• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 10
  • 9
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 74
  • 18
  • 14
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Investigation on Temperature Effect and Electrical mechanism of 65nm MOSFETs under External Mechanical Stress

Lo, Cheng-wei 24 July 2007 (has links)
Semiconductor technology has already got into nanometer scale. As the dimension keeping scaling down, we can get more transistor in the same area, and furthermore the frequency and performance are also enhanced. But nowadays the development of the lithography technology has come to the neck; we must find another way to improve the performance of transistor. In this study, we fully discuss the electrical characteristics and the low temperature effect as the channel of the N-MOSFET being strained. In order to strain the channel, silicon substrate is bent by applying external mechanical stress, the lattice of channel will be strained after applying uni-axial tensile stress. Therefore, we had improved successfully drain current and carrier mobility of NMOS, and the increasing rates are 9% and 12% respectively. In addition, we can understand the influence of low temperature effect on strain silicon by bending silicon substrate with external mechanical stress. It is great that there is no general normal single crystalline silicon to come instead in the change to temperature of Mobility and operate-current. This is this experiment was worth probing into.
2

Strained Ge channel p-type metal-oxide-semiconductor field-effect transistors grown on Si₁₋xGex/Si virtual substrates

Lee, Minjoo L., Leitz, Christopher W., Cheng, Zhiyuan, Antoniadis, Dimitri A., Fitzgerald, Eugene A. 01 1900 (has links)
We have fabricated strained Ge channel p-type metal-oxide-semiconductor field-effect transistors (p-MOSFETs) on Si₀.₃Ge₀.₇ virtual substrates. The poor interface between silicon dioxide (SiO₂) and the Ge channel was eliminated by capping the strained Ge layer with a relaxed, epitaxial silicon surface layer grown at 400° C. Ge p-MOSFETs fabricated from this structure show a hole mobility enhancement of nearly 8 times that of co-processed bulk Si devices, and the Ge MOSFETs have a peak effective mobility of 1160 cm²/V-s. These MOSFETs demonstrate the possibility of creating a surface channel enhancement mode MOSFET with buried channel-like transport characteristics. / Singapore-MIT Alliance (SMA)
3

Synthesis, characterization, electrochemistry, and ring-opening polymerization of heavier group 13 bridged metallocenophanes

Schachner, Joerg Anton 30 August 2007
The synthesis of two types of metallocenophanes is described: strained, ring-tilted [1]metallocenophanes with Al and Ga in bridging positions and Fe and Ru as transition elements and unstrained [1.1]ferrocenophanes with Al, Ga and In in bridging positions. [1]Metallocenophanes are potential monomers for the synthesis of organometallic polymers via ring-opening polymerization (ROP). After the successful synthesis of various starting monomers using the concept of intramolecular coordinating ligands, four different pathways of ROP were investigated. However, only one of these pathways proved successful in obtaining polymeric material. The starting monomers showed a surprising stability against commonly used initiators. This was attributed to an overly steric protection by the intramolecular coordinating ligands, thereby blocking the initiators, and a reduced ring strain, a consequence of the size of the bridging element.<p>[1.1]Ferrocenophanes belong to a class of dinuclear complexes where the two redox-active iron atoms are in close proximity with restricted flexibility. [1.1]Ferrocenophanes with Al, Ga and In in bridging positions were investigated. The redox properties of previously published [1.1]ferrocenophanes showed a fully reversible, stepwise, one-electron oxidation (FeII/FeII → FeII/FeIII → FeIII/FeIII). After the initial oxidation of the first iron center, a stable, mixed-valent monocationic species is created. The removal of a second electron from the second iron center therefore is more difficult, and occurs at higher potential to create the dicationic species. The difference in potential for the stepwise oxidation is directly related to the delocalization of the charge in the mixed-valent species. This delocalization mainly depends on the electronic properties of the bridging element. Depending on the bridging group 13 element, very different electrochemical properties were observed. For the alumina[1.1]ferrocenophane, no delocalization was detected, and a one-step, two-electron oxidation at the same potential was observed. For the inda[1.1]ferrocenophane, a more complex electrochemistry was observed that we attributed to an isomerization of the compound in solution. Only the investigated galla[1.1]ferrocenophane showed the expected stepwise oxidation-reduction behavior.
4

