• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 35
  • 10
  • 9
  • 5
  • 3
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 74
  • 18
  • 14
  • 14
  • 13
  • 12
  • 11
  • 10
  • 9
  • 9
  • 8
  • 8
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Electrical Analysis of Hot Carrier Effect at Various Temperature of 65nm MOSFETs under External Mechanical Stress

Kuo, Chun-ting 24 July 2007 (has links)
Semiconductor technology has already got into nanometer scale. As the dimension keeping scaling down, we can get more transistor in the same area, and furthermore the frequency and performance are also enhanced. But nowadays the development of the lithography technology has come to the neck, we must find another way to improve the performance of transistor. The reliability is more important in the shorter and shorter device channel. In this study, we fully discuss the electrical characteristics of the hot carrier effect at various temperature of 65nm MOSFETs under external mechanical stress. In order to strain the channel, silicon substrate is bent by applying external mechanical stress, the lattice of channel will be strained after applying uniaxial tensile stress. Therefore, we successfully improve drain current and carrier mobility of NMOS, but the hot carrier effect is more serious. In addition, we can understand the influence of hot carrier effect on strain silicon by bending silicon substrate with external mechanical stress. With the increase of curvature, substrate current goes up. We offer an explanation to verify this result. The temperature effect is also measured. The drain current and mobility increased with the temperature decreasing, but the substrate current increased with temperature increasing.
12

Confined electron systems in Si-Ge nanowire heterostructures

Dillen, David Carl 30 September 2011 (has links)
Semiconductor nanowire field-effect transistors (NWFET) have been recognized as a possible alternative to silicon-based CMOS technology as traditional scaling limits are neared. The core-shell nanowire structure, in particular, also allows for the enhancement of carrier mobility through radial band engineering. In this thesis, we have evaluated the possibility of electron confinement in strained Si-Si1-xGex core-shell nanowire heterostructures. Cylindrical strain distribution was calculated analytically for structures of various dimensions and shell compositions. The strain-induced conduction band edge shift of each region was found using k•p theory coupled with a coordinate system shift to account for strain. A positive conduction band offset of up to 200 meV was found for a Si-Si0.2Ge0.8 structure. We have also designed and characterized a modulation doping scheme for p-type, Ge-SiGe core-shell NWFETs. Finite element simulations of hole density versus radial position were done for different combinations of dopant position and concentration. Three modulation doped nanowire samples, each with a different boron doping density in the shell, were grown using a combined vapor-liquid-solid and chemical vapor deposition process. Low temperature current-voltage measurements of bottom- and top-gate samples indicate that hole mobility is limited by the proximity of charged impurities. / text
13

Influência do Crescimento Epitaxial Seletivo (SEG) em transistores SOI de porta tripla de canal N tensionado. / Influence of Selective Epitaxial Growth (SEG) in strained SOI triple gate N transistors.

