• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 1
  • Tagged with
  • 8
  • 8
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Spectral Filter Array for Multispectral Imaging

Ni, Chuan 24 May 2017 (has links)
No description available.
2

Fourier Multispectral Imaging

Jia, Jie 24 August 2017 (has links)
No description available.
3

Learning methods for digital imaging / Méthodes d'apprentissage pour l'imagerie numérique

Amba, Prakhar 03 May 2018 (has links)
Pour produire des images couleurs nous devons obtenir l'information relative aux trois couleurs primaires (généralement Rouge, Vert et Bleu) à chaque pixels de l'image. Pour capturer cette information la plupart des caméras numériques utilisent une matrice de filtres couleurs (CFA – Color Filter Array en anglais), c'est-à-dire qu'une mosaïque de couleurs recouvre le capteur de manière à ce qu'une seule couleur soit mesurée à chaque position dans l'image.Cette méthode de mesure est similaire à celle du système visuel humain (HVS – Human Visual System en anglais) pour lequel les cônes LMS (sensibles aux longues L, moyenne M et courte S (short en anglais)) forment également une mosaïque à la surface de la rétine. Pour le système visuel, l'arrangement est aléatoire et change entre les individus alors que pour les caméras nous utilisons des arrangements réguliers. Dans les caméras, on doit interpoler les couleurs manquantes pour retrouver une image couleur totalement résolue, méthode appelée démosaïçage. A cause de l'arrangement régulier ou périodique des filtres couleurs, l'image démosaïçée peut faire apparaître des fausses couleurs ou des artefacts. Dans la littérature, les algorithmes de démosaïçage adressent principalement les mosaïques régulières.Dans cette thèse, nous proposons un algorithme de démosaïçage par apprentissage statistique, qui peut être utilisé avec n’importe quelle mosaïque régulière ou aléatoire. De plus, nous optimisons l’arrangement des couleurs dans la mosaïque et proposons des mosaïques qui, avec notre méthode, offrent des performances supérieures aux meilleures méthodes appliquées aux mosaïques régulières. Les images démosaïçées à partir de ces mosaïques ne présentent pas de fausses couleurs ou artefacts.Nous avons étendu l’algorithme pour qu’il ne soit pas limité à trois couleurs mais puisse être utilisé pour un arrangement aléatoire d’un nombre quelconque de filtres spectraux. Avoir plus de trois couleurs permet non seulement de mieux représenter les images mais aussi de mesurer des signatures spectrales de la scène. Ces mosaïques sont appelées matrice de filtres spectraux (SFA – Spectral Filter Array en anglais). Les technologies récentes nous offrent une grande flexibilité pour définir les filtres spectraux et par démosaïçage nous pouvons obtenir des couleurs plus justes et une estimation de la radiance spectrale de la scène. Le substrat silicium dans lequel les photodiodes du capteur sont réalisées est sensible aux radiations proche infra-rouge et donc des filtres visibles et proche infra-rouge peuvent-être combinés dans la même mosaïque. Cette combinaison est particulièrement utile pour le nouveau challenge des caméras numérique d’obtenir des images couleurs en vision de nuit à basse lumière.Nous démontrons l'application de notre algorithme pour plusieurs exemples de cameras récentes équipées d'une matrice de filtres spectraux. Nous montrons que notre méthode est plus performante que les algorithmes actuels en terme de qualité d'image et de vitesse de calcul. Nous proposons également d'optimiser les transmissions des filtres et leur arrangement pour améliorer les résultats selon des métriques ou applications choisies.La méthode, basée sur la minimisation de l'erreur quadratique moyenne est linéaire et par conséquent rapide et applicable en temps réel. Finalement, pour défier la nature linéaire de notre algorithme, nous proposons un deuxième algorithme de démosaïçage par réseaux de neurones qui à des performances légèrement meilleures mais pour un coût de calcul supérieur. / To produce color images we need information of three primary colors (notably Red, Green and Blue) at each pixel point. To capture this information most digital cameras utilize a Color Filter Array (CFA), i.e. a mosaic arrangement of these colors is overlaid on the sensor such that only one color is sampled at one pixel.This arrangement is similar to the Human Visual System (HVS) wherein a mosaic of LMS cones (for sensitivity to Long, Medium and Short wavelength) forms the surface of the retina. For HVS, the arrangement is random and differs between individuals, whereas for cameras we use a regular arrangement of color filters. For digital cameras one needs to interpolate the missing colors to recover the full color image and this process is known as demosaicing. Due to regular or periodic arrangement of color filters the output demosaiced image is susceptible to false colors and artifacts. In literature, the demosaicing algorithms proposed so far cater mainly to regular CFAs.In this thesis, we propose an algorithm for demosaicing which can be used to demosaic any random or regular CFA by learning statistics of an image database. Further, we optimize and propose CFAs such that they outperform even the state of art algorithms on regular CFAs. At the same time the demosaiced images from proposed CFAs are free from false colors and artifacts.We extend our algorithm such that it is not limited to only three colors but can be used for any random arrangement of any number of spectral filters. Having more than three colors allows us to not only record an image but to record a spectral signature of the scene. These mosaics are known as Spectral Filter Arrays (SFAs). Recent technological advances give us greater flexibility in designing the spectral filters and by demosaicing them we can get more accurate colors and also do estimation of spectral radiance of the scene. We know that silicon is inherently sensitive to Near-Infrared radiation and therefore both Visible and NIR filters can be combined on the same mosaic. This is useful for low light night vision cameras which is a new challenge in digital imaging.We demonstrate the applicability of our algorithm on several state of the art cameras using these novel SFAs. In this thesis, we demonstrate that our method outperforms the state of art algorithms in image quality and computational efficiency. We propose a method to optimize filters and their arrangement such that it gives best results depending on metrics and application chosen.The method based on minimization of mean square error is linear in nature and therefore very fast and suitable for real time applications. Finally to challenge the linear nature of LMMSE we propose a demosaicing algorithm using Neural Networks training on a small database of images which is slightly better than the linear demosaicing however, it is computationally more expensive.
4

