• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 503
  • 73
  • 40
  • 28
  • 12
  • 12
  • 11
  • 11
  • 11
  • 11
  • 9
  • 8
  • 6
  • 6
  • 5
  • Tagged with
  • 929
  • 321
  • 212
  • 157
  • 93
  • 91
  • 87
  • 85
  • 69
  • 69
  • 64
  • 64
  • 53
  • 52
  • 51
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
391

D-branes and K-homology

Jia, Bei 03 June 2013 (has links)
In this thesis the close relationship between the topological $K$-homology group of the spacetime manifold $X$ of string theory and D-branes in string theory is examined. An element of the $K$-homology group is given by an equivalence class of $K$-cycles $[M,E,\phi]$, where $M$ is a closed spin$^c$ manifold, $E$ is a complex vector bundle over $M$, and $\phi: M\rightarrow X$ is a continuous map. It is proposed that a $K$-cycle $[M,E,\phi]$ represents a D-brane configuration wrapping the subspace $\phi(M)$. As a consequence, the $K$-homology element defined by $[M,E,\phi]$ represents a class of D-brane configurations that have the same physical charge. Furthermore, the $K$-cycle representation of D-branes resembles the modern way of characterizing fundamental strings, in which the strings are represented as two-dimensional surfaces with maps into the spacetime manifold. This classification of D-branes also suggests the possibility of physically interpreting D-branes wrapping singular subspaces of spacetime, enlarging the known types of singularities that string theory can cope with. / Master of Science
392

Rhythmic Emancipation, Confrontation and Triumph: An Analysis of String Quartets Nos. 1 and 4 by Bela Bartok

Gargiulo, Catherine 01 January 2007 (has links)
In the field of twentieth-century musicology, studies have emphasized the music of Bela Bartok from a strictly hannonic standpoint. While these studies have provided insight into harmonic manipulation and tonal language there has been little emphasis placed on the role of rhythm and how it relates to the development of Bartok’s music. This study provides an analysis and discussion of rhythmic manipulation, structure and contour of rhythmic motives in String Quartets Nos. I and 4. This analysis was influenced by the methods and philosophies created and discussed by Edward Cone, Emo Lendvai, and John Roeder, among others. I adapted Lendvai's harmonic diagrams to illustrate the rhythmic conflict in Bartok's music. In addition to expanding established analytical models and concepts, I have created original analytical concepts such as rhythmic environments, rhythmic· oppression, and confrontation to identify and discuss important musical events. This is a novel rhythmic rather than harmonic study which provides an original method of analysis that is inspired by the rhythmic life of Bartok's String Quartets and may be used to interpret other music of the twentieth century.
393

Aspects of beyond the Standard Model string phenomenology

Rosa, Joao P. T. G. January 2010 (has links)
String theory is currently the best-known candidate for a theory of quantum gravity, having the necessary ingredients to describe all known elementary particles and interactions. It also includes several novel features, arising, for instance, from the additional six compact dimensions required for its internal consistency, making it the natural arena to construct extensions of the Standard Model. In this thesis, we analyze some of the new phenomenological aspects introduced by string theory within the framework of low energy effective theories, focusing on their applications to cosmology, astrophysics and collider experiments. We first consider a particular realization of the brane-world scenario in branonium bound states, showing that the orbital motion of a probe antibrane about a central brane stack leads to a resonant amplification of its world-volume scalar modes. We analyze the cosmological development of this process and also its potential relevance for either dark or baryonic matter generation in the early universe. We then focus on the spectrum of quark and lepton string excitations in warped compactifications, modeled by an effective 5-dimensional Randall- Sundrum throat. Motivated by the observed fermion mass hierarchy, we show that the spin-3/2 Regge excitation of the right-handed top quark is the lightest of such resonances in a significant region of parameter space, possibly lying below the TeV scale, and discuss its potential signatures at the Tevatron and at the LHC. Finally, we study the emission of sub-eV scalar particles by maximally rotating Kerr black holes, motivated by the recent string axiverse proposal. We focus on the spectrum of unstable scalar bound states in the superradiant regime, leading to an exponentially large axion cloud around astrophysical black holes, and analyze two semi-analytical methods for computing the growth rate of this instability, comparing the obtained results with previous analytical and numerical analyses.
394

Uma medida de similaridade híbrida para correspondência aproximada de múltiplos padrões / A hybrid similarity measure for multiple approximate pattern matching

