• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 148
  • 19
  • 17
  • 7
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • Tagged with
  • 250
  • 250
  • 52
  • 46
  • 39
  • 30
  • 30
  • 28
  • 27
  • 24
  • 21
  • 20
  • 20
  • 18
  • 18
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
211

Applied stochastic Eigen-analysis

Nadakuditi, Rajesh Rao January 2006 (has links)
Thesis (Ph. D.)--Joint Program in Applied Ocean Science and Engineering (Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science; and the Woods Hole Oceanographic Institution), 2006. / This electronic version was submitted by the student author. The certified thesis is available in the Institute Archives and Special Collections. / Also issued in pages. Barker Engineering Library copy: issued in pages. / Includes bibliographical references (leaves 193-[201]). / The first part of the dissertation investigates the application of the theory of large random matrices to high-dimensional inference problems when the samples are drawn from a multivariate normal distribution. A longstanding problem in sensor array processing is addressed by designing an estimator for the number of signals in white noise that dramatically outperforms that proposed by Wax and Kailath. This methodology is extended to develop new parametric techniques for testing and estimation. Unlike techniques found in the literature, these exhibit robustness to high-dimensionality, sample size constraints and eigenvector misspecification. By interpreting the eigenvalues of the sample covariance matrix as an interacting particle system, the existence of a phase transition phenomenon in the largest ("signal") eigenvalue is derived using heuristic arguments. This exposes a fundamental limit on the identifiability of low-level signals due to sample size constraints when using the sample eigenvalues alone. The analysis is extended to address a problem in sensor array processing, posed by Baggeroer and Cox, on the distribution of the outputs of the Capon-MVDR beamformer when the sample covariance matrix is diagonally loaded. / (cont.) The second part of the dissertation investigates the limiting distribution of the eigenvalues and eigenvectors of a broader class of random matrices. A powerful method is proposed that expands the reach of the theory beyond the special cases of matrices with Gaussian entries; this simultaneously establishes a framework for computational (non-commutative) "free probability" theory. The class of "algebraic" random matrices is defined and the generators of this class are specified. Algebraicity of a random matrix sequence is shown to act as a certificate of the computability of the limiting eigenvalue distribution and, for a subclass, the limiting conditional "eigenvector distribution." The limiting moments of algebraic random matrix sequences, when they exist, are shown to satisfy a finite depth linear recursion so that they may often be efficiently enumerated in closed form. The method is applied to predict the deterioration in the quality of the sample eigenvectors of large algebraic empirical covariance matrices due to sample size constraints. / by Rajesh Rao Nadakuditi. / Ph.D.
212

Dissertation_LeiLi

Lei Li (16631262) 26 July 2023 (has links)
<p>In the real world, uncertainty is a common challenging problem faced by individuals, organizations, and firms. Decision quality is highly impacted by uncertainty because decision makers lack complete information and have to leverage the loss and gain in many possible outcomes or scenarios. This study explores dynamic decision making (with known distributions) and decision learning (with unknown distributions but some samples) in not-for-profit operations and supply chain management. We first study dynamic staffing for paid workers and volunteers with uncertain supply in a nonprofit operation where the optimal policy is too complex to compute and implement. Then, we consider dynamic inventory control and pricing under both supply and demand uncertainties where unmet demand is lost leading to a challenging non-concave dynamic problem. Furthermore, we explore decision learning from limited data of focal system and available data of related but different systems by transfer learning, cross learning, and co-learning utilizing the similarities among related systems.</p>
213

SDEs and MFGs towards Machine Learning applications

Garbelli, Matteo 04 December 2023 (has links)
We present results that span three interconnected domains. Initially, our analysis is centred on Backward Stochastic Differential Equations (BSDEs) featuring time-delayed generators. Subsequently, we direct our interest towards Mean Field Games (MFGs) incorporating absorption aspects, with a focus on the corresponding Master Equation within a confined domain under the imposition of Dirichlet boundary conditions. The investigation culminates in exploring pertinent Machine Learning methodologies applied to financial and economic decision-making processes.
214

Application of Distance Covariance to Time Series Modeling and Assessing Goodness-of-Fit