Increasing information transfer rates for brain-computer interfacing

Dornhege, Guido January 2006 (has links)
The goal of a Brain-Computer Interface (BCI) consists of the development of a unidirectional interface between a human and a computer to allow control of a device only via brain signals. While the BCI systems of almost all other groups require the user to be trained over several weeks or even months, the group of Prof. Dr. Klaus-Robert Müller in Berlin and Potsdam, which I belong to, was one of the first research groups in this field which used machine learning techniques on a large scale. The adaptivity of the processing system to the individual brain patterns of the subject confers huge advantages for the user. Thus BCI research is considered a hot topic in machine learning and computer science. It requires interdisciplinary cooperation between disparate fields such as neuroscience, since only by combining machine learning and signal processing techniques based on neurophysiological knowledge will the largest progress be made.<br><br> In this work I particularly deal with my part of this project, which lies mainly in the area of computer science. I have considered the following three main points:<br><br> <b>Establishing a performance measure based on information theory:</b> I have critically illuminated the assumptions of Shannon's information transfer rate for application in a BCI context. By establishing suitable coding strategies I was able to show that this theoretical measure approximates quite well to what is practically achieveable.<br> <b>Transfer and development of suitable signal processing and machine learning techniques:</b> One substantial component of my work was to develop several machine learning and signal processing algorithms to improve the efficiency of a BCI. Based on the neurophysiological knowledge that several independent EEG features can be observed for some mental states, I have developed a method for combining different and maybe independent features which improved performance. In some cases the performance of the combination algorithm outperforms the best single performance by more than 50 %. Furthermore, I have theoretically and practically addressed via the development of suitable algorithms the question of the optimal number of classes which should be used for a BCI. It transpired that with BCI performances reported so far, three or four different mental states are optimal. For another extension I have combined ideas from signal processing with those of machine learning since a high gain can be achieved if the temporal filtering, i.e., the choice of frequency bands, is automatically adapted to each subject individually.<br> <b>Implementation of the Berlin brain computer interface and realization of suitable experiments:</b> Finally a further substantial component of my work was to realize an online BCI system which includes the developed methods, but is also flexible enough to allow the simple realization of new algorithms and ideas. So far, bitrates of up to 40 bits per minute have been achieved with this system by absolutely untrained users which, compared to results of other groups, is highly successful. / Ein Brain-Computer Interface (BCI) ist eine unidirektionale Schnittstelle zwischen Mensch und Computer, bei der ein Mensch in der Lage ist, ein Gerät einzig und allein Kraft seiner Gehirnsignale zu steuern. In den BCI Systemen fast aller Forschergruppen wird der Mensch in Experimenten über Wochen oder sogar Monaten trainiert, geeignete Signale zu produzieren, die vordefinierten allgemeinen Gehirnmustern entsprechen. Die BCI