• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • 3
  • 2
  • 1
  • Tagged with
  • 36
  • 36
  • 23
  • 8
  • 6
  • 6
  • 5
  • 5
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Validation of the WAM-model over the Baltic Sea

Berg, Caroline January 2008 (has links)
In order to understand how waves influence the exchange of momentum, latent heat and other parameters, between the ocean surface and the atmosphere, one can use models. A coupling between a wave model and an atmospheric regional climate model, for the Baltic Sea, will be performed at the Meteorology Institute in Uppsala University. The wave model is a state of the art, third generation wave model called WAM. The new version of the WAM model (cycle 4) needs to be validated. The aim of this thesis is to perform this validation and also to investigate what meteorological forcing one should use to achieve best results. Two different types of forcing are analyzed, ERA40 reanalysis and the RCA climate model. In order to do this, observations from six different buoys in the Baltic Sea will be compared with the model output from WAM. The parameters that will be compared in this study are significant wave height, direction and peak period. A consistent phenomenon for all the buoys is a slightly overestimation by the model of what the rate of this increases with increasing wave height. If one compares the model output when WAM are forced with the RCA climate model and when it is forced with ERA40 reanalysis, the differences between them are notable but not large. ERA40 is slightly better. Significant wave height is quite good and gives a reasonably result. Some buoys and periods are better and some are worse. There are some differences for the significant wave height between the east coast and the west coast of Sweden, when forcing the model with RCA. It is slightly better on the west coast. On the contrary, the results from ERA40 are very coherent. The quality of the hindcast for the direction and the peak period, in contrast to the significant wave height, is not that good. The results are not bad, but it only gives a rough picture of the sea state.
32

Pair Cascades in Blazars and Radio Galaxies

Roustazadeh Sheikhyousefi, Parisa 18 April 2012 (has links)
No description available.
33

Modelling radio galaxies in the Millennium simulation: SKA/MeerKAT sources and CMB contaminants

Ramamonjisoa, Fidy Andriamanankasina January 2010 (has links)
Magister Scientiae - MSc / We investigate the modelling of radio galaxies within a semi-analytic framework in the Millennium Simulation of the Virgo Consortium. The aim is to assess the radio sources contamination of Sunyaev-Zeldovich (SZ) signatures of clusters of galaxies in Cosmic Microwave Background (CMB) experiments. The modelling is also relevant to the Karoo Array Telescope (MeerKAT) and the Square Kilometre Array (SKA) science. The semi-analytical model consists of N-body simulation, the Millennium Run to trace the merger history of dark matter haloes within the Λ Cold Dark Matter (ΛCDM) cosmology and a follow up of the black hole accretion history and Active Galactic Nuclei (AGN) evolution. We study the growth of the supermassive black hole (SMBH) in galaxy centres and determine the black hole mass accretion conversion into radiation. We identify a model which matches observed radio luminosity function. We describe a model of observed sample of radio surveys at a given frequency and a flux density limit to obtain a model of radio luminosity function (space density of radio sources as a function of redshift) that we compare with our simulated data. We determine the redshift distribution of radio galaxies (FRI), blazars and radio quasars (FRII) in the simulation. We focus the modelling on flat spectrum population of blazars since their jets are collimated towards us and thus constitute the most potential contaminants of the CMB. We determine the spatial and density distribution of radio sources in clusters with a virial mass Mvir 2 1014h−1M and then compute the temperature fluctuations and fluxes produced by these cluster radio sources. Our main results include: the model provides a reasonable match within uncertainties with the model obtained by Dunlop & Peacock (1990) [39] using their best fit of radio luminosity function at redshift z . 0:3. The model underestimates the number of radio sources at high redshift z & 1. Radio sources are concentrated around the centre of clusters with a maximum density at r . 0:1r200 where r200 is the radius within which the density is 200 times the critical density. Radio sources are more concentrated in low mass clusters. The model predicts a surface density profile of radio sources with luminosity P 1023 W.Hz−1 at 1.4 GHz (z . 0:06) in agreement with that of Lin & Mohr (2007) [58] at r . 0:1r200 but underestimates the density in the outskirts of the clusters. BL Lacs and FRI radio galaxies produce non negligible contamination at redshift z . 0:1. They produce a mean temperature fluctuation 4:5 K at redshift z 0:01 which can be at the same level as the kinetic SZE signal produced by the cluster. Blazars constitute potential contaminant of the thermal SZ effect at redshift z 1:0 and z 1:5 at 145 GHz where they produce a mean temperature 300 K - 350 K for an average mass of the cluster. / South Africa
34

Multiwavelength Analysis of the Gamma-Ray Blazar PKS 0528+134 in Quiescence

Palma Cruz, Norman I. January 2010 (has links)
No description available.
35

Estimation de cartes d'énergie de hautes fréquences ou d'irrégularité de périodicité de la marche humaine par caméra de profondeur pour la détection de pathologies