Pacheco, Vinicius Heltai 27 May 2011 (has links)
Este trabalho apresenta um estudo da influência do crescimento epitaxial seletivo (SEG) em dispositivos tensionados mecanicamente (strain) em transistores SOI MuGFET de porta tripla. Com a evolução da tecnologia de integração de transistores, alguns efeitos parasitários são eliminados ou diminuídos, porém outros novos surgem. A tecnologia SOI MuGFETs disponibiliza dispositivos de múltiplas portas, tridimensionais. Nesses dispositivos, há um aumento da resistência de contato dos terminais devido ao estreitamento da região de canal, tornando esta resistência significativa em relação à resistência total. A utilização do Crescimento Epitaxial Seletivo (SEG) é uma das opções para diminuir a resistência total, elevando a região de fonte e dreno, causando o aumento da área de contato, diminuindo essa resistência parasitária. Em contrapartida, a utilização dos canais tensionados Uniaxiais, por filme de Si3N4, pela técnica de CESL, que é uma opção de melhora da transcondutância, mas em conjunto com o SEG afasta essa a camada de nitreto, tornando em determinada altura prejudicial ao invés de benéfico. Este trabalho foi realizado baseado em resultados experimentais e em simulações numéricas, mecânicas e elétricas de dispositivos, variando as tecnologias de tensionamento mecânico nos dispositivos com e sem SEG. Variou-se a altura do SEG em simulações, possibilitando extrapolar e obter resultados que de forma experimental não foram possíveis, permitindo um entendimento físico do fenômeno estudado. O resultados obtidos das diferentes tecnologias com e sem o uso de SEG mostraram que, em transistores SOI MuGFETs de porta tripla, o crescimento seletivo epitaxial nos dispositivos com tensão uniaxial piora a transcondutância máxima para dispositivos abaixo de 200nm de comprimento de canal, mas em contra partida torna mais prolongado o efeito pelos dispositivos acima dessa dimensão, como pode ser comprovado nos resultados obtidos. / This paper presents the study of the influence of selective epitaxial growth (SEG) devices mechanically strained (strain) in SOI transistors MuGFET triple gate. With the evolution of integration technology of transistors, some parasitic effects are eliminated or reduced, but new ones arise. MuGFETs SOI technology, devices are multiple ports, three-dimensional, these devices there is an increase in contact resistance of terminals due to the narrowing of the channel region, making considered in relation to total resistance. Use of Selective Epitaxial Growth (SEG) is one of the options to reduce the total resistance, raising the source and drain region, causing increased contact area by reducing the parasitic resistance. In contrast, the use of uniaxial strained channel by a film of Si3N4 by CESL technique is an option for improvement in transconductance, but in conjunction with the SEG away this layer of nitride, making it at some point or detrimental rather than beneficial. This study was based on experimental results and numerical simulations, mechanical and electrical devices of varying technologies in mechanical tensioning devices with and without FES, the height was varied in simulations of the FES, allowing extrapolate and obtain results that way trial was not possible, allowing a physical understanding of the phenomenon. The results of the different technologies with and without the use of FES showed that in SOI transistors MuGFETs triple gate, the selective epitaxial growth in uniaxial strained devices tends to worsen the maximum transconductance for devices below 200nm channel length, but against departure becomes more unrelenting effect on the devices above this size. As can be evidenced in the results obtained.
14

Influência do Crescimento Epitaxial Seletivo (SEG) em transistores SOI de porta tripla de canal N tensionado. / Influence of Selective Epitaxial Growth (SEG) in strained SOI triple gate N transistors.

Vinicius Heltai Pacheco 27 May 2011 (has links)
Este trabalho apresenta um estudo da influência do crescimento epitaxial seletivo (SEG) em dispositivos tensionados mecanicamente (strain) em transistores SOI MuGFET de porta tripla. Com a evolução da tecnologia de integração de transistores, alguns efeitos parasitários são eliminados ou diminuídos, porém outros novos surgem. A tecnologia SOI MuGFETs disponibiliza dispositivos de múltiplas portas, tridimensionais. Nesses dispositivos, há um aumento da resistência de contato dos terminais devido ao estreitamento da região de canal, tornando esta resistência significativa em relação à resistência total. A utilização do Crescimento Epitaxial Seletivo (SEG) é uma das opções para diminuir a resistência total, elevando a região de fonte e dreno, causando o aumento da área de contato, diminuindo essa resistência parasitária. Em contrapartida, a utilização dos canais tensionados Uniaxiais, por filme de Si3N4, pela técnica de CESL, que é uma opção de melhora da transcondutância, mas em conjunto com o SEG afasta essa a camada de nitreto, tornando em determinada altura prejudicial ao invés de benéfico. Este trabalho foi realizado baseado em resultados experimentais e em simulações numéricas, mecânicas e elétricas de dispositivos, variando as tecnologias de tensionamento mecânico nos dispositivos com e sem SEG. Variou-se a altura do SEG em simulações, possibilitando extrapolar e obter resultados que de forma experimental não foram possíveis, permitindo um entendimento físico do fenômeno estudado. O resultados obtidos das diferentes tecnologias com e sem o uso de SEG mostraram que, em transistores SOI MuGFETs de porta tripla, o crescimento seletivo epitaxial nos dispositivos com tensão uniaxial piora a transcondutância máxima para dispositivos abaixo de 200nm de comprimento de canal, mas em contra partida torna mais prolongado o efeito pelos dispositivos acima dessa dimensão, como pode ser comprovado nos resultados obtidos. / This paper presents the study of the influence of selective epitaxial growth (SEG) devices mechanically strained (strain) in SOI transistors MuGFET triple gate. With the evolution of integration technology of transistors, some parasitic effects are eliminated or reduced, but new ones arise. MuGFETs SOI technology, devices are multiple ports, three-dimensional, these devices there is an increase in contact resistance of terminals due to the narrowing of the channel region, making considered in relation to total resistance. Use of Selective Epitaxial Growth (SEG) is one of the options to reduce the total resistance, raising the source and drain region, causing increased contact area by reducing the parasitic resistance. In contrast, the use of uniaxial strained channel by a film of Si3N4 by CESL technique is an option for improvement in transconductance, but in conjunction with the SEG away this layer of nitride, making it at some point or detrimental rather than beneficial. This study was based on experimental results and numerical simulations, mechanical and electrical devices of varying technologies in mechanical tensioning devices with and without FES, the height was varied in simulations of the FES, allowing extrapolate and obtain results that way trial was not possible, allowing a physical understanding of the phenomenon. The results of the different technologies with and without the use of FES showed that in SOI transistors MuGFETs triple gate, the selective epitaxial growth in uniaxial strained devices tends to worsen the maximum transconductance for devices below 200nm channel length, but against departure becomes more unrelenting effect on the devices above this size. As can be evidenced in the results obtained.
15