Fernandes, Leon January 2024 (has links)
The overarching goal of this thesis is to use distance covariance based methods to extend asymptotic results from the i.i.d. case to general time series settings. Accounting for dependence may make already difficult statistical inference all the more challenging. The distance covariance is an increasingly popular measure of dependence between random vectors that goes beyond linear dependence as described by correlation. It is defined by a squared integral norm of the difference between the joint and marginal characteristic functions with respect to a specific weight function. Distance covariance has the advantage of being able to detect dependence even for uncorrelated data. The energy distance is a closely related quantity that measures distance between distributions of random vectors. These statistics can be used to establish asymptotic limit theory for stationary ergodic time series. The asymptotic results are driven by the limit theory for the empirical characteristic functions. In this thesis we apply the distance covariance to three problems in time series modeling: (i) Independent Component Analysis (ICA), (ii) multivariate time series clustering, and (iii) goodness-of-fit using residuals from a fitted model. The underlying statistical procedures for each topic uses the distance covariance function as a measure of dependence. The distance covariance arises in various ways in each of these topics; one as a measure of independence among the components of a vector, second as a measure of similarity of joint distributions and, third for assessing serial dependence among the fitted residuals. In each of these cases, limit theory is established for the corresponding empirical distance covariance statistics when the data comes from a stationary ergodic time series. For Topic (i) we consider an ICA framework, which is a popular tool used for blind source separation and has found application in fields such as financial time series, signal processing, feature extraction, and brain imaging. The Structural Vector Autogregression (SVAR) model is often the basic model used for modeling macro time series. The residuals in such a model are given by e_t = A S_t, the classical ICA model. In certain applications, one of the components of S_t has infinite variance. This differs from the standard ICA model. Furthermore the e_t's are not observed directly but are only estimated from the SVAR modeling. Many of the ICA procedures require the existence of a finite second or even fourth moment. We derive consistency when using the distance covariance for measuring independence of residuals under the infinite variance case.Extensions to the ICA model with noise, which has a direct application to SVAR models when testing independence of residuals based on their estimated counterparts is also considered. In Topic (ii) we propose a novel methodology for clustering multivariate time series data using energy distance. Specifically, a dissimilarity matrix is formed using the energy distance statistic to measure separation between the finite dimensional distributions for the component time series. Once the pairwise dissimilarity matrix is calculated, a hierarchical clustering method is then applied to obtain the dendrogram. This procedure is completely nonparametric as the dissimilarities between stationary distributions are directly calculated without making any model assumptions. In order to justify this procedure, asymptotic properties of the energy distance estimates are derived for general stationary and ergodic time series. Topic (iii) considers the fundamental and often final step in time series modeling, assessing the quality of fit of a proposed model to the data. Since the underlying distribution of the innovations that generate a model is often not prescribed, goodness-of-fit tests typically take the form of testing the fitted residuals for serial independence. However, these fitted residuals are inherently dependent since they are based on the same parameter estimates and thus standard tests of serial independence, such as those based on the autocorrelation function (ACF) or distance correlation function (ADCF) of the fitted residuals need to be adjusted. We apply sample splitting in the time series setting to perform tests of serial dependence of fitted residuals using the sample ACF and ADCF. Here the first f_n of the n data points in the time series are used to estimate the parameters of the model. Tests for serial independence are then based on all the n residuals. With f_n = n/2 the ACF and ADCF tests of serial independence tests often have the same limit distributions as though the underlying residuals are indeed i.i.d. That is, if the first half of the data is used to estimate the parameters and the estimated residuals are computed for the entire data set based on these parameter estimates, then the ACF and ADCF can have the same limit distributions as though the residuals were i.i.d. This procedure ameliorates the need for adjustment in the construction of confidence bounds for both the ACF and ADCF, based on the fitted residuals, in goodness-of-fit testing. We also show that if f_n < n/2 then the asymptotic distribution of the tests stochastically dominate the corresponding asymptotic distributions for the true i.i.d. noise; the stochastic order gets reversed under f_n > n/2.
215

Advanced techniques for solving groundwater and surface water problems in the context of inverse methods and climate change.

