• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 23
  • 3
  • Tagged with
  • 37
  • 37
  • 37
  • 18
  • 9
  • 9
  • 9
  • 9
  • 8
  • 7
  • 6
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Energy Efficient Neuromorphic Computing: Circuits, Interconnects and Architecture

Minsuk Koo (8815964) 08 May 2020 (has links)
<div>Neuromorphic computing has gained tremendous interest because of its ability to overcome the limitations of traditional signal processing algorithms in data intensive applications such as image recognition, video analytics, or language translation. The new computing paradigm is built with the goal of achieving high energy efficiency, comparable to biological systems.</div><div>To achieve such energy efficiency, there is a need to explore new neuro-mimetic devices, circuits, and architecture, along with new learning algorithms. To that effect, we propose two main approaches:</div><div><br></div><div>First, we explore an energy-efficient hardware implementation of a bio-plausible Spiking Neural Network (SNN). The key highlights of our proposed system for SNNs are 1) addressing connectivity issues arising from Network On Chip (NOC)-based SNNs, and 2) proposing stochastic CMOS binary SNNs using biased random number generator (BRNG). On-chip Power Line Communication (PLC) is proposed to address the connectivity issues in NOC-based SNNs. PLC can use the on-chip power lines augmented with low-overhead receiver and transmitter to communicate data between neurons that are spatially far apart. We also propose a CMOS '<i>stochastic-bit</i>' with on-chip stochastic Spike Timing Dependent Plasticity (sSTDP) based learning for memory-compressed binary SNNs. A chip was fabricated in 90 nm CMOS process to demonstrate memory-efficient reconfigurable on-chip learning using sSTDP training. </div><div><br></div><div>Second, we explored coupled oscillatory systems for distance computation and convolution operation. Recent research on nano-oscillators has shown the possibility of using coupled oscillator networks as a core computing primitive for analog/non-Boolean computations. Spin-torque oscillator (STO) can be an attractive candidate for such oscillators because it is CMOS compatible, highly integratable, scalable, and frequency/phase tunable. Based on these promising features, we propose a new coupled-oscillator based architecture for hybrid spintronic/CMOS hardware that computes multi-dimensional norm. The hybrid system composed of an array of four injection-locked STOs and a CMOS detector is experimentally demonstrated. Energy and scaling analysis shows that the proposed STO-based coupled oscillatory system has higher energy efficiency compared to the CMOS-based system, and an order of magnitude faster computation speed in distance computation for high dimensional input vectors.</div>
22

Improving Liquid State Machines Through Iterative Refinement of the Reservoir

Norton, R David 18 March 2008 (has links) (PDF)
Liquid State Machines (LSMs) exploit the power of recurrent spiking neural networks (SNNs) without training the SNN. Instead, a reservoir, or liquid, is randomly created which acts as a filter for a readout function. We develop three methods for iteratively refining a randomly generated liquid to create a more effective one. First, we apply Hebbian learning to LSMs by building the liquid with spike-time dependant plasticity (STDP) synapses. Second, we create an eligibility based reinforcement learning algorithm for synaptic development. Third, we apply principles of Hebbian learning and reinforcement learning to create a new algorithm called separation driven synaptic modification (SDSM). These three methods are compared across four artificial pattern recognition problems, generating only fifty liquids for each problem. Each of these algorithms shows overall improvements to LSMs with SDSM demonstrating the greatest improvement. SDSM is also shown to generalize well and outperforms traditional LSMs when presented with speech data obtained from the TIMIT dataset.
23

