• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 9
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 26
  • 26
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Experiences of older women caring for HIV/AIDS affected households in Atteridgeville

Zheve, Kudzai Ottilia 09 May 2015 (has links)
The aim of this qualitative study was to understand how older women experience their roles as care-givers to HIV/AIDS affected households in the Atteridgeville community and to identify specific problems they encounter. Twelve older women attending three elderly day care centres in Atteridgeville participated in the study. Purposive sampling was done and data was collected through two focus group interviews. Colaizzi‟s seven-step method of data analysis yielded the following four main themes: Caring for adult children with HIV/AIDS, Caring for HIV affected and infected grandchildren, Multiple role players involved in caring for HIV/AIDS persons, The impact on the lives of care-givers. Factors with a positive and negative impact on caring for HIV/AIDS households were identified. The study raises awareness for the need for social workers in Atteridgeville to intervene in assisting older women in their challenging role of caring for HIV/AIDS households / Health Studies / M. A. (Public Health)
22

Měření malých stejnosměrných napětí / Low level DC voltage measurement

Obšilová, Lucie January 2015 (has links)
This thesis deals with low level DC voltage measurement by three methods. First part of this thesis describes each method. It is about potentiometric method, reference step method and direct method. This thesis also describes Josephson voltage standard which was used for calibration nanovoltmeter and Zener reference. The theoretical part of this thesis also deals with the evaluation of key comparison data. The main goal of this thesis is the comparison of methods used to measure low level DC voltage. The practical part of the thesis deals with the implementation of measurement with all methods in cooperation with Czech metrology institute. The measured values are processed including uncertainty evaluations. The final part of this thesis focuses on comparison of measurement methods. The key comparison reference value and the degree of equivalence of the measurement of each method are determined. Next part of comparison consisted of graphic comparison of methods. The end of the thesis contains evaluation of the achieved results.
23

Developing the Next Generation of Perovskite Solar Cells

Blake P Finkenauer (12879047) 15 June 2022 (has links)
<p>  </p> <p>Organic-inorganic halide perovskites are at the brink of commercialization as the next generation of light-absorbing materials for solar energy harvesting devices. Perovskites have large absorption coefficients, long charge-carrier lifetimes and diffusion lengths, and a tunable absorption spectrum. Furthermore, these materials can be low-temperature solution-processed, which transfers to low-cost manufacturing and cost-competitive products. The remarkable material properties of perovskites enable a broad product-market fit, encompassing traditional and new applications for solar technology. Perovskites can be deposited on flexible substrates for flexible solar cells, applied in thermochromic windows for power generation and building cooling, or tuned for tandem solar cell application to include in high-performance solar panels. However, perovskites are intrinsically unstable, which has so far prevented their commercialization. Despite large research efforts, including over two thousand publications per year, perovskite solar cells degrade in under one year of operation. In a saturated research field, new ideas are needed to inspire alternative approaches to solve the perovskite stability problem. In this dissertation, we detail research efforts surrounding the concept of a self-healing perovskite solar cell.</p> <p>     A self-healing perovskite solar cell can be classified with two distinctions: mechanically healing and molecularly healing. First, mechanically self-healing involves the material’s ability to recover its intrinsic properties after mechanical damage such as tares, lacerations, or cracking. This type of healing was unique to the organic polymer community and ultra-rare in semiconducting materials. By combining a self-healing polymer with perovskite material, we developed a self-healing semiconducting perovskite composite material which can heal using synergistic grain growth and solid-state diffusion processes at slightly elevated temperatures. The material is demonstrated in flexible solar cells with improved bending durability and a power conversion efficiency reaching 10%. The addition of fluidic polymer enables macroscopic perovskite material movement, which is otherwise brittle and rigid. The results inspire the use of polymer scaffolds for mechanically self-healing solar cells.</p> <p>     The second type of healing, molecular healing, involves healing defects within the rigid crystal domains resulting from ion migration. The same phenomenon which leads to device degradation, also assists the recovery of the device performance after resting the device in the dark. During device operation, perovskite ions diffuse in the perovskite lattice and accumulate at the device interfaces where they undergo chemical reactions or leave the perovskite layer, ultimately consuming the perovskite precursors. The photovoltaic performance can be recovered if irreversible degradation is limited. Ideally, degradation and recovery can match day and night cycling to dramatically extend the lifetime of perovskite solar cells. In this dissertation, we introduce the application of chalcogenide chemistry in the fabrication of perovskite solar cells to control the thin film crystallization process, ultimately to reduce defects in the perovskite bulk and introduce surface functionality which extends the device stability. This new strategy will help improve molecularly self-healing perovskite solar cell by reducing irreversible degradation. Lastly, we present a few other new ideas to inspire future research in perovskite solar cells and assist in the commercialization of the next generation of photovoltaics.</p>
24

