• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 19
  • 17
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 248
  • 248
  • 52
  • 46
  • 38
  • 30
  • 29
  • 28
  • 27
  • 24
  • 21
  • 20
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
201

Statistical inference in continuous-time models with short-range and/or long-range dependence

Casas Villalba, Isabel January 2006 (has links)
The aim of this thesis is to estimate the volatility function of continuoustime stochastic models. The estimation of the volatility of the following wellknown international stock market indexes is presented as an application: Dow Jones Industrial Average, Standard and Poor’s 500, NIKKEI 225, CAC 40, DAX 30, FTSE 100 and IBEX 35. This estimation is studied from two different perspectives: a) assuming that the volatility of the stock market indexes displays shortrange dependence (SRD), and b) extending the previous model for processes with longrange dependence (LRD), intermediaterange dependence (IRD) or SRD. Under the efficient market hypothesis (EMH), the compatibility of the Vasicek, the CIR, the Anh and Gao, and the CKLS models with the stock market indexes is being tested. Nonparametric techniques are presented to test the affinity of these parametric volatility functions with the volatility observed from the data. Under the assumption of possible statistical patterns in the volatility process, a new estimation procedure based on the Whittle estimation is proposed. This procedure is theoretically and empirically proven. In addition, its application to the stock market indexes provides interesting results.
202

Stochastic task scheduling in time-critical information delivery systems /

Britton, Matthew Scott. January 2003 (has links) (PDF)
Thesis (Ph.D.)--University of Adelaide, Dept. of Electrical and Electronic Engineering, 2003. / "January 2003" Includes bibliographical references (leaves 120-129).
203

Modeling and simulation in nonlinear stochastic dynamic of coupled systems and impact / Modélisation et simulation en dynamique stochastique non linéaire de systèmes couplés et phénomènes d’impact

De Queiroz Lima, Roberta 13 May 2015 (has links)
Dans cette Thèse, la conception robuste avec un modèle incertain d'un système électromécanique avec vibro-impact est fait. Le système électromécanique est constitué d'un chariot, dont le mouvement est excité par un moteur à courant continu et un marteau embarqué dans ce chariot. Le marteau est relié au chariot par un ressort non linéaire et par un amortisseur linéaire, de façon qu'un mouvement relatif existe entre eux. Une barrière flexible linéaire, placé à l'extérieur du chariot limite les mouvements de marteau. En raison du mouvement relatif entre le marteau et la barrière, impacts peuvent se produire entre ces deux éléments. Le modèle du système développé prend en compte l'influence du courant continu moteur dans le comportement dynamique du système. Certains paramètres du système sont incertains, tels comme les coefficients de rigidité et d'amortissement de la barrière flexible. L'objectif de la Thèse est de réaliser une optimisation de ce système électromécanique par rapport aux paramètres de conception afin de maximiser l'impact puissance sous la contrainte que la puissance électrique consommée par le moteur à courant continu est inférieure à une valeur maximale. Pour choisir les paramètres de conception dans le problème d'optimisation, une analyse de sensibilité a été réalisée afin de définir les paramètres du système les plus sensibles. L'optimisation est formulée dans le cadre de la conception robuste en raison de la présence d'incertitudes dans le modèle. Les lois de probabilités liées aux variables aléatoires du problème sont construites en utilisant le Principe du Maximum l'Entropie et les statistiques de la réponse stochastique du système sont calculées en utilisant la méthode de Monte Carlo. L'ensemble d'équations non linéaires sont présentés, et un solveur temporel adapté est développé. Le problème d'optimisation non linéaire stochastique est résolu pour différents niveaux d'incertitudes, et aussi pour le cas déterministe. Les résultats sont différents, ce qui montre l'importance de la modélisation stochastique / In this Thesis, the robust design with an uncertain model of a vibro-impact electromechanical system is done. The electromechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between them. A linear flexible barrier, placed outside of the cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The developed model of the system takes into account the influence of the DC motor in the dynamic behavior of the system. Some system parameters are uncertain, such as the stiffness and the damping coefficients of the flexible barrier. The objective of the Thesis is to perform an optimization of this electromechanical system with respect to design parameters in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. To chose the design parameters in the optimization problem, an sensitivity analysis was performed in order to define the most sensitive system parameters. The optimization is formulated in the framework of robust design due to the presence of uncertainties in the model. The probability distributions of random variables are constructed using the Maximum Entropy Principle and statistics of the stochastic response of the system are computed using the Monte Carlo method. The set of nonlinear equations are presented, and an adapted time domain solver is developed. The stochastic nonlinear constrained design optimization problem is solved for different levels of uncertainties, and also for the deterministic case. The results are different and this show the importance of the stochastic modeling
204