Dezembro, Denise Gazotto 07 March 2019 (has links)
A busca aproximada por múltiplos padrões similares é um problema encontrado em diversas áreas de pesquisa, tais como biologia computacional, processamento de sinais e recuperação de informação. Na maioria das vezes, padrões não possuem uma correspondência exata e, portanto, buscam-se padrões aproximados, de acordo com um modelo de erro. Em geral, o modelo de erro utiliza uma função de distância para determinar o quanto dois padrões são diferentes. As funções de distância são baseadas em medidas de similaridade, que são classificadas em medidas de similaridade baseadas em distância de edição, medidas de similaridade baseadas em token e medidas de similaridade híbridas. Algumas dessas medidas extraem um vetor de características de todos os termos que constituem o padrão. A similaridade entre os vetores pode ser calculada pela distância entre cossenos ou pela distância euclidiana, por exemplo. Essas medidas apresentam alguns problemas: tornam-se inviáveis conforme o tamanho do padrão aumenta, não realizam a correção ortográfica ou apresentam problemas de normalização. Neste projeto de pesquisa propõe-se uma nova medida de similaridade híbrida que combina TF-IDF Weighting e uma medida de similaridade baseada em distância de edição para estimar a importância de um termo dentro de um padrão na tarefa de busca textual. A medida DGD não descarta completamente os termos que não fazem parte do padrão, mas atribui um peso baseando-se na alta similaridade deste termo com outro que está no padrão e com a média de TF-IDF Weighting do termo na coleção. Alguns experimentos foram conduzidos mostrando o comportamento da medida proposta comparada com as outras existentes na literatura. Tem-se como recomendação geral o limiar de {tf-idf+cosseno, Jaccard, Soft tf-idf} 0,60 e {Jaro, Jaro-Winkler, Monge-Elkan} 0,90 para detecção de padrões similares. A medida de similaridade proposta neste trabalho (DGD+cosseno) apresentou um melhor desempenho quando comparada com tf idf+cosseno e Soft tf-idf na identificação de padrões similares e um melhor desempenho do que as medidas baseadas em distância de edição (Jaro e JaroWinkler) na identificação de padrões não similares. Atuando como classificador, em geral, a medida de similaridade híbrida proposta neste trabalho (DGD+cosseno) apresentou um melhor desempenho (embora não sinificativamente) do que todas as outras medidas de similaridade analisadas, o que se mostra como um resultado promissor. Além disso, é possível concluir que o melhor valor de a ser usado, onde corresponde ao limiar do valor da medida de similaridade secundária baseada em distância de edição entre os termos do padrão, corresponde a 0,875. / Multiple approximate pattern matching is a challenge found in many research areas, such as computational biology, signal processing and information retrieval. Most of the time, a pattern does not have an exact match in the text, and therefore an error model becomes necessary to search for an approximate pattern match. In general, the error model uses a distance function to determine how different two patterns are. Distance functions use similarity measures which can be classified in token-based, edit distance based and hybrid measures. Some of these measures extract a vector of characteristics from all terms in the pattern. Then, the similarity between vectors can be calculated by cosine distance or by euclidean distance, for instance. These measures present some problems: they become infeasible as the size of the pattern increases, do not perform the orthographic correction or present problems of normalization. In this research, we propose a new hybrid similarity metric, named DGD, that combines TF-IDF Weighting and a edit distance based measure to estimate the importance of a term within patterns. The DGD measure doesnt completely rule out terms that are not part of the pattern, but assigns a weight based on the high similarity of this term to another that is in the pattern and with the TF-IDF Weighting mean of the term in the collection. Experiment were conducted showing the soundness of the proposed metric compared to others in the literature. The general recommendation is the threshold of {tf-idf+cosseno, Jaccard, Soft tf-idf} 0.60 and {Jaro, Jaro-Winkler, Monge-Elkan} 0.90 for detection of similar patterns. The similarity measure proposed in this work (DGD + cosine) presented a better performance when compared with tf-idf+cosine and Soft tf-idf in the identification of similar patterns and a better performance than the edit distance based measures (Jaro and Jaro-Winkler) in identifying non-similar patterns. As a classifier, in general, the hybrid similarity measure proposed in this work (DGD+cosine) performed better (although not significantly) than all other similarity measures analyzed, which is shown as a promising result . In addition, it is possible to conclude that the best value of to be used, where is the theshold of the value of the secondary similarity measure based on edit distance between the terms of the pattern, corresponds to 0.875.
395