Todaro, Valeria 17 May 2021 (has links)
[ES] El tema de la investigación se centra en técnicas avanzadas para manejar problemas de aguas subterráneas y superficiales relacionados con métodos inversos y cambio climático. Los filtros de Kalman, con especial atención en Ensemble Smoother with Multiple Data Assimilation (ES-MDA), se analizan y mejoran para la solución de diferentes tipos de problemas inversos. En particular, la principal novedad es la aplicación de estos métodos para la identificación de series temporales. La primera parte de la tesis, luego de la descripción del método, presenta el desarrollo de un software escrito en Python para la aplicación de la metodología propuesta. El software cuenta con un flujo de trabajo flexible que puede adaptarse fácilmente para implementar diferentes variantes del filtro de Kalman y ser aplicado para la solución de varios tipos de problemas. Un paquete de herramientas proporciona varias funcionalidades que permiten de configurar el algoritmo de acuerdo con el problema específico analizado. La primera aplicación se refiere a la solución del problema inverso de flujo en ríos. Este es un procedimiento inverso destinado a estimar el flujo de entrada a un sistema hidráulico en función de información recopilada abajo. El procedimiento se prueba mediante dos ejemplos sintéticos y un estudio de caso real; se investiga el impacto de los tamaños de los conjuntos y la aplicación de técnicas de localización e inflación de covarianzas. Los resultados muestran la capacidad del método propuesto de resolver este tipo de problemas; el rendimiento de ES-MDA mejora, especialmente para tamaños de conjuntos pequeños, cuando se aplican técnicas de inflación y localización de covarianza. La segunda aplicación en el campo de las aguas superficiales se refiere a la calibración de un modelo hidrológico-hidráulico que simula los mecanismos de formación de eventos de inundación. ES-MDA se acopla al modelo numérico de forma paralela para la estimación de los coeficientes de rugosidad e infiltración en base al conocimiento de un hidrograma de flujo en una sección del dominio. Los resultados de dos casos sintéticos y un estudio de caso real demuestran la capacidad del método propuesto para calibrar el modelo hidrológico-hidráulico con un tiempo computacional razonable. En el campo de aguas subterráneas, ES-MDA se aplica por primera vez para identificar simultáneamente la ubicación de la fuente y el historial de liberación de un contaminante en un acuífero a partir de datos de concentración detectados en diferentes puntos del dominio. Se realizaron numerosas pruebas para evaluar la influencia de la distribución espacial y temporal de los datos de concentración, el número del conjunto y el uso de técnicas de localización e inflación; además, se presenta un nuevo procedimiento para realizar una localización iterativa espacio-temporal. La metodología se valida mediante un ejemplo analítico y un estudio de caso que utiliza datos obtenidos en el laboratorio mediante una caja de arena. ES-MDA conduce a una buena estimación de los parámetros investigados; una red de monitoreo bien diseñada y la aplicación de correcciones de covarianza mejoran el rendimiento del método y ayudan a mitigar el posible problema de no unicidad de la solución. Otro propósito de la tesis es investigar el efecto del cambio climático en las aguas subterráneas. Se presenta un modelo simplificado que describe la respuesta de los niveles de agua subterránea a las variables meteorológicas hasta 2100. Es un enfoque estadístico sencillo basado en las correlaciones entre los niveles de agua subterránea y dos índices de sequía que dependen de los datos de precipitación y temperatura. El método se utiliza para evaluar el impacto del cambio climático en los recursos de agua subterránea en un área de estudio ubicada en el norte de Italia utilizando datos históricos y de modelos climáticos regionales. Los resultados m / [CA] El tema de la investigació se centra en tècniques avançades per a manejar problemes d'aigües subterrànies i superficials relacionats amb mètodes inversos i canvi climàtic. Els filtres de Kalman, amb especial atenció en Ensemble Smoother with Multiple Data Assimilation (ES-MDA), s'analitzen i milloren per a la solució de diferents tipus de problemes inversos. En particular, la principal novetat és l'aplicació d'aquests mètodes per a la identificació de sèries temporals. La primera part de la tesi presenta el desenvolupament d'un programari escrit en Python per l'aplicació de la metodologia presentada. El programari compta amb un flux de treball flexible que pot adaptar-se fàcilment per a implementar diferents variants del filtre de Kalman i ser aplicat per a la solució de diversos tipus de problemes. Un paquet complementar d'eines proporciona diverses funcionalitats que permeten de configurar l'algorisme d'acord amb el problema específic analitzat. La primera aplicació es un nou enfocament per la solució del problema invers de flux en rius. Aquest és un procediment invers destinat a estimar el flux d'entrada a un sistema hidràulic en funció d'informació recopilada aigües avall. El procediment es prova mitjançant dos exemples sintètics i un estudi de cas real; s'investiga l'impacte de les grandàries dels conjunts i l'aplicació de tècniques de localització i inflació de covariàncies. Els resultats mostren la capacitat del mètode proposat de resoldre aquest tipus de problemes; el rendiment de ES-MDA millora, especialment per a grandàries de conjunts xicotets, quan s'apliquen tècniques d'inflació i localització de covariància. La segona aplicació en el camp de les aigües superficials es refereix al calibratge d'un model hidrològic-hidràulic que simula els mecanismes de formació d'esdeveniments d'inundació a partir de sollicitació hidrometeorológicas i la seua posterior propagació. ES-MDA s'acobla al model numèric de manera paral·lela per l'estimació dels coeficients de rugositat i infiltració sobre la base del