GENERATIVE MODELS IN NATURAL LANGUAGE PROCESSING AND COMPUTER VISION

Talafha, Sameerah M 01 August 2022 (has links)
Generative models are broadly used in many subfields of DL. DNNs have recently developed a core approach to solving data-centric problems in image classification, translation, etc. The latest developments in parameterizing these models using DNNs and stochastic optimization algorithms have allowed scalable modeling of complex, high-dimensional data, including speech, text, and image. This dissertation proposal presents our state-the-art probabilistic bases and DL algorithms for generative models, including VAEs, GANs, and RNN-based encoder-decoder. The proposal also discusses application areas that may benefit from deep generative models in both NLP and computer vision. In NLP, we proposed an Arabic poetry generation model with extended phonetic and semantic embeddings (Phonetic CNN_subword embeddings). Extensive quantitative experiments using BLEU scores and Hamming distance show notable enhancements over strong baselines. Additionally, a comprehensive human evaluation confirms that the poems generated by our model outperform the base models in criteria including meaning, coherence, fluency, and poeticness. We proposed a generative video model using a hybrid VAE-GAN model in computer vision. Besides, we integrate two attentional mechanisms with GAN to get the essential regions of interest in a video, focused on enhancing the visual implementation of the human motion in the generated output. We have considered quantitative and qualitative experiments, including comparisons with other state-of-the-arts for evaluation. Our results indicate that our model enhances performance compared with other models and performs favorably under different quantitive metrics PSNR, SSIM, LPIPS, and FVD.Recently, mimicking biologically inspired learning in generative models based on SNNs has been shown their effectiveness in different applications. SNNs are the third generation of neural networks, in which neurons communicate through binary signals known as spikes. Since SNNs are more energy-efficient than DNNs. Moreover, DNN models have been vulnerable to small adversarial perturbations that cause misclassification of legitimate images. This dissertation shows the proposed ``VAE-Sleep'' that combines ideas from VAE and the sleep mechanism leveraging the advantages of deep and spiking neural networks (DNN--SNN).On top of that, we present ``Defense–VAE–Sleep'' that extended work of ``VAE-Sleep'' model used to purge adversarial perturbations from contaminated images. We demonstrate the benefit of sleep in improving the generalization performance of the traditional VAE when the testing data differ in specific ways even by a small amount from the training data. We conduct extensive experiments, including comparisons with the state–of–the–art on different datasets.
24

Pattern recognition with spiking neural networks and the ROLLS low-power online learning neuromorphic processor

Ternstedt, Andreas January 2017 (has links)
Online monitoring applications requiring advanced pattern recognition capabilities implemented in resource-constrained wireless sensor systems are challenging to construct using standard digital computers. An interesting alternative solution is to use a low-power neuromorphic processor like the ROLLS, with subthreshold mixed analog/digital circuits and online learning capabilities that approximate the behavior of real neurons and synapses. This requires that the monitoring algorithm is implemented with spiking neural networks, which in principle are efficient computational models for tasks such as pattern recognition. In this work, I investigate how spiking neural networks can be used as a pre-processing and feature learning system in a condition monitoring application where the vibration of a machine with healthy and faulty rolling-element bearings is considered. Pattern recognition with spiking neural networks is investigated using simulations with Brian -- a Python-based open source toolbox -- and an implementation is developed for the ROLLS neuromorphic processor. I analyze the learned feature-response properties of individual neurons. When pre-processing the input signals with a neuromorphic cochlea known as the AER-EAR system, the ROLLS chip learns to classify the resulting spike patterns with a training error of less than 1 %, at a combined power consumption of approximately 30 mW. Thus, the neuromorphic hardware system can potentially be realized in a resource-constrained wireless sensor for online monitoring applications.However, further work is needed for testing and cross validation of the feature learning and pattern recognition networks.i
25

Contribution à la conception d'architecture de calcul auto-adaptative intégrant des nanocomposants neuromorphiques et applications potentielles / Adaptive Computing Architectures Based on Nano-fabricated Components