Perturbative quantization of superstring theory in Anti de-Sitter spaces

Sundin, Per 19 April 2011 (has links)
Um das mikroskopische Verhalten der Gravitation zu beschreiben, ist es nötig, Quantenfeldtheorie und allgemeine Relativitätstheorie in einer vereinheitlichten Sprache zu formulieren. Eine Möglichkeit dieses Problem anzugehen ist es, die Punktteilchen der Quantenfeldtheorie durch fadenförmige Strings zu ersetzen. Allerdings erfordert die mathematische Konsistenz, dass sich die String in höherdimensionalen Raum-Zeiten bewegen; dies macht es jedoch sehr schwer, physikalische Konsequenzen zu extrahieren. Eine mögliche Lösung dieses Problems ist die Verwendung von String-Dualitäten, welche die Stringtheorie mittels holographischer Beschreibungen mit Eichtheorien auf dem Rand der Raum-Zeit verbinden. Die Dualitäten sind begründete Vermutungen, die die String- und Eichtheorie bei unterschiedlichen Werten der Kopplung gleichsetzen. Nicht zuletzt deshalb ist eine direkte Überprüfung der Dualitäten schwierig durchführbar. Hier hilft jedoch die sehr bemerkenswerte Tatsache, dass eine verborgene Eigenschaft der Vermutungen Integrabilität zu sein scheint, welche eine Extrapolation zwischen starker und schwacher Kopplung ermöglicht. Desweiteren kann das gesamte Spektrum, in gewissen vereinfachenden Grenzfällen, durch einen kompakten Satz von Bethe-Gleichungen ausgedrückt werden. Die Bethe-Gleichungen, welche aus Eichtheorierechnungen hergeleitet und geraten werden, bieten ein exzellentes Hilfsmittel, die vermuteten Dualitäten zu prüfen. Durch das Vergleichen der Vorhersagen der Gleichungen und expliziten Berechnungen in der Stringtheorie erhält man starke Argumente für die Gültigkeit der Vermutung und der angenommenen Integrabilität. / In this thesis we study superstring theory on AdS$_5\, \times\,$S$^5$, AdS$_3\,\times\,$S$^3$ and $\adsfour$. A shared feature of each theory is that their corresponding symmetry algebras allows for a decomposition under a $\mathbb{Z}_4$ grading. The grading can be realized through an automorphism which allows for a convenient construction of the string Lagrangians directly in terms of graded components. We adopt a uniform light-cone gauge and expand in a near plane wave limit, or equivalently, an expansion in transverse string coordinates. With a main focus on the two critical string theories, we perform a perturbative quantization up to quartic order in the number of fields. Each string theory is, through holographic descriptions, conjectured to be dual to lower dimensional gauge theories. The conjectures imply that the conformal dimensions of single trace operators in gauge theory should be equal to the energy of string states. What is more, through the use of integrable methods, one can write down a set of Bethe equations whose solutions encode the full spectral problem. One main theme of this thesis is to match the predictions of these equations, written in a language suitable for the light-cone gauge we employ, against explicit string theory calculations. We do this for a large class of string states and the perfect agreement we find lends strong support for the validity of the conjectures.
396

A portfolio of music compositions.

January 2006 (has links)
String quartet -- Eternal light : for orchestra -- The Lord's prayer : for baritone, clarinet and piano. / Wong Yat Wai Joseph. / Thesis (M.Mus.)--Chinese University of Hong Kong, 2006. / Abstracts in English and Chinese. / Chapter 1. --- String Quartet --- p.1 / Chapter 2. --- Eternal Light for Orchestra --- p.21 / Chapter 3. --- "The Lord's Prayer for Baritone, Clarinet and Piano" --- p.58
397

Charles Villiers Stanford String Quartet No. 4 in G Minor, Op. 99 a critical performance edition

Ferguson, Colleen Renee 01 December 2015 (has links)
Irish born British composer, teacher, conductor, and organist Sir Charles Villiers Stanford (1852-1924), is today best known for his choral works and as teacher to some of Britain's most successful composers of the twentieth century. Stanford was a prolific composer of numerous genres of music, and his chamber works for strings comprise a significant portion of his total compositional output. A great many of Stanford's chamber compositions were never published and are absent among today's standard chamber music repertoire. Until now, Stanford's String Quartet No. 4 in G minor, Op. 99 has never been published. This project comprises the first published edition of the String Quartet No. 4, making the work more readily available to performers and scholars. The String Quartet No. 4 is the last of Stanford's string quartets to be published, and this project makes the publication of his works in this genre complete. The author hopes that this project will help generate interest in Stanford as an important figure in British music history and bring his works to a greater public awareness through performance and study.
398