Gruppe in Berlin und Potsdam, der ich angehöre, war in diesem Feld eine der ersten, die erkannt hat, dass eine Anpassung des Verarbeitungssystems an den Menschen mit Hilfe der Techniken des Maschinellen Lernens große Vorteile mit sich bringt. In unserer Gruppe und mittlerweile auch in vielen anderen Gruppen wird BCI somit als aktuelles Forschungsthema im Maschinellen Lernen und folglich in der Informatik mit interdisziplinärer Natur in Neurowissenschaften und anderen Feldern verstanden, da durch die geeignete Kombination von Techniken des Maschinellen Lernens und der Signalverarbeitung basierend auf neurophysiologischem Wissen der größte Erfolg erzielt werden konnte.<br><br> In dieser Arbeit gehe ich auf meinem Anteil an diesem Projekt ein, der vor allem im Informatikbereich der BCI Forschung liegt. Im Detail beschäftige ich mich mit den folgenden drei Punkten:<br><br> <b>Diskussion eines informationstheoretischen Maßes für die Güte eines BCI's:</b> Ich habe kritisch die Annahmen von Shannon's Informationsübertragungsrate für die Anwendung im BCI Kontext beleuchtet. Durch Ermittlung von geeigneten Kodierungsstrategien konnte ich zeigen, dass dieses theoretische Maß den praktisch erreichbaren Wert ziemlich gut annähert.<br> <b>Transfer und Entwicklung von geeigneten Techniken aus dem Bereich der Signalverarbeitung und des Maschinellen Lernens:</b> Eine substantielle Komponente meiner Arbeit war die Entwicklung von Techniken des Machinellen Lernens und der Signalverarbeitung, um die Effizienz eines BCI's zu erhöhen. Basierend auf dem neurophysiologischem Wissen, dass verschiedene unabhängige Merkmale in Gehirnsignalen für verschiedene mentale Zustände beobachtbar sind, habe ich eine Methode zur Kombination von verschiedenen und unter Umständen unabhängigen Merkmalen entwickelt, die sehr erfolgreich die Fähigkeiten eines BCI's verbessert. Besonders in einigen Fällen übertraf die Leistung des entwickelten Kombinationsalgorithmus die beste Leistung auf den einzelnen Merkmalen mit mehr als 50 %. Weiterhin habe ich theoretisch und praktisch durch Einführung geeigneter Algorithmen die Frage untersucht, wie viele Klassen man für ein BCI nutzen kann und sollte. Auch hier wurde ein relevantes Resultat erzielt, nämlich dass für BCI Güten, die bis heute berichtet sind, die Benutzung von 3 oder 4 verschiedenen mentalen Zuständen in der Regel optimal im Sinne von erreichbarer Leistung sind. Für eine andere Erweiterung wurden Ideen aus der Signalverarbeitung mit denen des Maschinellen Lernens kombiniert, da ein hoher Erfolg erzielt werden kann, wenn der temporale Filter, d.h. die Wahl des benutzten Frequenzbandes, automatisch und individuell für jeden Menschen angepasst wird.<br> <b>Implementation des Berlin Brain-Computer Interfaces und Realisierung von geeigneten Experimenten:</b> Eine weitere wichtige Komponente meiner Arbeit war eine Realisierung eines online BCI Systems, welches die entwickelten Methoden umfasst, aber auch so flexibel ist, dass neue Algorithmen und Ideen einfach zu verwirklichen sind. Bis jetzt wurden mit diesem System Bitraten von bis zu 40 Bits pro Minute von absolut untrainierten Personen in ihren ersten BCI Experimenten erzielt. Dieses Resultat übertrifft die bisher berichteten Ergebnisse aller anderer BCI Gruppen deutlich. <br> <hr> Bemerkung:<br> Der Autor wurde mit dem <i>Michelson-Preis</i> 2005/2006 für die beste Promotion des Jahrgangs der Mathematisch-Naturwissenschaftlichen Fakultät der Universität Potsdam ausgezeichnet.
5

Material Related Effects on the Structural Thermal Optical Performance of a Thermally Tunable Narrowband Interferometric Spectral Filter