Os fatores determinantes para a eficiência econômica dos produtores de frango de corte: uma análise estocástica. / Os fatores determinantes para a eficiência econômica dos produtores de frango de corte: uma análise estocástica.

Julcemar Bruno Zilli 16 January 2004 (has links)
A produção de frango de corte tem impressionado pelo dinamismo e pela competência conquistada nas últimas décadas, destacando-se o Brasil como o segundo maior produtor dessa proteína animal. O ganho de produtividade, associado à coordenação da cadeia avícola, colocou o País como um dos mais eficientes produtores. Entretanto, a significativa especialização da atividade tende a excluir do processo produtivo os pequenos avicultores e os produtores menos eficientes. Assim, o estudo buscou medir a eficiência econômica dos produtores de frango de corte das regiões Sul e Centro-Oeste do Brasil, identificando quais fatores influenciam essa medida de desempenho. Para isso, usou-se uma função fronteira de lucro estocástica em um estágio (modelo 2) em que os coeficientes da fronteira e os efeitos da ineficiência são obtidos simultaneamente, assumindo que os termos de erro não são identicamente distribuídos. Concluiu-se que para a região Sul, o preço da mão-de-obra contratada interfere significativamente na lucratividade das unidades produtivas, o que seria um dos fatores associados ao maior uso do trabalho familiar no desenvolvimento das atividades. Além disso, os resultados sugerem a presença de uma melhor utilização das áreas ocupadas com a produção avícola. Os efeitos da ineficiência são sentidos principalmente no baixo nível de educação dos que tomam as decisões e nos índices elevados de conversão alimentar. Já no Centro-Oeste, os coeficientes indicaram que o maior uso de mão-de-obra familiar poderia elevar a lucratividade dos produtores. Pelo fato de ser uma região relativamente nova e possuir condições favoráveis ao investimento em capital e tecnologia, estaria indicando um maior lucro na atividade. Não se identificou ganho de escala por meio do modelo estocástico. Embora não se observa uma tendência contínua associada à escala de eficiência, no Centro-Oeste parece existirem ganhos de eficiência relevante nos estratos de médio e alto escala de produção para os padrões regionais. / The dynamism and ability acquired through the last decade by the broiler production is very impressive. The productivity rate gain associated to the good management of poultry chain in Brazil led the country to be the second biggest producer of this animal’s protein. However, the significant specialization of this activity tend to exclude the smaller producers and those who are lesser efficient in the productive process. In view of that, this study intends to precise the economic efficiency of the broiler producers in the Southerner and Center-Southerner regions of Brazil. For that, the main factors that influence the economic efficiency were identified. To reach those results, it was considered the stochastic profit function in a stage (model 2) where the coefficients of the frontier and the inefficiency effects are obtained simultaneously, since the terms of error are not identical distributing. It was possible to conclude that in the Southerner region of Brazil, the contracted labor force influence significantly the profitability of the productive farms. That’s one of the factors that explain the great use of the familiar labor force in that region. Moreover, the results pointed a better utilization of the broiler producing areas in Brazil. The effects of the inefficiency are present mainly in the producers and players with low educational level, and also in the high food conversion ratio. In the Center-Westerner of Brazil, the coefficients pointed that the better use of the familiar manpower could raise the probability of the producers. For been a new region that present positive conditions for the investments in capital and technology, it also obtained a larger profit with the activity. It was not identified gains by the stochastic model. None successively trend associated to the efficiency scale were pointed in the Center-Westerner of Brazil. Even so, the region shows efficiency gains in the middle and high scales of production in regional terms.
205

