• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 57
  • 15
  • 11
  • 5
  • 1
  • 1
  • 1
  • Tagged with
  • 103
  • 103
  • 89
  • 37
  • 36
  • 28
  • 28
  • 26
  • 25
  • 25
  • 23
  • 19
  • 17
  • 15
  • 14
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Hydro-climatic forecasting using sea surface temperatures

Chen, Chia-Jeng 20 June 2012 (has links)
A key determinant of atmospheric circulation patterns and regional climatic conditions is sea surface temperature (SST). This has been the motivation for the development of various teleconnection methods aiming to forecast hydro-climatic variables. Among such methods are linear projections based on teleconnection gross indices (such as the ENSO, IOD, and NAO) or leading empirical orthogonal functions (EOFs). However, these methods deteriorate drastically if the predefined indices or EOFs cannot account for climatic variability in the region of interest. This study introduces a new hydro-climatic forecasting method that identifies SST predictors in the form of dipole structures. An SST dipole that mimics major teleconnection patterns is defined as a function of average SST anomalies over two oceanic areas of appropriate sizes and geographic locations. The screening process of SST-dipole predictors is based on an optimization algorithm that sifts through all possible dipole configurations (with progressively refined data resolutions) and identifies dipoles with the strongest teleconnection to the external hydro-climatic series. The strength of the teleconnection is measured by the Gerrity Skill Score. The significant dipoles are cross-validated and used to generate ensemble hydro-climatic forecasts. The dipole teleconnection method is applied to the forecasting of seasonal precipitation over the southeastern US and East Africa, and the forecasting of streamflow-related variables in the Yangtze and Congo Rivers. These studies show that the new method is indeed able to identify dipoles related to well-known patterns (e.g., ENSO and IOD) as well as to quantify more prominent predictor-predictand relationships at different lead times. Furthermore, the dipole method compares favorably with existing statistical forecasting schemes. An operational forecasting framework to support better water resources management through coupling with detailed hydrologic and water resources models is also demonstrated.
72

Erosive water levels and beach-dune morphodynamics, Wickaninnish Bay, Pacific Rim National Park Reserve, British Columbia, Canada

Heathfield, Derek Kenneth 10 September 2013 (has links)
Increases in the frequency and magnitude of extreme water levels and storm surges are observed along some areas of the British Columbia coast to be correlated with known climatic variability (CV) phenomena, including the El Niño/Southern Oscillation (ENSO) and the Pacific Decadal Oscillation (PDO). Since a shift to a positive PDO regime in 1977, the effect of ENSO events have been more frequent, persistent, and intense. Teleconnected impacts include more frequent storms, higher surges, and greater coastal erosion. Geomorphic recovery of regional beach-dune systems from erosive events is usually rapid (i.e., within a year) by way of high onshore sand transport and aeolian delivery to the upper beach and dunes. At Wickaninnish Bay on the west coast of Vancouver Island, fast progradation rates (to +1.46 m a-1) have been observed in recent decades, in part due to rapid regional tectonic uplift and a resulting fall in relative sea level of ~ -0.9 mm a-1. The Wickaninnish foredune complex has rapidly extended alongshore in response to a net northward littoral drift and onshore sediment delivery. Bar deposition and welding processes supply sediment to the foredune complex via aeolian processes, and as a result, this is forcing Sandhill Creek northward toward the prograding (+0.71 m a-1) Combers Beach system, in part maintaining active erosion (-1.24 m a-1) of a bluff system landward of the channel. Bluff erosion generates substantial sediment volumes (-0.137 m3 m-2 a-1) that feed a large intertidal braided channel and delta system as the creek purges into the Pacific Ocean. As a first step in exploring the interactions between ocean-atmosphere forcing and beach-dune responses on the west coast of Vancouver Island, British Columbia, Canada, the proposed thesis: 1) Examines and assembles the historic erosive water level regime and attempts to draw links to observed high magnitude storm events that have occurred in the Tofino-Ucluelet region (Wickaninnish Bay); and 2) Explores the geomorphic response of local shorelines by examining the geomorphology and historical evolution of a foredune-riverine-backshore bluff complex. Despite rapid shoreline progradation, foredune erosion occurs locally with a recurrence interval of ~1.53 yrs. followed by rapid rebuilding, often in the presence of large woody debris and rapidly colonizing vegetation, which drives a longer-term trend of shoreline progradation. This process is complicated locally, however, by the influence of local geological control (bedrock headlands) and backshore rivers, such as Sandhill Creek, which alter spatial-temporal patterns of both intertidal and supratidal erosion and deposition. This work is necessary to understand mechanisms responsible for erosive water levels and the process interaction responsible for subsequent coastal rebuilding following erosive periods. / Graduate / 0368 / derek.heathfield@gmail.com
73