Seaman, Shane Thomas 01 July 2019 (has links)
High Spectral Resolution Lidar (HSRL) is a backscatter lidar technique that employs an optical/spectral filter to distinguish between particulate (Mie) and molecular (Rayleigh) backscattered light. By separating the two types of returns, higher accuracy measurements are possible that will enable improved climate models, air quality measurements, and climate forecasting. A spaceborne HSRL instrument can provide great impact in these areas by enabling near-continuous measurements across the Earth, however the optical filter technology has typically been too complex for reliable long-duration space flight due to the need for complicated and costly electro-optic feedback loops, extra alignment detectors, and additional laser sources. Furthermore, these complexities limit the filter from use in other applications. In this research, a high-performance, ultra-narrowband interferometric optical filter with a specific thermo-optical behavior has been designed and built. The interferometer has been designed such that it can be reliably adjusted/tuned by simply monitoring and adjusting the temperature. The greatly reduced operational complexity was made possible through high-accuracy thermal characterization of the interferometer materials, combined with detailed Structural-Thermal-Optical-Performance (STOP) modeling to capture the complicated interactions between the materials. The overall design process, fabrication procedures, and characterization of the optical filter are presented. / Doctor of Philosophy / LiDAR (an acronym for Light Detection and Ranging) is a technology that can be used to measure properties of the atmosphere. It is similar to radar, but uses much smaller light waves rather than larger radio waves, enabling more detailed information to be obtained. High Spectral Resolution Lidar (HSRL) is a lidar technique that uses a high precision optical filter to distinguish between light that scatters from particulates (such as dust, smoke, or fog) and light that scatters from molecules (such as oxygen, nitrogen, or carbon dioxide) in the atmosphere. By separating the two types of backscattered light, higher accuracy measurements are possible that will enable improvements in climate models, air quality measurements, and climate forecasting. A spaceborne HSRL instrument can provide great impact in these areas by enabling near-continuous measurements across the Earth; however, the optical filter technology has typically been too complex for reliable long-duration spaceflight due to the need for complicated and expensive additional hardware. In this research, a high-performance HSRL optical filter that can be reliably operated by simply monitoring and adjusting the temperature has been designed, built, and tested. The greatly-reduced operational complexity has been made possible through a new process that enables more accurate prediction of the complicated interactions between the materials of the optical filter. This process is based on a combination of high-accuracy characterization of the materials and detailed structural-thermal-optical-performance (STOP) modeling. The overall design process, fabrication procedures, and characterization of the optical filter are presented.
6

Effect of Spectral Filtering on Pulse Dynamics of Ultrafast Fiber Oscillators at Normal Dispersion

Khanolkar, Ankita Nayankumar 09 August 2021 (has links)
No description available.
7

Nouveaux concepts de filtres spectraux ultra-sélectifs pour spectroscopie embarquée / New ultra-narrow band optical filters for embedded spectroscopy

Sharshavina, Ksenia 06 December 2016 (has links)
Les filtres spectraux à réseaux résonants, ou GMRF (Guided-Mode Resonance Filters), sont une nouvelle génération de filtres à bande étroite et constituent une alternative très prometteuse aux filtres conventionnels multicouches Fabry-Pérot. Le pic de résonance d'un GMRF peut être très fin spectralement et de longueur d'onde de centrage accordable en fonction de l'angle d'incidence. Ces propriétés sont particulièrement importantes pour la spectroscopie. Les travaux antérieurs ont permis de mettre en œuvre une structure originale comportant deux réseaux 1D croisés. Les performances de ce filtre surpassent celles des filtres conventionnels par leur réponse spectrale subnanométrique, leur accordabilité, et leur capacité à s'affranchir de l'influence de la polarisation de l'onde incidente sous incidence oblique. Le but de ce travail est d'explorer les performances ultimes de ce type de dispositif en termes de résolution et taux de réjection, par une approche mêlant théorie, technologie et caractérisation. Nous présentons des résultats expérimentaux d'un filtre en réflexion indépendant de la polarisation, accordable sur 40 nm avec 8.3nm/° d'accordabilité, ayant une réflexion de 10-3 sur une plage de 90nm en dehors de la résonance et un facteur de qualité supérieur à 5000. / Guided Mode Resonance Filters ( GMRF ) are a new generation of narrowband optical filters and are a very promising alternative to conventional multilayer Fabry-Perot filters. The resonance peak of GMRF can be spectrally extremely thin and with a centering wavelength tunable according to the angle of incidence of the light. These properties are particularly important for spectroscopy. Previous works have helped to implement an original structure with two 1D crossed gratings. The performance of this filter overpasses those of conventional filters in their spectral subnanometric response, tunability and their ability to overcome the influence of the polarization of the incident wave under oblique incidence. The aim of this work is to explore the final performances of such devices in terms of resolution and rejection rate, thanks to an approach combining theory, fabrication technology and characterization. We present experimental results of a polarization independent reflective filter, tunable over 40nm with a tunability of 8.3nm / °, having a reflection of 10-3 on a 90nm range outside the resonance and a quality factor over 5000.
8