High hole and electron mobilities using Strained Si/Strained Ge heterostructures

Gupta, Saurabh, Lee, Minjoo L., Leitz, Christopher W., Fitzgerald, Eugene A. 01 1900 (has links)
PMOS and NMOS mobility characteristics of the dual channel (strained Si/strained Ge) heterostructure have been reviewed. It is shown that the dual channel heterostructure can provide substantially enhanced mobilities for both electrons and holes. However, germanium interdiffusion from the germanium rich buried layer into the underlying buffer layer could potentially reduce the hole mobility enhancements. / Singapore-MIT Alliance (SMA)
16

Developing and implementing a Raman NSOM for the characterization of semiconductor materials

Furst-Pikus, Greyhm Matthew 30 September 2010 (has links)
We have designed and constructed a novel Raman near-field scanning optical microscope (NSOM) and evaluated its performance characteristics with the goal of characterizing the strain in nanoscopic silicon structures. The Raman NSOM was built around a commercial Raman microscope to which a custom built stage was added to provide precise control over the tip position above the sample (z) using shear-force microscopy feedback as well as sample scanning in the x-y plane. The motion control axes were calibrated to better than 1 nm in z and approximately 20 nm in x and y. The NSOM provides both topographical images and Raman mapping with a lateral spectral resolution of 150-300 nm. The experiments described herein were enabled by gold-coated chemically etched NSOM tips with aperture diameters ranging between 60 and 150 nm. The sensitivity of the instrument was demonstrated by the high signal-to-noise ratios observed for Raman scattering by diamond and silicon in reflection mode. Spatial resolution and spectral sensitivity were demonstrated by obtaining well-resolved tip-sample separation curves that provide an accurate estimate of tip aperture size during an experiment. / text
17

Skeletal muscle fat metabolism during post-exercise recovery in humans.