Aspects of stability and phenomenology in type IIA orientifolds with intersecting D6-branes

Ott, Tassilo 12 August 2003 (has links)
Einer der Hauptzweige innerhalb der String-Theorie, der sich um die Konstruktion phänomenologisch relevanter Modelle bemüht, beschäftigt sich mit sich schneidenden D-Branen. Nach einer allgemeinen Einleitung in die Stringtheorie, werden sowohl Torus- als auch Z_N-Orientifolde detailliert dargestellt. Es wird auf das Bild von D9-Branen mit externen B-Feldern eingegangen, aber das Hauptaugenmerk liegt auf dem T-dualen Bild sich schneidender D6-Branen. Die Forderung nach einer Abwesenheit von R-R und NS-NS Tadpolen wird im Formalismus der konformen Feldtheorie hergeleitet. Verschiedene Aspekte der chiralen und nicht-chiralen masselosen Spektren geschlossener und offener Strings werden behandelt, wie Raumzeit-Anomalien, der generalisierte Green-Schwarz-Mechanismus und verschiedene Mechanismen zur Brechung der Eichgruppen. Anschließend werden sowohl der supersymmetrische wie auch der nicht-supersymmetrische Zugang zur Bildung niederenergetischer Modelle diskutiert. Das Problem komplexer Strukturinstabilitäten auf dem Torus wird erfolgreich in einem Z_3-Orientifold-Modell behoben. Es wird ein dem Standard-Modell ähnliches Drei-Generationen-Modell konstruiert, das neben den üblichen Eichgruppen noch eine zusätzliche globale B-L-Symmetrie besitzt. Somit sind weder der elektroschwache Higgs-Mechanismus noch die üblichen Yukawa-Kopplungen in diesem Modell realisiert. Es wird gezeigt, daß der natürliche Ursprung dieses Modells ein flipped SU(5)-GUT-Modell ist. Die Stringskala muß hierbei wenigstens von der Größenordnung der GUT-Skala angenommen werden. Anschließend werden supersymmetrische Modelle auf dem Z_4-Orbifold besprochen, einem Hintergrund, der auch exzeptionelle 3-Zyklen zuläßt. Es werden fraktionale D-Branen explizit konstruiert. Schließlich wird als Beispiel ein Pati-Salam-Modell dargestellt, welches drei Fermion-Generationen besitzt. Dieses Modell ergibt sich nach der Anwendung verschiedener Branenrekombinations-mechanismen und beinhaltet nicht-flache und nicht-faktorisierbare D-Branen. Es wird ebenfalls gezeigt, wie dieses Modell auf ein MSSM-artiges Modell heruntergebrochen werden kann, welches eine masselose Hyperladung besitzt. Im letzten Teil wird der Frage nachgegangen, ob instabile Modulusfelder des Sektors geschlossener oder offener Strings möglicherweise für die Phase der Inflation innerhalb der kosmischen Entwicklung unseres Universums verantwortlich gewesen sein können. Damit dies der Fall sein kann, müssen potentielle Inflaton-Kandidaten die Slow-Roll-Bedingung erfüllen. Dies ist in der diskutierten Modellklasse für die geschlossenen String-Felder nur für den sehr speziellen Fall möglich, daß einige Felder als eingefroren behandelt werden und zudem ein spezielles Koordinatensystem verwendet wird. Im Sektor der offenen Strings konnte auf One-loop-Niveau kein Modulusfeld die Bedingung erfüllen. / Intersecting branes have been the subject of an elaborate string model building for several years. After a general introduction into string theory, this work introduces in detail the toroidal and Z_N-orientifolds. The picture involving D9-branes with B-fluxes is shortly reviewed, but the main discussion employs the T-dual picture of intersecting D6-branes. The derivation of the R-R and NS-NS tadpole cancellation conditions in the conformal field theory is shown in great detail. Various aspects of the open and closed chiral and non-chiral massless spectrum are discussed, involving spacetime anomalies and the generalized Green-Schwarz mechanism. An introduction into possible gauge breaking mechanisms is given, too. Afterwards, both N=1 supersymmetric and non-supersymmetric approaches to low energy model building are treated. Firstly, the problem of complex structure instabilities in toroidal OmegaR-orientifolds is approached by a Z_3-orbifolded model. In particular, a stable non-supersymmetric standard-like model with three fermion generations is discussed. This model features the standard model gauge groups at the same time as having a massless hypercharge, but possessing an additional global B-L symmetry. The electroweak Higgs mechanism and the Yukawa couplings are not realized in the usual way. It is shown that this model descends naturally from a flipped SU(5) GUT model, where the string scale has to be at least of the order of the GUT scale. Secondly, supersymmetric models on the Z_4-orbifold are discussed, involving exceptional 3-cycles and the explicit construction of fractional D-branes. A three generation Pati-Salam model is constructed as a particular example, where several brane recombination mechanisms are used, yielding non-flat and non-factorizable branes. This model even can be broken down to a MSSM-like model with a massless hypercharge. Finally, the possibility if unstable closed and open string moduli could have played the role of the inflaton in the evolution of the universe is being explored. In the closed string sector, the important slow-rolling requirement can only be fulfilled for very specific cases, where some moduli are frozen and a special choice of coordinates is taken. In the open string sector, inflation does not seem to be possible at all.
399