coneixement d'un hidrograma de flux en una secció del domini. Els resultats de dos casos sintètics i un estudi de cas real demostren la capacitat del mètode proposat per calibrar el model hidrològic-hidràulic amb un temps computacional raonable. En el camp d'aigües subterrànies, ES-MDA s'aplica per primera vegada per identificar simultàniament la ubicació de la font i l'historial d'alliberament d'un contaminant en un aqüífer a partir d'un conjunt de dades de concentració detectats en diferents punts del domini. Es van realitzar nombroses proves per avaluar la influència de la distribució espacial i temporal de les dades de concentració, el número del conjunt i l'ús de tècniques de localització i inflació; a més, es presenta un nou procediment per realitzar una localització iterativa espaciotemporal. La metodologia es valguda mitjançant un exemple analític i un estudi de cas per al qual s'utilitzen dades obtingudes en el laboratori mitjançant una caixa d'arena. ES-MDA condueix a una bona reconstrucció dels paràmetres investigats; una xarxa de monitoratge ben dissenyada i l'aplicació de correccions de covariància milloren el rendiment del mètode i ajuden a mitigar el possible problema de no unicitat de la solució. Un altre propòsit de la tesi és investigar l'efecte del canvi climàtic en les aigües subterrànies. Es presenta un model simplificat que descriu la resposta dels nivells d'aigua subterrània a les variables meteorològiques fins a 2100. És un enfocament estadístic senzill basat en les correlacions entre els nivells d'aigua subterrània i dos índexs de sequera que depenen de les dades de precipitació i temperatura. El mètode s'utilitza per a avaluar l'impacte del canvi climàtic en els recursos d'aigua subterrània en una àrea d'estudi situada en el nord d'Itàlia utilitzant dades històriques i de models climàtics regionals. / [EN] This work focuses on the investigation of advanced techniques to handle groundwater and surface water problems in the framework of inverse methods and climate change. The Ensemble Kalman filter methods, with particular attention to the Ensemble Smoother with Multiple Data Assimilation (ES-MDA), are extensively analyzed and improved for the solution of different types of inverse problems. In particular, the main novelty is the application of these methods for the identification of time series function. In the first part of the thesis, after the description of the ES-MDA method, the development of a Python software package for the application of the proposed methodology is presented. It is designed with a flexible workflow that can be easily adapted to implement different variants of the Ensemble Kalman filter and to be applied for the solution of various types of inverse problems. A complemented tool package provides several functionalities that allow to setup the algorithm configuration suiting the specific analyzed problem. The first novelty application of the ES-MDA method aimed at solving the reverse flow routing problem. The objective of the inverse procedure is the estimation of an unknown inflow hydrograph to a hydraulic system on the basis of information collected downstream and a given forward routing model that relates inflow hydrograph and downstream observations. The procedure is tested by means of two synthetic examples and a real case study; the impact of ensemble sizes and the application of covariance localization and inflation techniques are also investigated. The tests show the capability of the proposed method to solve this type of problem; the performance of ES-MDA improves, especially for small ensemble sizes, when covariance localization and inflation techniques are applied. The second application, in the context of surface water, concerns the calibration of a hydrological-hydraulic model that simulates rainfall-runoff processes. The ES-MDA is coupled with the numerical model by parallel way for the estimation of roughness and infiltration coefficients based on the knowledge of a discharge hydrograph at the basin outlet. The results of two synthetic tests and a real case study demonstrate the capability of the proposed method to calibrate the hydrological-hydraulic model with a reasonable computational time. In the groundwater field, ES-MDA is applied for the first time to simultaneously identify the source location and the release history of a contaminant spill in an aquifer from a sparse set of concentration data collected in few points of the aquifer. The impacts of the concentration sampling scheme, the ensemble size and the use of covariance localization and covariance inflation techniques are tested; furthermore, a new procedure to perform a spatiotemporal iterative localization is presented. The methodology is tested by means of an analytical example and a study case that uses real data collected in a laboratory sandbox. ES-MDA leads to a good estimation of the investigated parameters; a well-designed monitoring network and the use of covariance corrections improve the performance of the method and help to minimize ill-posedness and equifinality. A part of the thesis investigates the impact of climate change on the groundwater availability. A surrogate model that describes the response of groundwater levels to meteorological variables up to 2100 is presented. It is a simple statistical approach based on the correlations between groundwater levels and two drought indices that depend on precipitation and temperature data. The presented method is used to evaluate the impact of climate change on groundwater resources in a study area located in Northern Italy using historical and regional climate model data. The results denote a progressive increase of groundwater droughts in the investigated area. / Todaro, V. (2021). Advanced techniques for solving groundwater and surface water problems in the context of inverse methods and climate change [Tesis doctoral]. Universitat Politècnica de València. https://doi.org/10.4995/Thesis/10251/166439
216