Kimber, Nicholas E, mikewood@deakin.edu.au January 2004 (has links)
Recovery after prolonged or high-intensity exercise is characterised by a substantial increase in adipose tissue lipolysis, resulting in elevated rates of plasma-derived fat oxidation. Despite the large increase in circulating fatty acids (FAs) after exercise, only a small fraction of this is taken up by exercised muscle in the lower extremities. Indeed, the predominant fate of non-oxidised FAs derived from post-exercise lipolysis is reesteriflcation hi the liver. During recovery from endurance exercise, a number of changes also occur hi skeletal muscle that allow for a high metabolic priority towards glycogen resynthesis. Reducing muscle glycogen during exercise potentiates these effects, however the cellular and molecular mechanisms regulating substrate oxidation following exercise remain poorly defined. The broad arm of this thesis was to examine the regulation of fat metabolism during recovery from glycogen-lowering exercise hi the presence of altered fat and glucose availability. In study I, eight endurance-trained males completed a bout of exhaustive exercise followed by ingestion of carbohydrate (CHO)-rich meals (64-70% of energy from CHO) at 1, 4, and 7 h of recovery. Duplicate muscle biopsies were obtained at exhaustion and 3, 6 and 18 h of recovery. Despite the large intake of CHO during recovery (491 ± 28 g or 6.8 + 0.3 g • kg-1), respiratory exchange ratio values of 0.77 to 0.84 indicated a greater reliance on fat as an oxidative fuel. Intramuscular triacylglycerol (IMTG) content remained unchanged in the presence of elevated glucose and insulin levels during recovery , suggesting IMTG has a negligible role in contributing to the enhanced fat oxidation after exhaustive exercise. It appears that the partitioning of exogenous glucose towards glycogen resynthesis is of high metabolic priority during immediate post-exercise recovery, supported by the trend towards reduced pyruvate dehydrogenase (PDH) activity and increased fat oxidation. The effect of altering plasma FA availability during post-exercise recovery was examined in study II. Eight endurance-trained males performed three trials consisting of glycogen-lowering exercise, followed by infusion of either saline (CON), saline + nicotinic acid (NA) (LFA) or Intralipid and heparin (HFA). Muscle biopsies were obtained at the end of exercise (0 h) and at 3 and 6 h in recovery. Altering the availability of plasma FAs during recovery induced changes in whole-body fat oxidation that were unrelated to differences in skeletal muscle malonyl-CoA. Furthermore, fat oxidation and acetyl-CoA carboxylase (ACC) phosphorylation appear to be dissociated after exercise, suggesting mechanisms other than phosphorylation-mediated changes in ACC activity have an important role in regulating malonyl-CoA and fat metabolism in human skeletal muscle after exercise. Alternative mechanisms include citrate and long-chain fatty acyl-CoA mediated changes in ACC activity, or differences in malonyl-CoA decarboxylase (MCD) activity. Reducing plasma FA concentrations with NA attenuated the post-exercise increase in MCD and pyruvate dehydrogenase kinase 4 (PDK4) gene expression, suggesting that FAs and/or other factors induced by NA are involved hi the regulation of these genes. Despite marked changes hi plasma FA availability, no significant changes in IMTG concentration were detected, providing further evidence that plasma-derived FAs are the preferential fuel source contributing to the enhanced fat oxidation post-exercise during recovery. To further examine the effect of substrate availability after exercise, Study III investigated the regulation of fat metabolism during a 6 h recovery period with or without glucose infusion. Enhanced glucose availability significantly increased CHO oxidation compared with the fasted state, although no differences in whole-body fat oxidation were apparent. Consistent with the similar rates of fat metabolism, no difference hi AMPK or ACCβ phosphorylation were observed between trials. In addition, no significant treatment or time effects for IMTG concentration were detected during recovery. The large exercise-induced PDK4 gene expression was attenuated when plasma FAs were reduced during glucose infusion, supporting the hypothesis that PDK4 is responsive to sustained changes in lipid availability and/or changes in plasma insulin. Furthermore, the possibility exists that the suppression of PDK4 mRNA also reduced PDK activity and thus maintained PDH activity to account for the higher rates of CHO oxidation observed during glucose infusion compared with the control trial.
18

Si Industry at a Crossroads: New Materials or New Factories?