A Fractional Step Zonal Model and Unstructured Mesh Generation Frame-work for Simulating Cabin Flows

Tarroc Gil, Sergi January 2021 (has links)
The simulation of physical systems in the early stages of conceptual designs has shown to be a key factor for adequate decision making and avoiding big and expensive issues downstream in engineering projects. In the case of aircraft cabin design, taking into account the thermal comfort of the passengers as well as the proper air circulation and renovation can make this difference. However, current numerical fluid simulations (CFD) are too computationally expensive for integrating them in early design stages where extensive comparative studies have to be performed. Instead, Zonal Models (ZM) appear to be a fast-computation approach that can provide coarse simulations for aircraft cabin flows. In this thesis, a Zonal Model solver is developed as well as a geometry-definition and meshing framework, both in Matlab®, for performing coarse, flexible and computationally cheap flow simulations of user-defined cabin designs. On one hand, this solver consists of a Fractional Step approach for coarse unstructured bi-dimensional meshes. On the other, the cabin geometry can be introduced by hand for simple shapes, but also with Computational Aided Design tools (CAD) for more complex designs. Additionally, it can be chosen to generate the meshes from scratch or morph them from previously generated ones. / <p>The presentation was online</p>
25

Modelling, simulation and control of the filtration process in a submerged anaerobic membrane bioreactor treating urban wastewater

Robles Martínez, Ángel 28 November 2013 (has links)
El reactor anaerobio de membranas sumergidas (SAnMBR) está considerado como tecnología candidata para mejorar la sostenibilidad en el sector de la depuración de aguas residuales, ampliando la aplicabilidad de la biotecnología anaerobia al tratamiento de aguas residuales de baja carga (v.g. agua residual urbana) o a condiciones medioambientales extremas (v.g. bajas temperaturas de operación). Esta tecnología alternativa de tratamiento de aguas residuales es más sostenible que las tecnologías aerobias actuales ya que el agua residual se transforma en una fuente renovable de energía y nutrientes, proporcionando además un recurso de agua reutilizable. SAnMBR no sólo presenta las principales ventajas de los reactores de membranas (i.e. efluente de alta calidad, y pocas necesidades de espacio), sino que también presenta las principales ventajas de los procesos anaerobios. En este sentido, la tecnología SAnMBR presenta una baja producción de fangos debido a la baja tasa de crecimiento de los microorganismos implicados en la degradación de la materia orgánica, presenta una baja demanda energética debido a la ausencia de aireación, y permite la generación de metano, el cual representa una fuente de energía renovable que mejora el balance energético neto del sistema. Cabe destacar el potencial de recuperación de nutrientes del agua residual bien cuando el efluente es destinado a irrigación directamente, o bien cuando debe ser tratado previamente mediante tecnologías de recuperación de nutrientes. El objetivo principal de esta tesis doctoral es evaluar la viabilidad de la tecnología SAnMBR como núcleo en el tratamiento de aguas residuales urbanas a temperatura ambiente. Por lo tanto, esta tesis se centra en las siguientes tareas: (1) implementación, calibración y puesta en marcha del sistema de instrumentación, control y automatización requerido; (2) identificación de los parámetros de operación clave que afectan al proceso de filtración; (3) modelación y simulación del proceso de filtración; y (4) desarrollo de estrategias de control para la optimización del proceso de filtración minimizando los costes de operación. En este trabajo de investigación se propone un sistema de instrumentación, control y automatización para SAnMBR, el cual fue esencial para alcanzar un comportamiento adecuado y estable del sistema frente a posibles perturbaciones. El comportamiento de las membranas fue comparable a sistemas MBR aerobios a escala industrial. Tras más de dos años de operación ininterrumpida, no se detectaron problemas significativos asociados al ensuciamiento irreversible de las membranas, incluso operando a elevadas concentraciones de sólidos en el licor mezcla (valores de hasta 25 g·L-1 ). En este trabajo se presenta un modelo de filtración (basado en el modelo de resistencias en serie) que permitió simular de forma adecuada el proceso de filtración. Por otra parte, se propone un control supervisor basado en un sistema experto que consiguió reducir el consumo energético asociado a la limpieza física de las membranas, un bajo porcentaje de tiempo destinado a la limpieza física respecto al total de operación, y, en general, un menor coste operacional del proceso de filtración. Esta tesis doctoral está integrada en un proyecto nacional de investigación, subvencionado por el Ministerio de Ciencia e Innovación (MICINN), con título ¿Modelación de la aplicación de la tecnología de membranas para la valorización energética de la materia orgánica del agua residual y la minimización de los fangos producidos¿ (MICINN, proyecto CTM2008-06809- C02-01/02). Para obtener resultados representativos que puedan ser extrapolados a plantas reales, esta tesis doctoral se ha llevado a cabo utilizando un sistema SAnMBR que incorpora módulos comerciales de membrana de fibra hueca. Además, esta planta es alimentada con el efluente del pre-tratamiento de la EDAR del Barranco del Carraixet (Valencia, España). / Robles Martínez, Á. (2013). Modelling, simulation and control of the filtration process in a submerged anaerobic membrane bioreactor treating urban wastewater [Tesis doctoral]. Editorial Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/34102 / TESIS / Premios Extraordinarios de tesis doctorales
26

