% et 1% relatifs en terme d'amélioration du taux d'erreur sur les mots sur des données à 6, 4 et 2 canaux respectivement / This thesis addresses the problem of multichannel audio source separation by exploiting deep neural networks (DNNs). We build upon the classical expectation-maximization (EM) based source separation framework employing a multichannel Gaussian model, in which the sources are characterized by their power spectral densities and their source spatial covariance matrices. We explore and optimize the use of DNNs for estimating these spectral and spatial parameters. Employing the estimated source parameters, we then derive a time-varying multichannel Wiener filter for the separation of each source. We extensively study the impact of various design choices for the spectral and spatial DNNs. We consider different cost functions, time-frequency representations, architectures, and training data sizes. Those cost functions notably include a newly proposed task-oriented signal-to-distortion ratio cost function for spectral DNNs. Furthermore, we present a weighted spatial parameter estimation formula, which generalizes the corresponding exact EM formulation. On a singing-voice separation task, our systems perform remarkably close to the current state-of-the-art method and provide up to 2 dB improvement of the source-to-interference ratio. On a speech enhancement task, our systems outperforms the state-of-the-art GEV-BAN beamformer by 14%, 7%, and 1% relative word error rate improvement on 6-channel, 4-channel, and 2-channel data, respectively
|
96 |
Sobre a desconvolução multiusuário e a separação de fontes. / On multiuser deconvolution and source separation.Pavan, Flávio Renê Miranda 22 July 2016 (has links)
Os problemas de separação cega de fontes e desconvolução cega multiusuário vêm sendo intensamente estudados nas últimas décadas, principalmente devido às inúmeras possibilidades de aplicações práticas. A desconvolução multiusuário pode ser compreendida como um problema particular de separação de fontes em que o sistema misturador é convolutivo, e as estatísticas das fontes, que possuem alfabeto finito, são bem conhecidas. Dentre os desafios atuais nessa área, cabe destacar que a obtenção de soluções adaptativas para o problema de separação cega de fontes com misturas convolutivas não é trivial, pois envolve ferramentas matemáticas avançadas e uma compreensão aprofundada das técnicas estatísticas a serem utilizadas. No caso em que não se conhece o tipo de mistura ou as estatísticas das fontes, o problema é ainda mais desafiador. Na área de Processamento Estatístico de Sinais, soluções vêm sendo propostas para resolver casos específicos. A obtenção de algoritmos adaptativos eficientes e numericamente robustos para realizar separação cega de fontes, tanto envolvendo misturas instantâneas quanto convolutivas, ainda é um desafio. Por sua vez, a desconvolução cega de canais de comunicação vem sendo estudada desde os anos 1960 e 1970. A partir de então, várias soluções adaptativas eficientes foram propostas nessa área. O bom entendimento dessas soluções pode sugerir um caminho para a compreensão aprofundada das soluções existentes para o problema mais amplo de separação cega de fontes e para a obtenção de algoritmos eficientes nesse contexto. Sendo assim, neste trabalho (i) revisitam-se a formulação dos problemas de separação cega de fontes e desconvolução cega multiusuário, bem como as relações existentes entre esses problemas, (ii) abordam-se as soluções existentes para a desconvolução cega multiusuário, verificando-se suas limitações e propondo-se modificações, resultando na obtenção de algoritmos com boa capacidade de separação e robustez numérica, e (iii) relacionam-se os critérios de desconvolução cega multiusuário baseados em curtose com os critérios de separação cega de fontes. / Blind source separation and blind deconvolution of multiuser systems have been intensively studied over the last decades, mainly due to the countless possibilities of practical applications. Blind deconvolution in the multiuser case can be understood as a particular case of blind source separation in which the mixing system is convolutive, and the sources, which exhibit a finite alphabet, have well known statistics. Among the current challenges in this area, it is worth noting that obtaining adaptive solutions for the blind source separation problem with convolutive mixtures is not trivial, as it requires advanced mathematical tools and a thorough comprehension of the statistical techniques to be used. When the kind of mixture or source statistics are unknown, the problem is even more challenging. In the field of statistical signal processing, solutions aimed at specific cases have been proposed. The development of efficient and numerically robust adaptive algorithms in blind source separation, for either instantaneous or convolutive mixtures, remains an open challenge. On the other hand, blind deconvolution of communication channels has been studied since the 1960s and 1970s. Since then, various types of efficient adaptive solutions have been proposed in this field. The proper understanding of these solutions can suggest a path to further understand the existing solutions for the broader problem of blind source separation and to obtain efficient algorithms in this context. Consequently, in this work we (i) revisit the problem formulation of blind source separation and blind deconvolution of multiuser systems, and the existing relations between these problems, (ii) address the existing solutions for blind deconvolution in the multiuser case, verifying their limitations and proposing modifications, resulting in the development of algorithms with proper separation performance and numeric robustness, and (iii) relate the kurtosis based criteria of blind multiuser deconvolution and blind source separation.