Evaluating the Distribution of Water Resources in Western Canada using a Synoptic Climatological Approach

Newton, Brandi Wreatha 24 December 2013 (has links)
The atmospheric drivers of winter and summer surface climate in western Canada are evaluated using a synoptic climatological approach. Winter snow accumulation provides the largest contribution to annual streamflow of the north-flowing Mackenzie and east-flowing Saskatchewan Rivers, while summer water availability is primarily a product of basin-wide precipitation and evapotranspiration. A catalogue of dominant synoptic types is produced for winter (Nov-Apr) and summer (May-Oct) using the method of Self-Organizing Maps. Water availability, quantified through high-resolution gridded temperature and precipitation data, associated with these synoptic types is then determined. The frequency of dominant types during positive/negative phases of the Southern Oscillation Index, Pacific Decadal Oscillation, and Arctic Oscillation reveal the atmospheric processes through which these teleconnections influence surface climate. Results from the winter analysis are more coherent than summer, with strong relationships found between synoptic types, teleconnections, and surface climate. Although not as strong, links between summer synoptic types and water availability also exist. Additionally, time-series analysis of synoptic type frequencies indicates a trend toward circulation patterns that produce warmer, drier winters as well as an earlier onset and extension of the summer season. This study increases our understanding of the atmospheric processes controlling the distribution of water resources in western Canada. / Graduate / 0388 / 0725 / 0368 / bwnewton@uvic.ca
74

Cultivo de mandioca no Rio Grande do Sul sob influência do fenômeno ENOS utilizando o modelo Simanihot / Cultivation of cassava in Rio Grande do Sul under the influence of the ENSO phenomenon using the Simanihot model

Santos, Amanda Thirza Lima 03 March 2017 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The objective of this study was to evaluate the effect of planting date on productivity in the cassava crop for the state of Rio Grande do Sul using the Simanihot model, when considering the influence of the ENSO phenomenon. For the evaluation of planting dates, the Simanihot model was used, using the Thornthwaite and Mather water balance model, which is coupled to Simanihot. The model was run for the last 54 years, from August 13 to December 31 every ten days, for the three cassava cultivars (Estrangeira, Fepagro RS13 and Paraguaia), 14 sites (Bagé, Bento Gonçalves, Bom Jesus, Caxias do Sul, Cruz Alta, Encruzilhada do Sul, Lagoa Vermelha, Passo Fundo, Pelotas, Porto Alegre, Santa Maria, Santana do Livramento, São Luiz Gonzaga e Torres) and to the soil mapping units that are predominant in each site. In the present study, the soil mapping units of each site were selected. he most suitable dates for the planting of cassava maniots were defined according to the average productivity curves found for local, cultivar and year characterized by the phases of the ENSO phenomenon. The results indicated that the most suitable planting period aiming at obtaining high yields, is the closest to that indicated by the Agroclimatic Zoning. It was evidenced that the ENSO phenomenon exerts a direct influence on cassava productivity in the studied areas. In years of occurrence of the El Niño phenomenon, when classified as strong, in most of the studied sites, productivity values were the highest. Years classified as El Niño with very strong intensity, the cassava crop was hampered by the high volume of rainfall and low levels of solar radiation during the planting season. On the other hand, in years of La Niña, even with below normal precipitation and solar radiation superior to the Neutral years, some places presented superior yields obtained in Neutral years. The cultivars Fepagro RS13, Estrangeira and Paraguaia expressed different productivities in the different phases of the ENSO phenomenon. / O objetivo deste estudo foi avaliar o efeito de data de plantio sobre a produtividade na cultura da mandioca para o estado do Rio Grande do Sul utilizando o modelo Simanihot, ao considerar a influência do fenômeno ENOS. Para a avaliação das datas de plantio, foi utilizado o modelo Simanihot, usando o modelo de balanço hídrico de Thornthwaite e Mather que está acoplado no Simanihot. O modelo foi rodado para os últimos 54 anos, a partir do dia 13 de agosto até 31 de dezembro a cada dez dias, para as três cultivares de mandioca (Estrangeira, Fepagro RS13 e Paraguaia), 14 locais (Bagé, Bento Gonçalves, Bom Jesus, Caxias do Sul, Cruz Alta, Encruzilhada do Sul, Lagoa Vermelha, Passo Fundo, Pelotas, Porto Alegre, Santa Maria, Santana do Livramento, São Luiz Gonzaga e Torres) e para as unidades de mapeamento de solo predominantes de cada local. As datas mais indicadas para o plantio das manivas de mandioca, foram definidas de acordo com as curvas de produtividade média encontradas para local, cultivar e ano caracterizado pelas fases do fenômeno ENOS. Os resultados apontaram que o período de plantio mais indicado visando a obtenção de altas produtividades, é o mais próximo do indicado pelo Zoneamento Agroclimático. Evidenciou-se que o fenômeno ENOS exerce influência direta sob a produtividade de mandioca nos locais estudados. Em anos de ocorrência do fenômeno El Niño, quando classificado como forte, em grande parte dos locais estudados, os valores de produtividade foram os mais altos. Anos classificados como El Niño com intensidade muito forte, a cultura da mandioca foi prejudicada pelo alto volume de precipitação pluvial e baixos índices de radiação solar durante a estação de plantio. Em contrapartida, em anos de La Niña, mesmo com precipitação abaixo da normal e radiação solar superior aos anos Neutros, alguns locais apresentaram produtividades superiores as obtidas em anos Neutros. As cultivares Fepagro RS13, Estrangeira e Paraguaia expressaram produtividades diferentes nas distintas fases do fenômeno ENOS.
75