Synthesis, characterization, electrochemistry, and ring-opening polymerization of heavier group 13 bridged metallocenophanes

Schachner, Joerg Anton 30 August 2007 (has links)
The synthesis of two types of metallocenophanes is described: strained, ring-tilted [1]metallocenophanes with Al and Ga in bridging positions and Fe and Ru as transition elements and unstrained [1.1]ferrocenophanes with Al, Ga and In in bridging positions. [1]Metallocenophanes are potential monomers for the synthesis of organometallic polymers via ring-opening polymerization (ROP). After the successful synthesis of various starting monomers using the concept of intramolecular coordinating ligands, four different pathways of ROP were investigated. However, only one of these pathways proved successful in obtaining polymeric material. The starting monomers showed a surprising stability against commonly used initiators. This was attributed to an overly steric protection by the intramolecular coordinating ligands, thereby blocking the initiators, and a reduced ring strain, a consequence of the size of the bridging element.<p>[1.1]Ferrocenophanes belong to a class of dinuclear complexes where the two redox-active iron atoms are in close proximity with restricted flexibility. [1.1]Ferrocenophanes with Al, Ga and In in bridging positions were investigated. The redox properties of previously published [1.1]ferrocenophanes showed a fully reversible, stepwise, one-electron oxidation (FeII/FeII → FeII/FeIII → FeIII/FeIII). After the initial oxidation of the first iron center, a stable, mixed-valent monocationic species is created. The removal of a second electron from the second iron center therefore is more difficult, and occurs at higher potential to create the dicationic species. The difference in potential for the stepwise oxidation is directly related to the delocalization of the charge in the mixed-valent species. This delocalization mainly depends on the electronic properties of the bridging element. Depending on the bridging group 13 element, very different electrochemical properties were observed. For the alumina[1.1]ferrocenophane, no delocalization was detected, and a one-step, two-electron oxidation at the same potential was observed. For the inda[1.1]ferrocenophane, a more complex electrochemistry was observed that we attributed to an isomerization of the compound in solution. Only the investigated galla[1.1]ferrocenophane showed the expected stepwise oxidation-reduction behavior.
5

Strained silicon/silicon germanium heterojunction n-chanel metal oxide semiconductor field effect transistors

Olsen, Sarah H. January 2002 (has links)
No description available.
6

Investigation on Reliability and Electrical Analysis of MOSFETs under External Mechanical Stress

Kuo, Yuan-jui 04 August 2005 (has links)
Semiconductor technology has already got into nanometer scale. As the dimension keeping scale down, we can get more transistor in the same area, and furthermore the frequency and performance are also enhanced. But nowadays the development of the lithography technology has come to the neck, we must find the other way to improve the performance of transistor. In this study, the strained silicon effect and reliability of CMOS are fully discussed. In order to get strain from the channel, silicon substrate is bent by applying external mechanical stress, the lattice of channel will have strain due to uniaxial tensile stress. By this way, we successfully improve drain current and mobility of NMOS into 12% and 6%, respectively. But there is no variation for PMOS. In addition, by DC stress, we can understand the hot carrier effect to strained silicon. In this work, both NMOS and PMOS present the same result, this is, as the silicon substrate is bent, the sharper of the curve, the worse of the reliability.
7

Examining the Boundaries of Strained Aryl-Aryl Coupling Reactions in Polycyclic Aromatic Hydrocarbons