|
97 |
Méthodes de traitement du signal pour l'analyse quantitative de gaz respiratoires à partir d’un unique capteur MOX / Signal processing for quantitative analysis of exhaled breath using a single MOX sensorMadrolle, Stéphanie 27 September 2018 (has links)
Prélevés de manière non invasive, les gaz respiratoires sont constitués de nombreux composés organiques volatils (VOCs) dont la quantité dépend de l’état de santé du sujet. L’analyse quantitative de l’air expiré présente alors un fort intérêt médical, que ce soit pour le diagnostic ou le suivi de traitement. Dans le cadre de ma thèse, nous proposons d’étudier un dispositif d’analyse des gaz respiratoires, et notamment de ces VOCs. Cette thèse multidisciplinaire aborde différents aspects, tels que le choix des capteurs, du matériel et des modes d’acquisition, l’acquisition des données à l’aide d’un banc gaz, et ensuite le traitement des signaux obtenus de manière à quantifier un mélange de gaz. Nous étudions la réponse d’un capteur à oxyde métallique (MOX) à des mélanges de deux gaz (acétone et éthanol) dilués dans de l’air synthétique (oxygène et azote). Ensuite, nous utilisons des méthodes de séparation de sources de manière à distinguer les deux gaz, et déterminer leur concentration. Pour donner des résultats satisfaisants, ces méthodes nécessitent d’utiliser plusieurs capteurs dont on connait la forme mathématique du modèle décrivant l’interaction du mélange avec le capteur, et qui présentent une diversité suffisante dans les mesures d’étalonnage pour estimer les coefficients de ce modèle. Dans cette thèse, nous montrons que les capteurs MOX peuvent être décrits par un modèle de mélange linéaire quadratique, et qu’un mode d’acquisition fonctionnant en double température permet de générer deux capteurs virtuels à partir d’un unique capteur physique. Pour quantifier précisément les composants du mélange à partir des mesures sur ces capteurs (virtuels), nous avons conçu des méthodes de séparation de sources, supervisées et non supervisées appliquées à ce modèle non-linéaire : l’analyse en composantes indépendantes, des méthodes de moindres carrés (algorithme de Levenberg-Marquardt), et une méthode bayésienne ont été étudiées. Les résultats expérimentaux montrent que ces méthodes permettent d’estimer les concentrations de VOCs contenus dans un mélange de gaz, de façon précise, en ne nécessitant que très peu de points de calibration. / Non-invasively taken, exhaled breath contains many volatile organic compounds (VOCs) whose amount depends on the health of the subject. Quantitative analysis of exhaled air is of great medical interest, whether for diagnosis or for a treatment follow-up. As part of my thesis, we propose to study a device to analyze exhaled breath, including these VOCs. This multidisciplinary thesis addresses various aspects, such as the choice of sensors, materials and acquisition modes, the acquisition of data using a gas bench, and then the processing of the signals obtained to quantify a gas mixture. We study the response of a metal oxide sensor (MOX) to mixtures of two gases (acetone and ethanol) diluted in synthetic air (oxygen and nitrogen). Then, we use source separation methods in order to distinguish the two gases, and to determine their concentration. To give satisfactory results, these methods require first to use several sensors for which we know the mathematical model describing the interaction of the mixture with the sensor, and which present a sufficient diversity in the calibration measurements to estimate the model coefficients. In this thesis, we show that MOX sensors can be described by a linear-quadratic mixing model, and that a dual temperature acquisition mode can generate two virtual sensors from a single physical sensor. To quantify the components of the mixture from measurements on these (virtual) sensors, we have develop supervised and unsupervised source separation methods, applied to this nonlinear model: independent component analysis, least squares methods (Levenberg Marquardt algorithm), and a Bayesian method were studied. The experimental results show that these methods make it possible to estimate the VOC concentrations of a gas mixture, accurately, while requiring only a few calibration points.