Climatologia de bloqueios atmosféricos no hemisfério Sul: observações, simulações do clima do século XX e cenários futuros de mudanças climáticas / A Climatology of Southern Hemisphere Blockings: Observations, Simulations of the 20th Century and Future Climate Change Scenarios.

Flavio Natal Mendes de Oliveira 26 August 2011 (has links)
Este estudo discute uma climatologia de 59 anos (1949-2007) de bloqueios no Hemisfério Sul (SH) usando dados de altura geopotencial em 500-hPa das reanálises do National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP-NCAR). A variabilidade espaço-temporal dos eventos de bloqueio e associações com o El Niño/Oscilação do Sul (ENOS) também foram examinadas. Adicionalmente, os bloqueios foram investigados em dois Modelos de Circulação Geral Acoplados Atmosfera-Oceano de clima (MCGAO) do Intergovernamental Painel for Climate Change (IPCC), o ECHAM5/MPI-OM e o MIROC 3.2. Dois cenários simulados foram analisados: O clima do século XX e o cenário de emissão A1B. Os episódios do ENOS foram identificados usando dois métodos. O primeiro foi o Índice Oceânico Mensal do Niño (ONI) do Climate Prediction Center (CPC-NCEP). O segundo método foi baseado em Funções Empíricas Ortogonais (EOF) e foi aplicado nos MCGAOs. Similarmente, também foi examinado a influencia combinada do ENOS e a Oscilação Antártica (AAO) na ocorrência e características dos bloqueios. O índice diário da AAO foi obtido pelo CPC-NCEP. Os índices convencionais de bloqueios detectam principalmente variações longitudinais. Este trabalho propõe um índice de bloqueio que detecta, além de variações longitudinais também as variações latitudinais dos bloqueios. Cinco setores relevantes de bloqueios foram examinados em detalhes: Indico Sudoeste (SB1), Pacífico Sudoeste (SB2), Pacífico Central (SB3), Pacífico Sudeste (SB4) e Atlântico Sudoeste (SB5). Além disso, foram investigados duas grandes regiões do Pacífico Sul: Pacífico Oeste e Pacífico Leste. Foi encontrado que a escala média típica dos eventos de bloqueio varia entre 1,5 e 2,5 dias. Além disso, a duração dos eventos depende da latitude, com eventos de maior duração observados em latitudes mais altas. Diferenças longitudinais estatisticamente significativas na freqüência do escoamento bloqueado foram observadas entre as fases Quente e Neutra do ENOS desde o outono a primavera. Episódios intensos da fase Quente do ENOS (isto é, moderados a fortes) tendem a modificar o local preferencial de bloqueio, mas não a freqüência. Por outro lado, os episódios fracos da fase Quente do ENOS estiveram associados relativamente com alta freqüência. Os Eventos de bloqueio durante o ENOS+ duram, em média, mais um dia relativamente aos episódios Neutros. Em contraste, a fase Fria do ENOS (ENOS-) caracterizou-se pela redução dos eventos de bloqueio sobre o setor do Pacífico Central, exceto durante os meses do verão austral. Entretanto, nenhuma diferença estatisticamente significativa foi detectada na duração dos eventos. Composições de anomalias de vento em 200-hPa indicam que o enfraquecimento (fortalecimento) do jato polar em torno de 60ºS durante a AAO negativa (positiva) em ambas as fases do ENOS tem uma importância significativa no aumento (redução) dos eventos de bloqueio. Um significativo aumento estatístico dos eventos sobre o setor do Pacífico Sudeste foi observado durante a AAO negativa em ambas as fases do ENOS. Ainda, um aumento (redução) dos eventos foi observado sobre a região do Pacífico Oeste na fase negativa (positiva) da AAO durante o ENOS-. Em contraste, durante o ENOS+ não houve diferenças estatisticamente significativas na distribuição longitudinal dos eventos separado de acordo com as fases opostas da AAO, embora haja um aumento (redução) dos eventos da região do Pacífico Oeste para o Pacífico Leste durante a fase negativa (positiva) da AAO. Os MCGAOs simularam corretamente a amplitude do ciclo anual observado. Também, ambos os MCGAOs simularam melhor a duração e o local preferencial do que freqüência. Nenhum MCGAO simulou adequadamente a freqüência durante a fase Neutra do ENOS. O ECHAM5/MPI-OM (rodada 2) mostra um erro sistemático que levam a uma superestimativa na freqüência de eventos sobre o Pacífico Leste durante as fases Neutra e Fria do