Ndayikengurukiye, Didier 04 1900 (has links)
Ce travail présente deux nouveaux systèmes simples d'analyse de la marche humaine grâce à une caméra de profondeur (Microsoft Kinect) placée devant un sujet marchant sur un tapis roulant conventionnel, capables de détecter une marche saine et celle déficiente. Le premier système repose sur le fait qu'une marche normale présente typiquement un signal de profondeur lisse au niveau de chaque pixel avec moins de hautes fréquences, ce qui permet d'estimer une carte indiquant l'emplacement et l'amplitude de l'énergie de haute fréquence (HFSE). Le second système analyse les parties du corps qui ont un motif de mouvement irrégulier, en termes de périodicité, lors de la marche. Nous supposons que la marche d'un sujet sain présente partout dans le corps, pendant les cycles de marche, un signal de profondeur avec un motif périodique sans bruit. Nous estimons, à partir de la séquence vidéo de chaque sujet, une carte montrant les zones d'irrégularités de la marche (également appelées énergie de bruit apériodique). La carte avec HFSE ou celle visualisant l'énergie de bruit apériodique peut être utilisée comme un bon indicateur d'une éventuelle pathologie, dans un outil de diagnostic précoce, rapide et fiable, ou permettre de fournir des informations sur la présence et l'étendue de la maladie ou des problèmes (orthopédiques, musculaires ou neurologiques) du patient. Même si les cartes obtenues sont informatives et très discriminantes pour une classification visuelle directe, même pour un non-spécialiste, les systèmes proposés permettent de détecter automatiquement les individus en bonne santé et ceux avec des problèmes locomoteurs. / This work presents two new and simple human gait analysis systems based on a depth camera (Microsoft Kinect) placed in front of a subject walking on a conventional treadmill, capable of detecting a healthy gait from an impaired one. The first system presented relies on the fact that a normal walk typically exhibits a smooth motion (depth) signal, at each pixel with less high-frequency spectral energy content than an abnormal walk. This permits to estimate a map for that subject, showing the location and the amplitude of the high-frequency spectral energy (HFSE). The second system analyses the patient's body parts that have an irregular movement pattern, in terms of periodicity, during walking. Herein we assume that the gait of a healthy subject exhibits anywhere in the human body, during the walking cycles, a depth signal with a periodic pattern without noise. From each subject’s video sequence, we estimate a saliency color map showing the areas of strong gait irregularities also called aperiodic noise energy. Either the HFSE or aperiodic noise energy shown in the map can be used as a good indicator of possible pathology in an early, fast and reliable diagnostic tool or to provide information about the presence and extent of disease or (orthopedic, muscular or neurological) patient's problems. Even if the maps obtained are informative and highly discriminant for a direct visual classification, even for a non-specialist, the proposed systems allow us to automatically detect maps representing healthy individuals and those representing individuals with locomotor problems.
36

In-silico Modeling of Lipid-Water Complexes and Lipid Bilayers

Jadidi, Tayebeh 21 October 2013 (has links)
In the first part of the thesis, the molecular structure and electronic properties of phospholipids at the single molecule level and also for a monolayer structure are investigated via ab initio calculations under different degrees of hydration. The focus of the study is on phosphatidylcholines, in particular dipalmitoylphosphatidylcholine (DPPC), which are the most abundant phospholipids in biological membranes. Upon hydration, the phospholipid shape into a sickle-like structure. The hydration dramatically alters the surface potential, dipole and quadrupole moments of the lipids, and probably guides the interactions of the lipids with other molecules and the communication between cells. The vibrational spectrum of DPPC and DPPC-water complexes are completely assigned and it is shown that water hydrating the lipid head groups enables efficient energy transfer across membrane leaflets on sub-picosecond time scales. Moreover, the vibrational modes and lifetimes of pure and hydrated DPPC lipids, at human body temperature, are estimated by performing ab initio molecular dynamics simulations. The vibrational modes of the water molecules close to the head group of DPPC are active in the frequency range between 0.5 - 55 THz, with a peak at 2.80 THz in the energy spectrum. The computed lifetimes for the high-frequency modes agree well with recent data measured at room temperature, where high-order phonon scattering is not negligible. The structure and auto-ionization of water at the water-phospholipid interface are investigated by ab initio molecular dynamics and ab initio Monte Carlo simulations using local density approximation and generalized gradient approximation for the exchange-correlation energy functional. Depending on the lipid head group, strongly enhanced ionization is observed, leading to dissociation of several water molecules into H+ and OH- per lipid. The results can shed light on the phenomena of the high proton conductivity along membranes that has been reported experimentally. In the second part of the thesis, Monte Carlo simulations of the lipid bilayer, on the basis of a coarse grained model, are performed to gain insight into the mechanical properties of planar lipid bilayers. By using a rescaling method, the Poisson's ratio is calculated for different phases. Additional information on the bending rigidity, determined from height fluctuations on the basis of the Helfrich Hamiltonian, allows for calculation of the Young's modulus for each phase. In addition, the free energy barrier for lipid flip-flop process in the fluid and gel phases are estimated. The main rate-limiting step to complete a flip-flop process is related to a free energy barrier that has to be crossed in order to reach the center of the bilayer. The free energy cost for performing a lipid flip-flop in the gel phase is found to be five times greater than in the fluid phase, demonstrating the rarity of such events in the gel phase. Moreover, an energy barrier is estimated for formation of transient water pores that often precedes lipid translocation events and accounts for the rate-limiting step of these pore-associated lipid translocation processes.

Page generated in 0.0746 seconds