Bichler, Olivier 14 November 2012 (has links)
Dans cette thèse, nous étudions les applications potentielles des nano-dispositifs mémoires émergents dans les architectures de calcul. Nous montrons que des architectures neuro-inspirées pourraient apporter l'efficacité et l'adaptabilité nécessaires à des applications de traitement et de classification complexes pour la perception visuelle et sonore. Cela, à un cout moindre en termes de consommation énergétique et de surface silicium que les architectures de type Von Neumann, grâce à une utilisation synaptique de ces nano-dispositifs. Ces travaux se focalisent sur les dispositifs dit «memristifs», récemment (ré)-introduits avec la découverte du memristor en 2008 et leur utilisation comme synapse dans des réseaux de neurones impulsionnels. Cela concerne la plupart des technologies mémoire émergentes : mémoire à changement de phase – «Phase-Change Memory» (PCM), «Conductive-Bridging RAM» (CBRAM), mémoire résistive – «Resistive RAM» (RRAM)... Ces dispositifs sont bien adaptés pour l'implémentation d'algorithmes d'apprentissage non supervisés issus des neurosciences, comme «Spike-Timing-Dependent Plasticity» (STDP), ne nécessitant que peu de circuit de contrôle. L'intégration de dispositifs memristifs dans des matrices, ou «crossbar», pourrait en outre permettre d'atteindre l'énorme densité d'intégration nécessaire pour ce type d'implémentation (plusieurs milliers de synapses par neurone), qui reste hors de portée d'une technologie purement en «Complementary Metal Oxide Semiconductor» (CMOS). C'est l'une des raisons majeures pour lesquelles les réseaux de neurones basés sur la technologie CMOS n'ont pas eu le succès escompté dans les années 1990. A cela s'ajoute la relative complexité et inefficacité de l'algorithme d'apprentissage de rétro-propagation du gradient, et ce malgré tous les aspects prometteurs des architectures neuro-inspirées, tels que l'adaptabilité et la tolérance aux fautes. Dans ces travaux, nous proposons des modèles synaptiques de dispositifs memristifs et des méthodologies de simulation pour des architectures les exploitant. Des architectures neuro-inspirées de nouvelle génération sont introduites et simulées pour le traitement de données naturelles. Celles-ci tirent profit des caractéristiques synaptiques des nano-dispositifs memristifs, combinées avec les dernières avancées dans les neurosciences. Nous proposons enfin des implémentations matérielles adaptées pour plusieurs types de dispositifs. Nous évaluons leur potentiel en termes d'intégration, d'efficacité énergétique et également leur tolérance à la variabilité et aux défauts inhérents à l'échelle nano-métrique de ces dispositifs. Ce dernier point est d'une importance capitale, puisqu'il constitue aujourd'hui encore la principale difficulté pour l'intégration de ces technologies émergentes dans des mémoires numériques. / In this thesis, we study the potential applications of emerging memory nano-devices in computing architecture. More precisely, we show that neuro-inspired architectural paradigms could provide the efficiency and adaptability required in some complex image/audio processing and classification applications. This, at a much lower cost in terms of power consumption and silicon area than current Von Neumann-derived architectures, thanks to a synaptic-like usage of these memory nano-devices. This work is focusing on memristive nano-devices, recently (re-)introduced by the discovery of the memristor in 2008 and their use as synapses in spiking neural network. In fact, this includes most of the emerging memory technologies: Phase-Change Memory (PCM), Conductive-Bridging RAM (CBRAM), Resistive RAM (RRAM)... These devices are particularly suitable for the implementation of natural unsupervised learning algorithms like Spike-Timing-Dependent Plasticity (STDP), requiring very little control circuitry.The integration of memristive devices in crossbar array could provide the huge density required by this type of architecture (several thousand synapses per neuron), which is impossible to match with a CMOS-only implementation. This can be seen as one of the main factors that hindered the rise of CMOS-based neural network computing architectures in the nineties, among the relative complexity and inefficiency of the back-propagation learning algorithm, despite all the promising aspects of such neuro-inspired architectures, like adaptability and fault-tolerance. In this work, we propose synaptic models for memristive devices and simulation methodologies for architectural design exploiting them. Novel neuro-inspired architectures are introduced and simulated for natural data processing. They exploit the synaptic characteristics of memristives nano-devices, along with the latest progresses in neurosciences. Finally, we propose hardware implementations for several device types. We assess their scalability and power efficiency potential, and their robustness to variability and faults, which are unavoidable at the nanometric scale of these devices. This last point is of prime importance, as it constitutes today the main difficulty for the integration of these emerging technologies in digital memories.
26

Développement d'un réseau de neurones impulsionnels sur silicium à synapses memristives / Development of a silicon spiking neural network with memristives synapses