Steinberg, Brian David January 2009 (has links)
Thesis advisor: Lawrence T. Scott / Chapter 1. The impact and growth of carbon nanotubes within the framework of nanotechnology is presented. Methods to produce single chirality nanotubes from template-mediated sources are evaluated. The concept of a nanotube endcap is introduced as a potential synthetic target toward the selective synthesis and growth of a single chirality carbon nanotube. Chapter 2. A modified synthesis of corannulene is presented, highlighting a selective imine based reaction protocol for the fuctionalization 4,7-dimethylacenaphthenequinone. Also reviewed is a cascade coupling approach toward the synthesis of corannulene, followed by an analysis of the thermochemistry of the two-component disconnection. Chapter 3. The synthesis of 6 different indenoannulated corannulene congeners derived from a single flash vacuum pyrolysis (FVP) is described. X-ray crystal structures for each indenoannulated corannulene are presented along with computational modeling. Spectroscopic comparison between observed and theoretical 1H NMR provides one of the largest complete and comparative data sets for a collection of PAHs. Chapter 4. The application of a palladium based indenoannulation reaction is presented as an alternative synthetic method to FVP. Heteroatom based derivatives of both tetraindenocorannulene and pentaindenocorannulene were both developed as potential solubilizing factors. The thermochemistry for each successive indenoannulation of 1,3,5,7,9-pentaphenylcorannulene leading to pentaindenocorannnulene has been calculated, providing an approximated energy landscape for the total transformation. Chapter 5. Several routes for the synthesis of 1,3,5,7,9-pentakis(2,6-dichlorophenyl)-corannulene are presented. The yield for this reaction has been improved through the use of a palladium based precatalyst. During this time we studied a five-fold palladium catalyzed borylation of corannulene using B2pin2. Finally development of a cascade coupling reaction towards a [5,5] SWNT endcap is highlighted by a 12 bond coupling reaction. Chapter 6. A nickel-promoted homo-coupling between the proximally situated aryl halides of 1,2,5,6-tetrakis(2-chlorophenyl)corannulene is used to complete the synthesis of diphenanthro[9,10-a:9&#8242;,10&#8242;-g]corannulene. X-ray quality crystal were grown of diphenanthro[9,10-a:9&#8242;,10&#8242;-g]corannulene, and the structure was solved. The crystals forms highly ordered arrays in a columnar fashion with each phenanthro segment aligned through a series of &#960; - &#960; stacking interactions. / Thesis (PhD) — Boston College, 2009. / Submitted to: Boston College. Graduate School of Arts and Sciences. / Discipline: Chemistry.
8

MOSFET Channel Engineering using Strained Si, SiGe, and Ge Channels

Fitzgerald, Eugene A., Lee, Minjoo L., Leitz, Christopher W., Antoniadis, Dimitri A. 01 1900 (has links)
Biaxial tensile strained Si grown on SiGe virtual substrates will be incorporated into future generations of CMOS technology due to the lack of performance increase with scaling. Compressively strained Ge-rich alloys with high hole mobilities can also be grown on relaxed SiGe. We review progress in strained Si and dual channel heterostructures, and also introduce high hole mobility digital alloy heterostructures. By optimizing growth conditions and understanding the physics of hole and electron transport in these devices, we have fabricated nearly symmetric mobility p- and n-MOSFETs on a common Si₀.₅Ge₀.₅ virtual substrate. / Singapore-MIT Alliance (SMA)
9

Electrical Analysis of 65nm MOSFETs under Process and Mechanical Stress

Chen, Chun-nan 30 July 2007 (has links)
In recent years, in order to promote the MOSFET¡¦s frequency and performance, the dimension keeping scale down, we can get more transistors in the same area. But nowadays the development of the lithography technology has come to the bottleneck, we must find the other way to improve the performance of transistor. In this study, the strained silicon effect and reliability of CMOS are fully discussed. In order to get strain from the channel, by process, deposit Si3N4 at NMOS and adopt the silicon-germanium epitaxy on source/drain by PMOS, can effective improve NMOS and PMOS electronic characteristic. Besides, silicon substrate is bent by applying external mechanical stress, the lattice of channel will have strain due to uniaxial tensile stress by NMOS and strain due to uniaxial compressive stress by PMOS. By these ways, we successfully improve drain current and mobility of NMOS and PMOS. Furthermore, this study is also probing into strain silicon at low temperature, the impacts on electronic characteristic by different scattering mechanism.
10