Aspekte unendlichdimensionaler Martingaltheorie und ihre Anwendung in der Theorie der Finanzmärkte

Schöckel, Thomas 19 October 2004 (has links)
Wir modellieren einen Finanzmarkt mit unendlich vielen Wertpapieren als stochastischen Prozeß X in stetiger Zeit mit Werten in einem separablen Hilbertraum H. In diesem Rahmen zeigen wir die Äquivalenz von Vollständigkeit des Marktes und der Eindeutigkeit des äquivalenten Martingalmaßes unter der Bedingung, daß X stetige Pfade besitzt. Weiter zeigen wir, daß (unter gewissen technischen Bedingungen) für X die Abwesenheit von asymptotischer Arbitrage der ersten/zweiten Art (im Sinne von Kabanov/Kramkov) äquivalent zur Absolutstetigkeit des Referenzmaßes zu einem eindeutigen, lokal äquivalenten Martingalmaß ist. Hat X stetige Pfade, so ist die Abwesenheit von allgemeiner asymptotischer Arbitrage äquivalent zur Existenz eines äquivalenten lokalen Martingalmaßes. Außerdem geben wir ein Kriterium für die Existenz einer optionalen Zerlegung von X an. Dies wenden wir auf das Problem der Risikominimierung bei vorgegebener Investitionsobergrenze (effizientes Hedgen (Föllmer/Leukert)) an, um dieses im unendlichdimensionalen Kontext zu behandeln. Außerdem stellen wir eine unendlichdimensionale Erweiterung des Heath-Jarrow-Morton-Modells vor und nutzen den Potentialansatz nach Rodgers, um zwei weitere Zinsstrukturmodelle zu konstruieren. Als Beitrag zur allgemeinen stochastischen Analysis in Hilberträumen beweisen wir eine pfadweise Version der Itoformel für stochastische Prozesse mit stetigen Pfaden in einem separablen Hilbertraum. Daraus läßt sich eine pfadweise Version des Satzes über die Vertauschbarkeit von stochastischem und Lebesgue-Integral ableiten. Außerdem zeigen wir eine Version der Clark-Formel für eine Brownsche Bewegung mit Werten in einem Hilbertraum. / We model a financial market with infinitely many assets as a stochastic process X with values in a separable Hilbert space H. In this setting we show the equivalence of market completeness and the uniqueness of the equivalent martingale measure, if X has continuous paths. Another result for our model is, that under some technical conditions, the absence of asymptotic arbitrage of the first/second kind (in the sense of Kabanov/Kramkov) is equivalent to the absolute continuity of the reference measure to a unique, locally equivalent, martingale measure. If X has continuous paths, the absence of general asymptotic arbitrage is equivalent to the existence of an equivalent local martingale measure. Furthermore, we give a sufficient condition for the existence of the optional decomposition of X. We apply this result to the problem of risk minimization with given upper limit for investion (efficient hedging (Föllmer/Leukert)). This allows us to solve this optimization problem in our infinite dimensional context. Another result is an infinite dimensional extension of the Heath-Jarrow-Morton term structure model. Two further term structure models are constructed, using the Markov potential approach developed by Rodgers. As a contribution to the theory of stochastic analysis in Hilbert spaces, we proof a pathwise version of the Ito formula for stochastic processes with continuous paths in a separable Hilbert space. This leads to a pathwise version of the interchangability theorem for stochastic and Lebesgue integrals. We also show a version of the Clark formula for Hilbert space valued Brownian motion.
217