Lecerf, Gwendal 29 September 2014 (has links)
Durant ces trois années de doctorat, financées par le projet ANR MHANN (MemristiveHardware Analog Neural Network), nous nous sommes intéressés au développement d’une nouvelle architecture de calculateur à l’aide de réseaux de neurones. Les réseaux de neurones artificiels sont particulièrement bien adaptés à la reconnaissance d’images et peuvent être utilisés en complément des processeurs séquentiels. En 2008, une nouvelle technologie de composant a vu le jour : le memristor. Classé comme étant le quatrième élément passif, il est possible de modifier sa résistance en fonction de la densité de courant qui le traverse et de garder en mémoire ces changements. Grâce à leurs propriétés, les composants memristifs sont des candidats idéaux pour jouer le rôle des synapses au sein des réseaux de neurones artificiels. En effectuant des mesures sur la technologie des memristors ferroélectriques de l’UMjCNRS/Thalès de l’équipe de Julie Grollier, nous avons pu démontrer qu’il était possible d’obtenir un apprentissage de type STDP (Spike Timing Dependant Plasticity) classiquement utilisé avec les réseaux de neurones impulsionnels. Cette forme d’apprentissage, inspirée de la biologie, impose une variation des poids synaptiques en fonction des évènements neuronaux. En s’appuyant sur les mesures réalisées sur ces memristors et sur des simulations provenant d’un programme élaboré avec nos partenaires de l’INRIA Saclay, nous avons conçu successivement deux puces en silicium pour deux technologies de memristors ferroélectriques. La première technologie (BTO), moins performante, a été mise de côté au profit d’une seconde technologie (BFO). La seconde puce a été élaborée avec les retours d’expérience de la première puce. Elle contient deux couches d’un réseau de neurones impulsionnels dédié à l’apprentissage d’images de 81 pixels. En la connectant à un boitier contenant un crossbar de memristors, nous pourrons réaliser un démonstrateur d’un réseau de neurones hybride réalisé avec des synapses memristives ferroélectriques. / Supported financially by ANR MHANN project, this work proposes an architecture ofspiking neural network in order to recognize pictures, where traditional processing units are inefficient regarding this. In 2008, a new passive electrical component had been discovered : the memristor. Its resistance can be adjusted by applying a potential between its terminals. Behaving intrinsically as artificial synapses, memristives devices can be used inside artificial neural networks.We measure the variation in resistance of a ferroelectric memristor (obtained from UMjCNRS/Thalès) similar to the biological law STDP (Spike Timing Dependant Plasticity) used with spiking neurons. With our measurements on the memristor and our network simulation (aided by INRIASaclay) we designed successively two versions of the IC. The second IC design is driven by specifications of the first IC with additional functionalists. The second IC contains two layers of a spiking neural network dedicated to learn a picture of 81 pixels. A demonstrator of hybrid neural networks will be achieved by integrating a chip of memristive crossbar interfaced with thesecond IC.
27

Managing a real-time massively-parallel neural architecture

Patterson, James Cameron January 2012 (has links)
A human brain has billions of processing elements operating simultaneously; the only practical way to model this computationally is with a massively-parallel computer. A computer on such a significant scale requires hundreds of thousands of interconnected processing elements, a complex environment which requires many levels of monitoring, management and control. Management begins from the moment power is applied and continues whilst the application software loads, executes, and the results are downloaded. This is the story of the research and development of a framework of scalable management tools that support SpiNNaker, a novel computing architecture designed to model spiking neural networks of biologically-significant sizes. This management framework provides solutions from the most fundamental set of power-on self-tests, through to complex, real-time monitoring of the health of the hardware and the software during simulation. The framework devised uses standard tools where appropriate, covering hardware up / down events and capacity information, through to bespoke software developed to provide real-time insight to neural network software operation across multiple levels of abstraction. With this layered management approach, users (or automated agents) have access to results dynamically and are able to make informed decisions on required actions in real-time.
28

Critical Branching Regulation of the E-I Net Spiking Neural Network Model

Öberg, Oskar January 2019 (has links)
Spiking neural networks (SNN) are dynamic models of biological neurons, that communicates with event-based signals called spikes. SNN that reproduce observed properties of biological senses like vision are developed to better understand how such systems function, and to learn how more efficient sensor systems can be engineered. A branching parameter describes the average probability for spikes to propagate between two different neuron populations. The adaptation of branching parameters towards critical values is known to be important for maximizing the sensitivity and dynamic range of SNN. In this thesis, a recently proposed SNN model for visual feature learning and pattern recognition known as the E-I Net model is studied and extended with a critical branching mechanism. The resulting modified E-I Net model is studied with numerical experiments and two different types of sensory queues. The experiments show that the modified E-I Net model demonstrates critical branching and power-law scaling behavior, as expected from SNN near criticality, but the power-laws are broken and the stimuli reconstruction error is higher compared to the error of the original E-I Net model. Thus, on the basis of these experiments, it is not clear how to properly extend the E-I Net model properly with a critical branching mechanism. The E-I Net model has a particular structure where the inhibitory neurons (I) are tuned to decorrelate the excitatory neurons (E) so that the visual features learned matches the angular and frequency distributions of feature detectors in visual cortex V1 and different stimuli are represented by sparse subsets of the neurons. The broken power-laws correspond to different scaling behavior at low and high spike rates, which may be related to the efficacy of inhibition in the model.
29