|
98 |
Sobre a desconvolução multiusuário e a separação de fontes. / On multiuser deconvolution and source separation.Flávio Renê Miranda Pavan 22 July 2016 (has links)
Os problemas de separação cega de fontes e desconvolução cega multiusuário vêm sendo intensamente estudados nas últimas décadas, principalmente devido às inúmeras possibilidades de aplicações práticas. A desconvolução multiusuário pode ser compreendida como um problema particular de separação de fontes em que o sistema misturador é convolutivo, e as estatísticas das fontes, que possuem alfabeto finito, são bem conhecidas. Dentre os desafios atuais nessa área, cabe destacar que a obtenção de soluções adaptativas para o problema de separação cega de fontes com misturas convolutivas não é trivial, pois envolve ferramentas matemáticas avançadas e uma compreensão aprofundada das técnicas estatísticas a serem utilizadas. No caso em que não se conhece o tipo de mistura ou as estatísticas das fontes, o problema é ainda mais desafiador. Na área de Processamento Estatístico de Sinais, soluções vêm sendo propostas para resolver casos específicos. A obtenção de algoritmos adaptativos eficientes e numericamente robustos para realizar separação cega de fontes, tanto envolvendo misturas instantâneas quanto convolutivas, ainda é um desafio. Por sua vez, a desconvolução cega de canais de comunicação vem sendo estudada desde os anos 1960 e 1970. A partir de então, várias soluções adaptativas eficientes foram propostas nessa área. O bom entendimento dessas soluções pode sugerir um caminho para a compreensão aprofundada das soluções existentes para o problema mais amplo de separação cega de fontes e para a obtenção de algoritmos eficientes nesse contexto. Sendo assim, neste trabalho (i) revisitam-se a formulação dos problemas de separação cega de fontes e desconvolução cega multiusuário, bem como as relações existentes entre esses problemas, (ii) abordam-se as soluções existentes para a desconvolução cega multiusuário, verificando-se suas limitações e propondo-se modificações, resultando na obtenção de algoritmos com boa capacidade de separação e robustez numérica, e (iii) relacionam-se os critérios de desconvolução cega multiusuário baseados em curtose com os critérios de separação cega de fontes. / Blind source separation and blind deconvolution of multiuser systems have been intensively studied over the last decades, mainly due to the countless possibilities of practical applications. Blind deconvolution in the multiuser case can be understood as a particular case of blind source separation in which the mixing system is convolutive, and the sources, which exhibit a finite alphabet, have well known statistics. Among the current challenges in this area, it is worth noting that obtaining adaptive solutions for the blind source separation problem with convolutive mixtures is not trivial, as it requires advanced mathematical tools and a thorough comprehension of the statistical techniques to be used. When the kind of mixture or source statistics are unknown, the problem is even more challenging. In the field of statistical signal processing, solutions aimed at specific cases have been proposed. The development of efficient and numerically robust adaptive algorithms in blind source separation, for either instantaneous or convolutive mixtures, remains an open challenge. On the other hand, blind deconvolution of communication channels has been studied since the 1960s and 1970s. Since then, various types of efficient adaptive solutions have been proposed in this field. The proper understanding of these solutions can suggest a path to further understand the existing solutions for the broader problem of blind source separation and to obtain efficient algorithms in this context. Consequently, in this work we (i) revisit the problem formulation of blind source separation and blind deconvolution of multiuser systems, and the existing relations between these problems, (ii) address the existing solutions for blind deconvolution in the multiuser case, verifying their limitations and proposing modifications, resulting in the development of algorithms with proper separation performance and numeric robustness, and (iii) relate the kurtosis based criteria of blind multiuser deconvolution and blind source separation.