Martingales no fibrado de bases e seções harmonicas via calculo estocastico / Martingales in frame bundles and harmonic sections through stochastic calculus

Stelmastchuk, Simão Nicolau, 1977- 20 September 2007 (has links)
Orientador: Pedro Jose Catuogno / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Matematica, Estatistica e Computação Cientifica / Made available in DSpace on 2018-08-09T00:50:27Z (GMT). No. of bitstreams: 1 Stelmastchuk_SimaoNicolau_D.pdf: 537546 bytes, checksum: f06c81c8cd3b758c84d267af8373abdd (MD5) Previous issue date: 2007 / Resumo: Neste trabalho estudamos os martingales no fibrado de bases e suas relações com os martingales no fibrado tangente. Caracterizamos as aplicações harmônicas a valores no fibrado de bases e as relacionamos com as aplicações harmônicas a valores no fibrado tangente. Numa segunda parte estudamos a harmonicidade das seções de um fibrado via geometria estocástica. Seja P(M;G) um fibrado principal e E(M;N; G; P) um fibrado associado a P(M;G). Entre outros resultados obtemos que: uma seção s : M - E é harmônica se, e somente se, o seu levantamento eqüivariante Fs : P - N é horizontalmente harmônico; e se a ação à esquerda de G × N em N não fixa pontos então não existe seção s : M - E harmônica ou toda seção harmônica é nula / Abstract: Neste trabalho estudamos os martingales no fibrado de bases e suas relações com os martingales no fibrado tangente. Caracterizamos as aplicações harmônicas a valores no fibrado de bases e as relacionamos com as aplicações harmônicas a valores no fibrado tangente. Numa segunda parte estudamos a harmonicidade das seções de um fibrado via geometria estocástica. Seja P(M;G) um fibrado principal e E(M;N; G; P) um fibrado associado a P(M;G). Entre outros resultados obtemos que: uma seção s : M - E é harmônica se, e somente se, o seu levantamento eqüivariante Fs : P - N é horizontalmente harmônico; e se a ação à esquerda de G × N em N não fixa pontos então não existe seção s : M - E harmônica ou toda seção harmônica é nula / Doutorado / Geometria Estocastica / Doutor em Matemática
206

Modeling and simulation in nonlinear stochastic dynamic of coupled systems and impact / Modélisation et simulation en dynamique stochastique non linéaire de systèmes couplés et phénomènes d’impact