ENOS. As diferenças entre as duas versões do MIROC 3.2 indicam que a alta resolução nos modelos melhora o desempenho em simular a freqüência de bloqueios. / This study discusses 59-yr climatology (1949-2007) of Southern Hemisphere (SH) blockings using daily 500-hPa geopotential height data from National Center for Environmental Prediction / National Center for Atmospheric Research (NCEP-NCAR reanalysis. The spatiotemporal variability of blocking events and associations with El Nino/Southern Oscillation (ENSO) are examined. Additionally, blockings were examined in two Intergovernmental Panel for Climate Change (IPCC) Coupled General Circulation Models (CGCM), ECHAM5/MPI-OM and MIROC 3.2. Two sets of simulations were examined: the climate of the 20th century and the A1B emission scenario. ENSO episodes were identified using two methods. The first method was the Monthly Oceanic Niño Index (ONI) from the Climate Prediction Center (CPC-NCEP). The second method was based on Empirical Orthogonal Function (EOF) and was applied to identify ENSO episodes in the CGCMs. Similarly, the combined influence of ENSO and the Antarctic Oscillation (AAO) on the occurrence and characteristics of blockings was also examined. The daily AAO index was obtained from CPC/NCEP. Most conventional blocking indices detect longitudinal variations of blockings. In this study we propose a new blocking index that detects longitudinal and latitudinal variations of blockings. The following relevant sectors of blocking occurrence were identified and examined in detail: Southeast Indian (SB1), Southwest Pacific (SB2), Central Pacific (SB3), Southeast Pacific (SB4) and Southwest Atlantic (SB5) oceans. In addition, we investigated two large regions of South Pacific: West Pacific and East Pacific. We found that the typical timescale of a blocking event is about ~1.5 2.5 days. Nonetheless, the duration of events depends on the latitude, with larger durations observed at higher latitudes. Statistically significant differences in the longitude of blockings are observed between Warm (ENSO+) and Neutral ENSO phases from the Austral fall to spring. Moderate to strong Warm ENSO episodes modulate the preferred locations of blockings but do not play a significant role for variations in their frequency. On the other hand, weak ENOS+ episodes were associated with relatively high frequency of blockings. Blocking events during ENSO+ last on average one more day compared to events that occur during Neutral episodes. In contrast, Cold (ENOS-) ENSO episodes are characterized by a decrease of blockings over the Central Pacific sector, except during the Austral summer months. However, no statistically significant differences are detected in the duration. Composites of 200-hPa zonal wind anomalies indicate that the weakening (strengthening) of the polar jet around 60oS during negative (positive) AAO phases in both ENSO phases plays a major role for the relative increase (decrease) of blocking events. A statistically significant increase of events over Southeast Pacific is observed during negative AAO phases in both ENSO phases. Moreover, an increase (decrease) of events is observed over West Pacific region when negative (positive) AAO phases occur during ENSO-. In contrast, during ENSO+ there is no statistically significant difference in the longitudinal distribution of events separated according to opposite AAO phases, although there is an increase (decrease) in the events from West Pacific region to East Pacific during negative (positive) AAO phase. The CGCMs investigated in this study correctly simulated the amplitude of observed annual cycle of geopotential height in the extratropics. Also, both CGCMs show a better performance in simulating the duration and preferred locations of blockings than their frequency. None of these CGCMs simulated well the frequency during Neutral ENSO phase. The ECHAM5/MPI-OM (run2) shows systematic biases in some regions. For instance, this model overestimates the frequency of blockings over East Pacific region during Cold and Neutral ENSO phases. The differences between the two versions of MIROC 3.2 indicate that the increase in resolution improves the performance of the model in simulating the frequency of blockings.
76