Fitzgerald, Eugene A., Leitz, Christopher W., Lee, Minjoo L., Antoniadis, Dimitri A., Currie, Matthew T. 01 1900 (has links)
Many trends in the silicon industry could be interpreted as the herald of the end of traditional Si scaling. If this premise holds, future performance and system-on-chip applications may not be reached with conventional Si technology extensions. We review progress towards our vision that a larger crystal structure on Si, namely relaxed SiGe epitaxial layers, can support many generations of higher performance Si CMOS and new system-on-chip functionality without the expense of significant new equipment and change to CMOS manufacturing ideology. We will review the impact of tensile strained Si layers grown on relaxed SiGe layers. Both NMOS and PMOS exhibit higher carrier mobilities due to the strained Si MOSFET channel. Heterostructure MOSFETs designed on relaxed SiGe can have multiple-generation performance increases, and therefore determine a new performance roadmap for Si CMOS technology, independent of MOSFET gate length. We also indicate that this materials platform naturally leads to incorporating new optical functionality into Si CMOS technology. / Singapore-MIT Alliance (SMA)
19

Strained Silicon on Silicon by Wafer Bonding and Layer Transfer from Relaxed SiGe Buffer

Isaacson, David M., Taraschi, G., Pitera, Arthur J., Ariel, Nava, Fitzgerald, Eugene A., Langdo, Thomas A. 01 1900 (has links)
We report the creation of strained silicon on silicon (SSOS) substrate technology. The method uses a relaxed SiGe buffer as a template for inducing tensile strain in a Si layer, which is then bonded to another Si handle wafer. The original Si wafer and the relaxed SiGe buffer are subsequently removed, thereby transferring a strained-Si layer directly to Si substrate without intermediate SiGe or oxide layers. Complete removal of Ge from the structure was confirmed by cross-sectional transmission electron microscopy as well as secondary ion mass spectrometry. A plan-view transmission electron microscopy study of the strained-Si/Si interface reveals that the lattice-mismatch between the layers is accommodated by an orthogonal array of edge dislocations. This misfit dislocation array, which forms upon bonding, is geometrically necessary and has an average spacing of approximately 40nm, in excellent agreement with established dislocation theory. To our knowledge, this is the first study of a chemically homogeneous, yet lattice-mismatched, interface. / Singapore-MIT Alliance (SMA)
20

Construction of Functionalized Heterocycles by Palladium-catalyzed Domino Reactions with Strained Alkenes

Thansandote, Praew Petcharat 23 February 2011 (has links)
The Lautens group has a long-standing interest in developing novel approaches to heterocycle synthesis. One such approach is a Pd-catalyzed, norbornene-mediated domino reaction which can form up to three carbon-carbon bonds in one synthetic sequence. The key additive is norbornene which acts similar to a catalyst by assembling the scaffold to enable the formation of a carbon-carbon bond, though is not incorporated into the final compound. The reaction involves C-H bond functionalization as a key step and a Pd(IV) complex as a key intermediate. The goal of the current thesis was to introduce reactive heteroatoms to this domino reaction for the first time, with particular focus on the introduction of nitrogen. Methodologies were developed to present novel syntheses of heterocycles with high pharmaceutical interest. Our initial study focused on the selective functionalization of thiophenes to give multi-substituted sulfur compounds. To synthesize pharmaceutically important nitrogen heterocycles, we demonstrated for the first time that an amination reaction was compatible with the domino reaction. This development led to novel approaches to synthesize substituted indolines, indoles, tetrahydroquinolines, benzomorpholines, phenoxazines, dihydrodibenzoxazepines, tetrahydroisoquinolines, tetrahydroisoquinolinones and tetrahydrobenzazepines. In contrast to the use of norbornene in a catalytic manner, we demonstrated that heterocycles could also be synthesized by the incorporation of strained alkenes. We developed a conceptually novel approach to generate nitrogen heterocycles by using norbornadiene as an acetylene synthon. A palladium-catalyzed annulation of substituted haloanilines with norbornadiene led to functionalized indolines. These indolines could be rapidly converted to benzenoid-substituted indoles and tricyclic indolines, which form the core of many biologically active compounds. Extension to the use of substituted halobenzamides led to functionalized isoquinolinones. Finally, we embarked on a study to perform selective palladium-catalyzed C-H functionalization reactions with N-iodoarylpyrroles and strained alkenes. We will present the reaction conditions necessary to favour aryl C-H functionalization over pyrrole C-H functionalization.

Page generated in 0.0467 seconds