De Queiroz Lima, Roberta 13 May 2015 (has links)
Dans cette Thèse, la conception robuste avec un modèle incertain d'un système électromécanique avec vibro-impact est fait. Le système électromécanique est constitué d'un chariot, dont le mouvement est excité par un moteur à courant continu et un marteau embarqué dans ce chariot. Le marteau est relié au chariot par un ressort non linéaire et par un amortisseur linéaire, de façon qu'un mouvement relatif existe entre eux. Une barrière flexible linéaire, placé à l'extérieur du chariot limite les mouvements de marteau. En raison du mouvement relatif entre le marteau et la barrière, impacts peuvent se produire entre ces deux éléments. Le modèle du système développé prend en compte l'influence du courant continu moteur dans le comportement dynamique du système. Certains paramètres du système sont incertains, tels comme les coefficients de rigidité et d'amortissement de la barrière flexible. L'objectif de la Thèse est de réaliser une optimisation de ce système électromécanique par rapport aux paramètres de conception afin de maximiser l'impact puissance sous la contrainte que la puissance électrique consommée par le moteur à courant continu est inférieure à une valeur maximale. Pour choisir les paramètres de conception dans le problème d'optimisation, une analyse de sensibilité a été réalisée afin de définir les paramètres du système les plus sensibles. L'optimisation est formulée dans le cadre de la conception robuste en raison de la présence d'incertitudes dans le modèle. Les lois de probabilités liées aux variables aléatoires du problème sont construites en utilisant le Principe du Maximum l'Entropie et les statistiques de la réponse stochastique du système sont calculées en utilisant la méthode de Monte Carlo. L'ensemble d'équations non linéaires sont présentés, et un solveur temporel adapté est développé. Le problème d'optimisation non linéaire stochastique est résolu pour différents niveaux d'incertitudes, et aussi pour le cas déterministe. Les résultats sont différents, ce qui montre l'importance de la modélisation stochastique / In this Thesis, the robust design with an uncertain model of a vibro-impact electromechanical system is done. The electromechanical system is composed of a cart, whose motion is excited by a DC motor (motor with continuous current), and an embarked hammer into this cart. The hammer is connected to the cart by a nonlinear spring component and by a linear damper, so that a relative motion exists between them. A linear flexible barrier, placed outside of the cart, constrains the hammer movements. Due to the relative movement between the hammer and the barrier, impacts can occur between these two elements. The developed model of the system takes into account the influence of the DC motor in the dynamic behavior of the system. Some system parameters are uncertain, such as the stiffness and the damping coefficients of the flexible barrier. The objective of the Thesis is to perform an optimization of this electromechanical system with respect to design parameters in order to maximize the impact power under the constraint that the electric power consumed by the DC motor is lower than a maximum value. To chose the design parameters in the optimization problem, an sensitivity analysis was performed in order to define the most sensitive system parameters. The optimization is formulated in the framework of robust design due to the presence of uncertainties in the model. The probability distributions of random variables are constructed using the Maximum Entropy Principle and statistics of the stochastic response of the system are computed using the Monte Carlo method. The set of nonlinear equations are presented, and an adapted time domain solver is developed. The stochastic nonlinear constrained design optimization problem is solved for different levels of uncertainties, and also for the deterministic case. The results are different and this show the importance of the stochastic modeling
207

Ordering, Stochasticity, And Rheology In Sheared And Confined Complex Fluids

Das, Moumita 08 1900 (has links) (PDF)
No description available.
208

DEVELOPMENT OF DROPWISE ADDITIVE MANUFACTURING WITH NON-BROWNIAN SUSPENSIONS: APPLICATIONS OF COMPUTER VISION AND BAYESIAN MODELING TO PROCESS DESIGN, MONITORING AND CONTROL

Andrew J. Radcliffe (9080312) 24 July 2020 (has links)
<div>In the past two decades, the pharmaceutical industry has been engaged in modernization of its drug development and manufacturing strategies, spurred onward by changing market pressures, regulatory encouragement, and technological advancement. Concomitant with these changes has been a shift toward new modalities of manufacturing in support of patient-centric medicine and on-demand production. To achieve these objectives requires manufacturing platforms which are both flexible and scalable, hence the interest in development of small-scale, continuous processes for synthesis, purification and drug product production. Traditionally, the downstream steps begin with a crystalline drug powder – the effluent of the final purification steps – and convert this to tablets or capsules through a series of batch unit operations reliant on powder processing. As an alternative, additive manufacturing technologies provide the means to circumvent difficulties associated with dry powder rheology, while being inherently capable of flexible production.</div><div>Through the combination of physical knowledge, experimental work, and data-driven methods, a framework was developed for ink formulation and process operation in drop-on-demand manufacturing with non-Brownian suspensions. Motivated by the challenges at hand, application of novel computational image analysis techniques yielded insight into the effects of non-Brownian particles and fluid properties on rheology. Furthermore, the extraction of modal and statistical information provided insight into the stochastic events which appear to play a notable role in drop formation from such suspensions. These computer vision algorithms can readily be applied by other researchers interested in the physics of drop coalescence and breakup in order to further modeling efforts.</div><div>Returning to the realm of process development to deal with challenges of monitoring and quality control initiated by suspension-based manufacturing, these machine vision algorithms were combined with Bayesian modeling to enact a probabilistic control strategy at the level of each dosage unit by utilizing the real-time image data acquired by an online process image sensor. Drawing upon a large historical database which spanned a wide range of conditions, a hierarchical modeling approach was used to incorporate the various sources of uncertainty inherent to the manufacturing process and monitoring technology, therefore providing more reliable predictions for future data at in-sample and out-of-sample conditions.</div><div>This thesis thus contributes advances in three closely linked areas: additive manufacturing of solid oral drug products, computer vision methods for event recognition in drop formation, and Bayesian hierarchical modeling to predict the probability that each dosage unit produced is within specifications.</div><div><br></div>
209