Systematics of biomass burning aerosol transport over Southern Africa

Mafusire, Getrude 26 June 2014 (has links)
M.Phil. (Energy Studies) / Southern Africa is a major source of regional aerosols and trace gases from biomass burning, and this creates a need for experimental validation and systematics of the magnitude and frequency of aerosol transport episodes affecting the atmosphere of the region. This study links surface measurements of biomass burning atmospheric aerosols and trace gases with air mass trajectory analysis to determine transport pathways for periods of high and low concentrations. The hypothesis of this study is that from chemical signatures of trace gases and aerosols, as well as trajectory analyses, it is possible to identify sources of these emissions from industrial, traffic, marine and biomass burning activities. Consequently, frequencies, durations, intensities and seasonal variations of trace gases can be established. The study aims to interpret the long-term atmospheric monitoring record from a remote monitoring station at Botsalano (North West Province, South Africa) to determine the origin, frequencies, durations, intensities and seasonal occurrences of aerosol/haze episodes influencing the atmosphere of southern Africa. A suite of trace gas analysers and a Differential Mobility Particle Sizer (DMPS®) were used to measure ground level trace gas and aerosol quantities. MATLAB® scripts were used in performing quality assurance and processing to provide a working set of data from which different fire periods could be selected. Fire signatures, based on excess CO above average tropospheric levels and episodes of enhanced particulate matter concentrations in the 10 to 200 nm range, were identified using MATLAB® scripts and Excel®. Altogether 36 plumes were accepted as biomass burning plumes. Twenty-nine fire plumes had weak signals with excess CO ratios ranging between 0.07 and 0.32; seven plumes had strong signals ranging between 0.41 and 0.64. The occurrence of identified biomass burning plumes was high in the dry season from May to October (83%) and low (17%) during the wet season from November to April. Four pathways were identified for the long-range transportation of biomass burning aerosols to the site: easterly, south-westerly, re-circulation and northerly modes, with occurrence frequencies of 39%, 31%, 22% and 8%, respectively. Anti-cyclonic circulation was observed over southern Africa and was evident in the re-circulation and Indian Ocean slow modes. CO and Aitken-mode aerosol number intensities were generally larger for fire emissions arriving in the easterly and south-westerly air masses when compared with those arriving in re-circulation and northerly air masses. Easterly and south-westerly flows were dominated by Aitken-mode aerosol, whereas accumulation mode particles dominated in the re-circulation and northerly modes. Consequently, easterly and south-westerly flows transported emissions from young/fresh fire plumes, with source regions probably close to Botsalano. Re-circulation and northerly flows were responsible for transport of rather aged plumes from more distant regional fires. Based on forward trajectories, this study revealed that the 2006/2007 measurement period exhibited transport features of a La Niña ENSO during which transport of biomass v burning aerosols towards the south in the Indian Ocean slow and Indian Ocean fast modes was most frequent. This study is significant in that it complements earlier studies of regional aerosol transport over the sub-continent and adds to the understanding of the regional scale generation and transport of trace substances through the atmosphere. Furthermore, the study combines a technique for identifying enhanced CO concentrations as a unique identifier of large scale biomass combustion events with the use of the Aitken-mode particle number densities and size distributions. This technique reveals aspects of aerosol growth dynamics through the changing size distributions, thereby adding fresh insights normally not available through conventional particle volume/mass concentrations measurements.
77