Équations différentielles stochastiques : résolubilité forte d'équations singulières dégénérées ; analyse numérique de systèmes progressifs-rétrogrades de McKean-Vlasov / Stochastic differential equations : strong well-posedness of singular and degenerate equations; numerical analysis of decoupled forward backward systems of McKean-Vlasov type

Chaudru de Raynal, Paul Éric 06 December 2013 (has links)
Cette thèse traite de deux sujets: la résolubilité forte d'équations différentielles stochastiques à dérive hölderienne et bruit hypoelliptique et la simulation de processus progressifs-rétrogrades découplés de McKean-Vlasov. Dans le premier cas, on montre qu'un système hypoelliptique, composé d'une composante diffusive et d'une composante totalement dégénérée, est fortement résoluble lorsque l'exposant de la régularité Hölder de la dérive par rapport à la composante dégénérée est strictement supérieur à 2/3. Ce travail étend au cadre dégénéré les travaux antérieurs de Zvonkin (1974), Veretennikov (1980) et Krylov et Röckner (2005). L'apparition d'un seuil critique pour l'exposant peut-être vue comme le prix à payer pour la dégénérescence. La preuve repose sur des résultats de régularité de la solution de l'EDP associée, qui est dégénérée, et est basée sur une méthode parametrix. Dans le second cas, on propose un algorithme basé sur les méthodes de cubature pour la simulation de processus progessifs-rétrogrades découplés de McKean-Vlasov apparaissant dans des problèmes de contrôle dans un environnement de type champ moyen. Cet algorithme se divise en deux parties. Une première étape de construction d'un arbre de particules, à dynamique déterministe, approchant la loi de la composante progressive. Cet arbre peut être paramétré de manière à obtenir n'importe quel ordre d'approximation (en terme de pas de discrétisation de l'intervalle). Une seconde étape, conditionnelle à l'arbre, permettant l'approximation de la composante rétrograde. Deux schémas explicites sont proposés permettant un ordre d'approximation de 1 et 2. / This thesis deals with two subjects: the strong well-posedness of stochastic differential equations with Hölder drift and hypoelliptic noise and the simulation of decoupled forward backward stochastic differential equations of McKean-Vlasov type. In the first work, we study a class of degenerate system with hypoelliptic noise. We prove that strong well-posedness holds for this system when the drift is only H\"{o}lder, with Hölder exponent larger than the critical value 2/3. This work extends to the degenerate setting the earlier results obtained by Zvonkin (1974), Veretennikov (1980) and Krylov and Röckner (2005). The existence of a threshold for the Hölder exponent in the degenerate case may be understood as the price to pay to balance the degeneracy of the noise. Our proof relies on regularization properties of the associated PDE, which is degenerate in the current framework and is based on a parametrix method. In the second work, we propose a new algorithm to approach weakly the solution of a McKean-Vlasov stochastic differential equation. Based on the cubature method, the algorithm is deterministic differing from the usual methods based on interacting particles. It can be parametrized in order to obtain a given order of convergence. Then, we construct implementable algorithms to solve decoupled forward backward stochastic differential equations of McKean-Vlasov type, which appear in some stochastic control problems in a mean field environment. We give two algorithms and show that they have convergence of orders one and two under appropriate regularity conditions.
218

Stochastic task scheduling in time-critical information delivery systems

Britton, Matthew Scott. January 2003 (has links) (PDF)
"January 2003" Includes bibliographical references (leaves 120-129) Presents performance analyses of dynamic, stochastic task scheduling policies for a real- time-communications system where tasks lose value as they are delayed in the system.
219

Stochastic task scheduling in time-critical information delivery systems / Matthew Britton.

Britton, Matthew Scott January 2003 (has links)
"January 2003" / Includes bibliographical references (leaves 120-129) / x, 129 leaves : ill. ; 30 cm. / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Presents performance analyses of dynamic, stochastic task scheduling policies for a real- time-communications system where tasks lose value as they are delayed in the system. / Thesis (Ph.D.)--University of Adelaide, Dept. of Electrical and Electronic Engineering, 2003
220

Modelling short-term interest rates and electricity spot prices

Chan, K. F. Unknown Date (has links)
No description available.

Page generated in 0.0903 seconds