Amygdala Modeling with Context and Motivation Using Spiking Neural Networks for Robotics Applications

Zeglen, Matthew Aaron 27 May 2022 (has links)
No description available.
30

Compute-in-Memory Primitives for Energy-Efficient Machine Learning

Amogh Agrawal (10506350) 26 July 2021 (has links)
<div>Machine Learning (ML) workloads, being memory and compute-intensive, consume large amounts of power running on conventional computing systems, restricting their implementations to large-scale data centers. Thus, there is a need for building domain-specific hardware primitives for energy-efficient ML processing at the edge. One such approach is in-memory computing, which eliminates frequent and unnecessary data-transfers between the memory and the compute units, by directly computing the data where it is stored. Most of the chip area is consumed by on-chip SRAMs in both conventional von-Neumann systems (e.g. CPU/GPU) as well as application-specific ICs (e.g. TPU). Thus, we propose various circuit techniques to enable a range of computations such as bitwise Boolean and arithmetic computations, binary convolution operations, non-Boolean dot-product operations, lookup-table based computations, and spiking neural network implementation - all within standard SRAM memory arrays.</div><div><br></div><div>First, we propose X-SRAM, where, by using skewed sense amplifiers, bitwise Boolean operations such as NAND/NOR/XOR/IMP etc. can be enabled within 6T and 8T SRAM arrays. Moreover, exploiting the decoupled read/write ports in 8T SRAMs, we propose read-compute-store scheme where the computed data can directly be written back in the array simultaneously. </div><div><br></div><div>Second, we propose Xcel-RAM, where we show how binary convolutions can be enabled in 10T SRAM arrays for accelerating binary neural networks. We present charge sharing approach for performing XNOR operations followed by a population count (popcount) using both analog and digital techniques, highlighting the accuracy-energy tradeoff. </div><div><br></div><div>Third, we take this concept further and propose CASH-RAM, to accelerate non-Boolean operations, such as dot-products within standard 8T-SRAM arrays by utilizing the parasitic capacitances of bitlines and sourcelines. We analyze the non-idealities that arise due to analog computations and propose a self-compensation technique which reduces the effects of non-idealities, thereby reducing the errors. </div><div><br></div><div>Fourth, we propose ROM-embedded caches, RECache, using standard 8T SRAMs, useful for lookup-table (LUT) based computations. We show that just by adding an extra word-line (WL) or a source-line (SL), the same bit-cell can store a ROM bit, as well as the usual RAM bit, while maintaining the performance and area-efficiency, thereby doubling the memory density. Further we propose SPARE, an in-memory, distributed processing architecture built on RECache, for accelerating spiking neural networks (SNNs), which often require high-order polynomials and transcendental functions for solving complex neuro-synaptic models. </div><div><br></div><div>Finally, we propose IMPULSE, a 10T-SRAM compute-in-memory (CIM) macro, specifically designed for state-of-the-art SNN inference. The inherent dynamics of the neuron membrane potential in SNNs allows processing of sequential learning tasks, avoiding the complexity of recurrent neural networks. The highly-sparse spike-based computations in such spatio-temporal data can be leveraged for energy-efficiency. However, the membrane potential incurs additional memory access bottlenecks in current SNN hardware. IMPULSE triew to tackle the above challenges. It consists of a fused weight (WMEM) and membrane potential (VMEM) memory and inherently exploits sparsity in input spikes. We propose staggered data mapping and re-configurable peripherals for handling different bit-precision requirements of WMEM and VMEM, while supporting multiple neuron functionalities. The proposed macro was fabricated in 65nm CMOS technology. We demonstrate a sentiment classification task from the IMDB dataset of movie reviews and show that the SNN achieves competitive accuracy with only a fraction of trainable parameters and effective operations compared to an LSTM network.</div><div><br></div><div>These circuit explorations to embed computations in standard memory structures shows that on-chip SRAMs can do much more than just store data and can be re-purposed as on-demand accelerators for a variety of applications. </div>

Page generated in 0.072 seconds