PERFIL VERTICAL DA TEMPERATURA OCEÂNICA EM ANOS DE EVENTOS DO ENOS / VERTICAL PROFILE OF OCEAN TEMPERATURE ON ENSO EVENTS

Finotti, Elisângela 14 May 2015 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In the present work we studied the vertical profile of the Global Ocean temperature in years of occurrence El Nino-Southern Oscillation events, to better understand the functioning of this phenomenon. For its realization were used three sets of ocean reanalysis: ORAS4 produced by European Centre for Medium-range Weather Forecasts, the GODAS produced by National Centers for Environmental Prediction and SODA produced by Carton and Giese, 2008. The three sets of reanalysis showed the same potential temperature pattern in all layers of depth. The Ocean Temperature Index Equatorial Pacific is very well El Nino-Southern Oscillation events, as detected all El Niños and La Niñas occurred in the period of 52 years. Finally, it is concluded that the proposed new index can be used to determine (characterization) of El Nino-Southern Oscillation events with the same precision as the Oceanic Niño Index, and with superior accuracy for predicting El Nino-Southern Oscillation events as it detects these events several months in advance of the Oceanic Niño Index. Therefore, we can add one more tool to help us predict and better understand the El Nino-Southern Oscillation events. / No presente trabalho foi estudado o perfil vertical da temperatura do Oceano Global, em anos de ocorrência de eventos de El Niño Oscilação Sul, para compreender melhor o funcionamento deste fenômeno. Para a sua realização foram utilizados três conjuntos de reanálises oceânicas: ORAS4 produzida pelo European Centre for Medium-range Weather Forecasts, o GODAS foi desenvolvido pelo National Centers for Environmental Prediction e SODA desenvolvido por Carton e Giese, 2008. Os três conjuntos de reanálises apresentaram o mesmo padrão de temperatura potencial em todas as camadas de profundidade. O Índice de Temperatura Oceânica do Pacífico Equatorial representa muito bem os eventos de El Niño-Oscilação Sul, uma vez que detectou todos os EL Niños e La Niñas ocorridos no período de 52 anos. Por fim, conclui-se que o novo índice proposto pode ser utilizado para determinação (caracterização) de eventos de El Niño-Oscilação Sul com a mesma precisão que o Índice de Niño Oceânico, e com superior precisão para a previsão de eventos de El Niño-Oscilação Sul, uma vez que detecta estes eventos com alguns meses de antecedência em relação ao Índice de Niño Oceânico. Assim podemos acrescentar mais uma ferramenta que nos ajudará a prever e entender melhor os eventos de El Niño-Oscilação Sul.
78

Changes in Coral Community Composition at Devil's Crown, Galapagos Islands, Ecuador: A 7,700 Year Perspective

Hendrickson, Katharine Jane 11 December 2014 (has links)
Coral mortality caused by El Niño–Southern Oscillation (ENSO) activity and its related disturbances has been researched throughout the Eastern Pacific. In the past three decades, disturbances related to the El Niño–Southern Oscillation (ENSO) have been shown to influence coral growth in the Eastern Pacific. In the Galápagos Islands, Ecuador, more than 97% of corals experienced mortality after the severe 1982-1983 ENSO episode. However, two of the most dominant coral species found in a coral community adjacent to Devil’s Crown; Psammocora stellata and Diaseris distorta survived this severe ENSO event. By reconstructing sediment cores of the coral community, this study assessed how the coral assemblage has changed over the past 7,700 years of the Holocene epoch. The historical reconstructions were then related to existing records of Holocene ENSO variability in order to determine if changes in the relative abundance of coral species were related to ENSO activity and disturbances. We observed high variability in the relative abundances of P. stellata and D. distorta in the cores, including an increase in the abundance of D. distorta at approximately 2,200 yBP. Between the two species, opposite abundance trends were observed and supported by Detrended Correspondence Analysis (DCA) and Non-metric Multidimensional Scaling (NMDS) ordination analysis. Overall, the high variance in coral composition at the site throughout the Holocene documents repeated disturbance events in this region.
79