Elliptic Curve Cryptography for Lightweight Applications.

Hitchcock, Yvonne Roslyn January 2003 (has links)
Elliptic curves were first proposed as a basis for public key cryptography in the mid 1980's. They provide public key cryptosystems based on the difficulty of the elliptic curve discrete logarithm problem (ECDLP) , which is so called because of its similarity to the discrete logarithm problem (DLP) over the integers modulo a large prime. One benefit of elliptic curve cryptosystems (ECCs) is that they can use a much shorter key length than other public key cryptosystems to provide an equivalent level of security. For example, 160 bit ECCs are believed to provide about the same level of security as 1024 bit RSA. Also, the level of security provided by an ECC increases faster with key size than for integer based discrete logarithm (dl) or RSA cryptosystems. ECCs can also provide a faster implementation than RSA or dl systems, and use less bandwidth and power. These issues can be crucial in lightweight applications such as smart cards. In the last few years, ECCs have been included or proposed for inclusion in internationally recognized standards. Thus elliptic curve cryptography is set to become an integral part of lightweight applications in the immediate future. This thesis presents an analysis of several important issues for ECCs on lightweight devices. It begins with an introduction to elliptic curves and the algorithms required to implement an ECC. It then gives an analysis of the speed, code size and memory usage of various possible implementation options. Enough details are presented to enable an implementer to choose for implementation those algorithms which give the greatest speed whilst conforming to the code size and ram restrictions of a particular lightweight device. Recommendations are made for new functions to be included on coprocessors for lightweight devices to support ECC implementations Another issue of concern for implementers is the side-channel attacks that have recently been proposed. They obtain information about the cryptosystem by measuring side-channel information such as power consumption and processing time and the information is then used to break implementations that have not incorporated appropriate defences. A new method of defence to protect an implementation from the simple power analysis (spa) method of attack is presented in this thesis. It requires 44% fewer additions and 11% more doublings than the commonly recommended defence of performing a point addition in every loop of the binary scalar multiplication algorithm. The algorithm forms a contribution to the current range of possible spa defences which has a good speed but low memory usage. Another topic of paramount importance to ECCs for lightweight applications is whether the security of fixed curves is equivalent to that of random curves. Because of the inability of lightweight devices to generate secure random curves, fixed curves are used in such devices. These curves provide the additional advantage of requiring less bandwidth, code size and processing time. However, it is intuitively obvious that a large precomputation to aid in the breaking of the elliptic curve discrete logarithm problem (ECDLP) can be made for a fixed curve which would be unavailable for a random curve. Therefore, it would appear that fixed curves are less secure than random curves, but quantifying the loss of security is much more difficult. The thesis performs an examination of fixed curve security taking this observation into account, and includes a definition of equivalent security and an analysis of a variation of Pollard's rho method where computations from solutions of previous ECDLPs can be used to solve subsequent ECDLPs on the same curve. A lower bound on the expected time to solve such ECDLPs using this method is presented, as well as an approximation of the expected time remaining to solve an ECDLP when a given size of precomputation is available. It is concluded that adding a total of 11 bits to the size of a fixed curve provides an equivalent level of security compared to random curves. The final part of the thesis deals with proofs of security of key exchange protocols in the Canetti-Krawczyk proof model. This model has been used since it offers the advantage of a modular proof with reusable components. Firstly a password-based authentication mechanism and its security proof are discussed, followed by an analysis of the use of the authentication mechanism in key exchange protocols. The Canetti-Krawczyk model is then used to examine secure tripartite (three party) key exchange protocols. Tripartite key exchange protocols are particularly suited to ECCs because of the availability of bilinear mappings on elliptic curves, which allow more efficient tripartite key exchange protocols.

Page generated in 0.0428 seconds