Efficient Spectral-Chaos Methods for Uncertainty Quantification in Long-Time Response of Stochastic Dynamical Systems

Hugo Esquivel (10702248) 06 May 2021 (has links)
<div>Uncertainty quantification techniques based on the spectral approach have been studied extensively in the literature to characterize and quantify, at low computational cost, the impact that uncertainties may have on large-scale engineering problems. One such technique is the <i>generalized polynomial chaos</i> (gPC) which utilizes a time-independent orthogonal basis to expand a stochastic process in the space of random functions. The method uses a specific Askey-chaos system that is concordant with the measure defined in the probability space in order to ensure exponential convergence to the solution. For nearly two decades, this technique has been used widely by several researchers in the area of uncertainty quantification to solve stochastic problems using the spectral approach. However, a major drawback of the gPC method is that it cannot be used in the resolution of problems that feature strong nonlinear dependencies over the probability space as time progresses. Such downside arises due to the time-independent nature of the random basis, which has the undesirable property to lose unavoidably its optimality as soon as the probability distribution of the system's state starts to evolve dynamically in time.</div><div><br></div><div>Another technique is the <i>time-dependent generalized polynomial chaos</i> (TD-gPC) which utilizes a time-dependent orthogonal basis to better represent the stochastic part of the solution space (aka random function space or RFS) in time. The development of this technique was motivated by the fact that the probability distribution of the solution changes with time, which in turn requires that the random basis is frequently updated during the simulation to ensure that the mean-square error is kept orthogonal to the discretized RFS. Though this technique works well for problems that feature strong nonlinear dependencies over the probability space, the TD-gPC method possesses a serious issue: it suffers from the curse of dimensionality at the RFS level. This is because in all gPC-based methods the RFS is constructed using a tensor product of vector spaces with each of these representing a single RFS over one of the dimensions of the probability space. As a result, the higher the dimensionality of the probability space, the more vector spaces needed in the construction of a suitable RFS. To reduce the dimensionality of the RFS (and thus, its associated computational cost), gPC-based methods require the use of versatile sparse tensor products within their numerical schemes to alleviate to some extent the curse of dimensionality at the RFS level. Therefore, this curse of dimensionality in the TD-gPC method alludes to the need of developing a more compelling spectral method that can quantify uncertainties in long-time response of dynamical systems at much lower computational cost.</div><div><br></div><div>In this work, a novel numerical method based on the spectral approach is proposed to resolve the curse-of-dimensionality issue mentioned above. The method has been called the <i>flow-driven spectral chaos</i> (FSC) because it uses a novel concept called <i>enriched stochastic flow maps</i> to track the evolution of a finite-dimensional RFS efficiently in time. The enriched stochastic flow map does not only push the system's state forward in time (as would a traditional stochastic flow map) but also its first few time derivatives. The push is performed this way to allow the random basis to be constructed using the system's enriched state as a germ during the simulation and so as to guarantee exponential convergence to the solution. It is worth noting that this exponential convergence is achieved in the FSC method by using only a few number of random basis vectors, even when the dimensionality of the probability space is considerably high. This is for two reasons: (1) the cardinality of the random basis does not depend upon the dimensionality of the probability space, and (2) the cardinality is bounded from above by <i>M+n+1</i>, where <i>M</i> is the order of the stochastic flow map and <i>n</i> is the order of the governing stochastic ODE. The boundedness of the random basis from above is what makes the FSC method be curse-of-dimensionality free at the RFS level. For instance, for a dynamical system that is governed by a second-order stochastic ODE (<i>n=2</i>) and driven by a stochastic flow map of fourth-order (<i>M=4</i>), the maximum number of random basis vectors to consider within the FSC scheme is just 7, independent whether the dimensionality of the probability space is as low as 1 or as high as 10,000.</div><div><br></div><div>With the aim of reducing the complexity of the presentation, this dissertation includes three levels of abstraction for the FSC method, namely: a <i>specialized version</i> of the FSC method for dealing with structural dynamical systems subjected to uncertainties (Chapter 2), a <i>generalized version</i> of the FSC method for dealing with dynamical systems governed by (nonlinear) stochastic ODEs of arbitrary order (Chapter 3), and a <i>multi-element version</i> of the FSC method for dealing with dynamical systems that exhibit discontinuities over the probability space (Chapter 4). This dissertation also includes an implementation of the FSC method to address the dynamics of large-scale stochastic structural systems more effectively (Chapter 5). The implementation is done via a modal decomposition of the spatial function space as a means to reduce the number of degrees of freedom in the system substantially, and thus, save computational runtime.</div>
210