Electrical Properties and Physical Mechanisms of Advanced MOSFETs

Kuo, Yuan-Jui 20 December 2010 (has links)
In this thesis, we investigate the electrical properties and reliability of novel metal-oxide-semiconductor field-effect transistors (MOSFETs) for 65 nm technology node and below. Roughly, we divide the thesis into two parts, strained-silicon channel engineering and high-k/metal gate stacks respectively. Firstly, to study the influence of stress on carrier transport properties, we proposed an approach to get uniaxial compressive/tensile stress from the channel by bending silicon substrate to enhance device performance. By applying uniaxial longitudinal tensile/compressive stress, the drain current and mobility were found to increase obviously in n/p-type MOSFETs, respectively. The enhancement can be attributed to the reduction of effective transport mass and to the suppression of inter-valley scattering. However, we found that the external mechanical stress aggravated hot carrier effects in n-type MOSFETs. Therefore, in n-type MOSFETs, the behaviors of the substrate current and the impact ionization rate under mechanical stress are investigated. It was found that the substrate current and gate voltage corresponding to the maximum impact ionization current has significantly increased by increasing external mechanical stress. According to the relationship to the strain-induced mobility enhancement, the increase in impact ionization efficiency resulted from the decrease in threshold energy for impact ionization which was due to the narrowing of the band gap. In p-type MOSFETs, the reliability issue, named negative bias temperature instability, is the dominant degradation mechanism during ON-state operation. Therefore, we investigate the NBTI characteristics of strained p-type MOSFETs with external uniaxial tensile/compressive stress. The results indicate that uniaxial compressive stress not only enhances drive current but also reduces NBTI degradation. On the contrary, uniaxial tensile stress leads to a significant degradation in both of drive current and NBTI behavior. The observed Cgc-Vg curve shows the inversion capacitance is strongly dependent on mechanical strain, meaning that the probability of electrochemical reaction decreases/or increases due to the changes in inversion carrier density according to the Nit generation rate of the reaction-diffusion model. Moreover, the charge pumping result is also consistent with the threshold voltage shift of the strained device, which means the degradation is mainly due to trap generation at the Si/SiO2 interface. In addition, to investigate the influences of biaxial compressive stress on p-MOSFETs, we attempts to combine intrinsic and external mechanical stress. It was found that drain current and hole mobility of p-type MOSFET with Si1-xGex raised Source/Drain and external applied mechanical stress significantly decreased due to the increase of effective conductive mass at room temperature. However, this phenomenon was inverted above 363K. Because hole can gain enough thermal energy to transit to higher energy level by inter-valley scattering, its transport mechanism was dominated by lower effective mass at higher energy level. Besides, the model is also evidenced that the mobility degradation under biaxial compressive stress becomes aggravated while temperature decreases from 300 K to 100 K, which is mainly due to the increase of the ratio of carriers occupied in lowest band. On the other hand, the SiO2 dielectric and poly-gate are unsuitable for CMOS application below 65 nm technology node due to unacceptable gate leakage current. Therefore, in the second section of this thesis, we established the electrical characteristics and physical mechanisms of MOSFETs with HfO2 dielectric/TiN gate by analyzing experimental data from charge pumping, split C-V, DC Id-Vg, and pulse Id-Vg. It is found that the threshold voltage (Vth) has a significant decrease as titanium increases in metal gate for n-MOSFETs, whereas the Vth increases in p-MOSFETs. By examining flat band voltage, we found the Vth shift was resulted from metal gate work function (£pm) which became smaller as titanium increased in metal gate. In addition,the dependence of effective mobility on temperature from 100K to 300K was entirely analyzed, which indicated HfO2 remote phonon scattering as the dominant cause of the mobility degradation in n- and p-type MOSFETs when titanium decreased. However, the gate leakage current is also strongly dependent on the nitrogen in metal gate. It is proved that the nitrogen can assivate the traps in HfO2 by pulse I-V,leading to the decrease in gate leakage dominated by Frenkel- Poole mechanism.

Page generated in 0.051 seconds