Diagnosis of electric induction machines in non-stationary regimes working in randomly changing conditions

Vedreño Santos, Francisco Jose 02 December 2013 (has links)
Tradicionalmente, la detección de faltas en máquinas eléctricas se basa en el uso de la Transformada Rápida de Fourier ya que la mayoría de las faltas pueden ser diagnosticadas con ella con seguridad si las máquinas operan en condiciones de régimen estacionario durante un intervalo de tiempo razonable. Sin embargo, para aplicaciones en las que las máquinas operan en condiciones de carga y velocidad fluctuantes (condiciones no estacionarias) como por ejemplo los aerogeneradores, el uso de la Transformada Rápida de Fourier debe ser reemplazado por otras técnicas. La presente tesis desarrolla una nueva metodología para el diagnóstico de máquinas de inducción de rotor de jaula y rotor bobinado operando en condiciones no estacionarias, basada en el análisis de las componentes de falta de las corrientes en el plano deslizamiento frecuencia. La técnica es aplicada al diagnóstico de asimetrías estatóricas, rotóricas y también para la falta de excentricidad mixta. El diagnóstico de las máquinas eléctricas en el dominio deslizamiento-frecuencia confiere un carácter universal a la metodología ya que puede diagnosticar máquinas eléctricas independientemente de sus características, del modo en el que la velocidad de la máquina varía y de su modo de funcionamiento (motor o generador). El desarrollo de la metodología conlleva las siguientes etapas: (i) Caracterización de las evoluciones de las componentes de falta de asimetría estatórica, rotórica y excentricidad mixta para las máquinas de inducción de rotores de jaula y bobinados en función de la velocidad (deslizamiento) y la frecuencia de alimentación de la red a la que está conectada la máquina. (ii) Debido a la importancia del procesado de la señal, se realiza una introducción a los conceptos básicos del procesado de señal antes de centrarse en las técnicas actuales de procesado de señal para el diagnóstico de máquinas eléctricas. (iii) La extracción de las componentes de falta se lleva a cabo a través de tres técnicas de filtrado diferentes: filtros basados en la Transformada Discreta Wavelet, en la Transformada Wavelet Packet y con una nueva técnica de filtrado propuesta en esta tesis, el Filtrado Espectral. Las dos primeras técnicas de filtrado extraen las componentes de falta en el dominio del tiempo mientras que la nueva técnica de filtrado realiza la extracción en el dominio de la frecuencia. (iv) La extracción de las componentes de falta, en algunos casos, conlleva el desplazamiento de la frecuencia de las componentes de falta. El desplazamiento de la frecuencia se realiza a través de dos técnicas: el Teorema del Desplazamiento de la Frecuencia y la Transformada Hilbert. (v) A diferencia de otras técnicas ya desarrolladas, la metodología propuesta no se basa exclusivamente en el cálculo de la energía de la componente de falta sino que también estudia la evolución de la frecuencia instantánea de ellas, calculándola a través de dos técnicas diferentes (la Transformada Hilbert y el operador Teager-Kaiser), frente al deslizamiento. La representación de la frecuencia instantánea frente al deslizamiento elimina la posibilidad de diagnósticos falsos positivos mejorando la precisión y la calidad del diagnóstico. Además, la representación de la frecuencia instantánea frente al deslizamiento permite realizar diagnósticos cualitativos que son rápidos y requieren bajos requisitos computacionales. (vi) Finalmente, debido a la importancia de la automatización de los procesos industriales y para evitar la posible divergencia presente en el diagnóstico cualitativo, tres parámetros objetivos de diagnóstico son desarrollados: el parámetro de la energía, el coeficiente de similitud y los parámetros de regresión. El parámetro de la energía cuantifica la severidad de la falta según su valor y es calculado en el dominio del tiempo y en el dominio de la frecuencia (consecuencia de la extracción de las componentes de falta en el dominio de la frecuencia). El coeficiente de similitud y los parámetros de regresión son parámetros objetivos que permiten descartar diagnósticos falsos positivos aumentando la robustez de la metodología propuesta. La metodología de diagnóstico propuesta se valida experimentalmente para las faltas de asimetría estatórica y rotórica y para el fallo de excentricidad mixta en máquinas de inducción de rotor de jaula y rotor bobinado alimentadas desde la red eléctrica y desde convertidores de frecuencia en condiciones no estacionarias estocásticas. / Vedreño Santos, FJ. (2013). Diagnosis of electric induction machines in non-stationary regimes working in randomly changing conditions [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34177

Page generated in 0.0698 seconds