Making Maps and Keeping Logs : Quantum Gravity from Classical Viewpoints

Johansson, Niklas January 2009 (has links)
This thesis explores three different aspects of quantum gravity. First we study D3-brane black holes in Calabi-Yau compactifications of type IIB string theory. Using the OSV conjecture and a relation between topological strings and matrix models we show that some black holes have a matrix model description. This is the case if the attractor mechanism fixes the internal geometry to a conifold at the black hole horizon. We also consider black holes in a flux compactification and compare the effects of the black holes and fluxes on the internal geometry. We find that the fluxes dominate. Second, we study the scalar potential of type IIB flux compactifications. We demonstrate that monodromies of the internal geometry imply as a general feature the existence of long series of continuously connected minima. This allows for the embedding of scenarios such as chain inflation and resonance tunneling into string theory. The concept of monodromies is also extended to include geometric transitions: passing to a different Calabi-Yau topology, performing its monodromies and then returning to the original space allows for novel transformations. All constructions are performed explicitly, using both analytical and numerical techniques, in the mirror quintic Calabi-Yau. Third, we study cosmological topologically massive gravity at the chiral point, a prime candidate for quantization of gravity in three dimensions. The prospects of this scenario depend crucially of the stability of the theory. We demonstrate the presence of a negative energy bulk mode that grows logarithmically toward the AdS boundary. The AdS isometry generators have non-unitary matrix representations like in logarithmic CFT, and we propose that the CFT dual for this theory is logarithmic. In a complementing canonical analysis we also demonstrate the existence of this bulk degree of freedom, and we present consistent boundary conditions encompassing the new mode.
400

Mechanics and acoustics of violin bowing : Freedom, constraints and control in performance

Schoonderwaldt, Erwin January 2009 (has links)
This thesis addresses sound production in bowed-string instruments from two perspectives: the physics of the bowed string, and bow control in performance. Violin performance is characterized by an intimate connection between the player and the instrument, allowing for a continuous control of the sound via the main bowing parameters (bow velocity, bow force and bow-bridge distance), but imposing constraints as well. In the four included studies the focus is gradually shifted from the physics of bow-string interaction to the control exerted by the player. In the first two studies the available bowing parameter space was explored using a bowing machine, by systematically probing combinations of bow velocity, bow force and bow-bridge distance. This allowed for an empirical evaluation of the maximum and minimum bow force required for the production of a regular string tone, characterized by Helmholtz motion. Comparison of the found bow-force limits with theoretical predictions by Schelleng revealed a number of striking discrepancies, in particular regarding minimum bow force. The observations, in combination with bowed-string simulations, provided new insights in the mechanism of breakdown of Helmholtz motion at low bow forces. In the second study the influence of the main bowing parameters on aspects of sound quality was analyzed in detail. It was found that bow force was totally dominating the control of the spectral centroid, which is related to the perceived brightness of the tone. Pitch flattening could be clearly observed when approaching the upper bow-force limit, confirming its role as a practical limit in performance. The last two studies were focused on the measurement of bowing gestures in violin and viola performance. A method was developed for accurate and complete measurement of the main bowing parameters, as well as the bow angles skewness, inclination and tilt. The setup was used in a large performance study. The analyses revealed clear strategies in the use of the main bowing parameters, which could be related to the constraints imposed by the upper and lower bow-force limits and pitch flattening. Further, it was shown that two bow angles (skewness and tilt) were systematically used for controlling dynamic level; skewness played an important role in changing bow-bridge distance in crescendo and diminuendo notes, and tilt was used to control the gradation of bow force. Visualizations and animations of the collected bowing gestures revealed significant features of sophisticated bow control in complex bowing patterns. / QC 20100809

Page generated in 0.1821 seconds