|
99 |
Análise de componentes esparsos locais com aplicações em ressonância magnética funcional / Local sparse component analysis: an application to funcional magnetic resonance imagingVieira, Gilson 13 October 2015 (has links)
Esta tese apresenta um novo método para analisar dados de ressonância magnética funcional (FMRI) durante o estado de repouso denominado Análise de Componentes Esparsos Locais (LSCA). A LSCA é uma especialização da Análise de Componentes Esparsos (SCA) que leva em consideração a informação espacial dos dados para reconstruir a informação temporal de fontes bem localizadas, ou seja, fontes que representam a atividade de regiões corticais conectadas. Este estudo contém dados de simulação e dados reais. Os dados simulados foram preparados para avaliar a LSCA em diferentes cenários. Em um primeiro cenário, a LSCA é comparada com a Análise de Componentes Principais (PCA) em relação a capacidade de detectar fontes locais sob ruído branco e gaussiano. Em seguida, a LSCA é comparada com o algoritmo de Maximização da Expectativa (EM) no quesito detecção de fontes dinâmicas locais. Os dados reais foram coletados para fins comparativos e ilustrativos. Imagens de FMRI de onze voluntários sadios foram adquiridas utilizando um equipamento de ressonância magnética de 3T durante um protocolo de estado de repouso. As imagens foram pré-processadas e analisadas por dois métodos: a LSCA e a Análise de Componentes Independentes (ICA). Os componentes identificados pela LSCA foram comparados com componentes comumente reportados na literatura utilizando a ICA. Além da comparação direta com a ICA, a LSCA foi aplicada com o propósito único de caracterizar a dinâmica das redes de estado de repouso. Resultados simulados mostram que a LSCA é apropriada para identificar fontes esparsas locais. Em dados de FMRI no estado de repouso, a LSCA é capaz de identificar as mesmas fontes que são identificadas pela ICA, permitindo uma análise mais detalhada das relações entre regiões dentro de e entre componentes e sugerindo que muitos componentes identificados pela ICA em FMRI durante o estado de repouso representam um conjunto de componentes esparsos locais. Utilizando a LSCA, grande parte das fontes identificadas pela ICA podem ser decompostas em um conjunto de fontes esparsas locais que não são necessariamente independentes entre si. Além disso, as fontes identificadas pela LSCA aproximam muito melhor o sinal temporal observado nas regiões representadas por seus componentes do que as fontes identificadas pela ICA. Finalmente, uma análise mais elaborada utilizando a LSCA permite estimar também relações dinâmicas entre os componentes previamente identificados. Assim, a LSCA permite identificar relações clássicas bem como relações causais entre componentes do estado de repouso. As principais implicações desse resultado são que diferentes premissas permitem decomposições aproximadamente equivalentes, entretanto, critérios menos restritivos tais como esparsidade e localização permitem construir modelos mais compactos e biologicamente mais plausíveis. / This thesis presents Local Sparse Component Analysis (LSCA), a new method for analyzing resting state functional magnetic resonance imaging (fMRI) datasets. LSCA, a extension of Sparse Component Analysis (SCA), takes into account data spatial information to reconstruct temporal sources representing connected regions of significant activity. This study contains simulation data and real data. The simulated data were prepared to evaluate the LSCA in different scenarios. In the first scenario, the LSCA is compared with Principal Component Analysis (PCA) for detecting local sources under Gaussian white noise. Then, LSCA is compared with the expectation maximization algorithm (EM) for detecting the dynamics of local sources. Real data were collected for comparative and illustrative purposes. FMRI images from eleven healthy volunteers were acquired using a 3T MRI scanner during a resting state protocol. Images were preprocessed and analyzed using LSCA and Independent Components Analysis (ICA). LSCA components were compared with commonly reported ICA components. In addition, LSCA was applied for characterizing the dynamics of resting state networks. Simulated results have shown that LSCA is suitable for identifying local sparse sources.For real resting state FMRI data, LSCA is able to identify the same sources that are identified using ICA, allowing detailed functional connectivity analysis of the identified regions within and between components. This suggests that ICA resting state networks can be further decomposed into local sparse components that are not necessarily independent from each other. Moreover, LSCA sources better represent local FMRI signal oscillations than ISCA sources. Finally, brain connectivity analysis shows that LSCA can identify both instantaneous and causal relationships between resting state components. The main implication of this study is that independence and sparsity are equivalent assumptions in resting state FMRI. However, less restrictive criteria such as sparsity and source localization allow building much more compact and biologically plausible brain connectivity models.