Effects of Localized NAO, ONI (ENSO) and AMO Events on Reproductive Patterns in Loggerhead (Caretta caretta) Sea Turtles in Broward County, FL, USA

Hammill, Allison L. 31 July 2013 (has links)
A variety of anthropomorphic and environmental stresses are threatening the existence of all seven species of sea turtles. There is growing evidence that alterations in surface waters and sediment temperatures are negatively impacting reproductive success of loggerhead sea turtles (Caretta caretta). Fluctuations in water temperature associated with localized climate oscillations heavily alter the food web dynamics of the ocean. Feeding conditions are expected to be a critical factor in determining body mass and productivity for breeding seasons. An increase in regional temperatures could lead to prolonged reduction in food sources, as well as reduced nesting and recruitment. Loggerhead sea turtle nesting data from 1995-2011 werre compared with the average yearly North Atlantic Oscillation (NAO) and Atlantic Multidecadal Oscillation (AMO) which are important climatic events impacting the SST in the Atlantic Ocean. Because El Niño Southern Oscillation (ENSO) is a global event, it was proposed that turtles in the Atlantic may follow a similar trend. ENSO was quantified using Oceanic Nino Index (ONI). Analysis of loggerhead sea turtle nest frequencies from the years 1995-2011 in comparison to seasonal climate changes showed a significant inverse relationship between the detrended loggerhead nests and average yearly NAO when lagged two years, suggesting loggerheads may spend years prior breeding obtaining optimum body mass to increase successful reproduction. The detrended nesting data showed a tendency toward higher occurrence of nests during La Niña years while nest frequencies decreased during El Niño year; when the yearly detrended loggerhead nesting data was compared with the average yearly ONI; showing a significant inverse relationship without a lag. This may also suggest a relationship between changes of productivity of the ocean influenced by smaller scale climate changes and loggerhead nest frequencies.
80

Statistical Models for Characterizing and Reducing Uncertainty in Seasonal Rainfall Pattern Forecasts to Inform Decision Making

AlMutairi, Bandar Saud 01 July 2017 (has links)
Uncertainty in rainfall forecasts affects the level of quality and assurance for decisions made to manage water resource-based systems. However, eliminating uncertainty in a complete manner could be difficult, decision-makers thus are challenged to make decisions in the light of uncertainty. This study provides statistical models as an approach to cope with uncertainty, including: a) a statistical method relying on a Gaussian mixture (GM) model to assist in better characterize uncertainty in climate model projections and evaluate their performance in matching observations; b) a stochastic model that incorporates the El Niño–Southern Oscillation (ENSO) cycle to narrow uncertainty in seasonal rainfall forecasts; and c) a statistical approach to determine to what extent drought events forecasted using ENSO information could be utilized in the water resources decision-making process. This study also investigates the relationship between calibration and lead time on the ability to narrow the interannual uncertainty of forecasts and the associated usefulness for decision making. These objectives are demonstrated for the northwest region of Costa Rica as a case study of a developing country in Central America. This region of Costa Rica is under an increasing risk of future water shortages due to climate change, increased demand, and high variability in the bimodal cycle of seasonal rainfall. First, the GM model is shown to be a suitable approach to compare and characterize long-term projections of climate models. The GM representation of seasonal cycles is then employed to construct detailed comparison tests for climate models with respect to observed rainfall data. Three verification metrics demonstrate that an acceptable degree of predictability can be obtained by incorporating ENSO information in reducing error and interannual variability in the forecast of seasonal rainfall. The predictability of multicategory rainfall forecasts in the late portion of the wet season surpasses that in the early portion of the wet season. Later, the value of drought forecast information for coping with uncertainty in making decisions on water management is determined by quantifying the reduction in expected losses relative to a perfect forecast. Both the discrimination ability and the relative economic value of drought-event forecasts are improved by the proposed forecast method, especially after calibration. Positive relative economic value is found only for a range of scenarios of the cost-loss ratio, which indicates that the proposed forecast could be used for specific cases. Otherwise, taking actions (no-actions) is preferred as the cost-loss ratio approaches zero (one). Overall, the approach of incorporating ENSO information into seasonal rainfall forecasts would provide useful value to the decision-making process - in particular at lead times of one year ahead.

Page generated in 0.2195 seconds