Applied stochastic Eigen-analysis

Nadakuditi, Rajesh Rao January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2006. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Also issued in pages. Barker Engineering Library copy: issued in pages. / Includes bibliographical references (leaves 193-[201]). / The first part of the dissertation investigates the application of the theory of large random matrices to high-dimensional inference problems when the samples are drawn from a multivariate normal distribution. A longstanding problem in sensor array processing is addressed by designing an estimator for the number of signals in white noise that dramatically outperforms that proposed by Wax and Kailath. This methodology is extended to develop new parametric techniques for testing and estimation. Unlike techniques found in the literature, these exhibit robustness to high-dimensionality, sample size constraints and eigenvector misspecification. By interpreting the eigenvalues of the sample covariance matrix as an interacting particle system, the existence of a phase transition phenomenon in the largest ("signal") eigenvalue is derived using heuristic arguments. This exposes a fundamental limit on the identifiability of low-level signals due to sample size constraints when using the sample eigenvalues alone. The analysis is extended to address a problem in sensor array processing, posed by Baggeroer and Cox, on the distribution of the outputs of the Capon-MVDR beamformer when the sample covariance matrix is diagonally loaded. / (cont.) The second part of the dissertation investigates the limiting distribution of the eigenvalues and eigenvectors of a broader class of random matrices. A powerful method is proposed that expands the reach of the theory beyond the special cases of matrices with Gaussian entries; this simultaneously establishes a framework for computational (non-commutative) "free probability" theory. The class of "algebraic" random matrices is defined and the generators of this class are specified. Algebraicity of a random matrix sequence is shown to act as a certificate of the computability of the limiting eigenvalue distribution and, for a subclass, the limiting conditional "eigenvector distribution." The limiting moments of algebraic random matrix sequences, when they exist, are shown to satisfy a finite depth linear recursion so that they may often be efficiently enumerated in closed form. The method is applied to predict the deterioration in the quality of the sample eigenvectors of large algebraic empirical covariance matrices due to sample size constraints. / by Rajesh Rao Nadakuditi. / Ph.D.

Page generated in 0.0829 seconds