|
100 |
Méthodes avancées de séparation de sources applicables aux mélanges linéaires-quadratiques / Advanced methods of source separation applicable to linear-quadratic mixturesJarboui, Lina 18 November 2017 (has links)
Dans cette thèse, nous nous sommes intéressés à proposer de nouvelles méthodes de Séparation Aveugle de Sources (SAS) adaptées aux modèles de mélange non-linéaires. La SAS consiste à estimer les signaux sources inconnus à partir de leurs mélanges observés lorsqu'il existe très peu d'informations disponibles sur le modèle de mélange. La contribution méthodologique de cette thèse consiste à prendre en considération les interactions non-linéaires qui peuvent se produire entre les sources en utilisant le modèle linéaire-quadratique (LQ). A cet effet, nous avons développé trois nouvelles méthodes de SAS. La première méthode vise à résoudre le problème du démélange hyperspectral en utilisant un modèle linéaire-quadratique. Celle-ci se repose sur la méthode d'Analyse en Composantes Parcimonieuses (ACPa) et nécessite l'existence des pixels purs dans la scène observée. Dans le même but, nous proposons une deuxième méthode du démélange hyperspectral adaptée au modèle linéaire-quadratique. Elle correspond à une méthode de Factorisation en Matrices Non-négatives (FMN) se basant sur l'estimateur du Maximum A Posteriori (MAP) qui permet de prendre en compte les informations a priori sur les distributions des inconnus du problème afin de mieux les estimer. Enfin, nous proposons une troisième méthode de SAS basée sur l'analyse en composantes indépendantes (ACI) en exploitant les Statistiques de Second Ordre (SSO) pour traiter un cas particulier du mélange linéaire-quadratique qui correspond au mélange bilinéaire. / In this thesis, we were interested to propose new Blind Source Separation (BSS) methods adapted to the nonlinear mixing models. BSS consists in estimating the unknown source signals from their observed mixtures when there is little information available on the mixing model. The methodological contribution of this thesis consists in considering the non-linear interactions that can occur between sources by using the linear-quadratic (LQ) model. To this end, we developed three new BSS methods. The first method aims at solving the hyperspectral unmixing problem by using a linear-quadratic model. It is based on the Sparse Component Analysis (SCA) method and requires the existence of pure pixels in the observed scene. For the same purpose, we propose a second hyperspectral unmixing method adapted to the linear-quadratic model. It corresponds to a Non-negative Matrix Factorization (NMF) method based on the Maximum A Posteriori (MAP) estimate allowing to take into account the available prior information about the unknown parameters for a better estimation of them. Finally, we propose a third BSS method based on the Independent Component Analysis (ICA) method by using the Second Order Statistics (SOS) to process a particular case of the linear-quadratic mixture that corresponds to the bilinear one.
|
Page generated in 0.1081 seconds