• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 41
  • 5
  • 4
  • 2
  • 2
  • Tagged with
  • 71
  • 71
  • 22
  • 18
  • 15
  • 12
  • 11
  • 10
  • 10
  • 9
  • 9
  • 9
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
61

Analysis of Impact of R382W Mutation on Substrate Specificity of Grapefruit Flavonol Specific 3-Glucosyltransferase

King, Kathleen, Shivakumar, Devaiah P., McIntosh, Cecelia A. 09 April 2015 (has links)
Flavonoids are a class of plant metabolites with a C6-C3-C6 structure. They are responsible for a large range of biological functions including UV protection, pigmentation, and anti-microbial properties. Citrus paradisi, the grapefruit, contains a wide variety of flavonoids, including the target flavonols which are characterized by a hydroxyl group at the C3 position. A glucose molecule is added to flavonols by 3-Oglucosyltransferases (3-O-GTs). C. paradisi F3-O-GT only glucosylates flavonols; however, Vitis vinifera (grape) 3-O-GT can accept both flavonols and anthocyanidins. The two enzymes have some identity with one another but sequence alignment pinpointed several areas of non-homology. Homology modeling using the crystallized structure of the V. vinifera 3-GT revealed sites within the non-homologous areas that could influence the binding site most directly. The 382 site was of particular interest with arginine in C. paradisi changed to tryptophan in V. vinifera, a much bulkier and non-charged amino acid. Site-directed mutagenis was performed to form the R382W mutant line and transformed into yeast for expression after induction with methanol. Western blot was used to determine the optimal protein induction time, after which the cells were harvested and broken to extract the proteins. Isolation and purification of the protein in question allows for enzyme analysis. This is performed by measuring incorporation of radioactive glucose onto various substrates from each flavonoid class. High counts indicate that the enzyme is active upon the substrate while low counts indicate little to no activity. Characterization will also be performed by varying reaction conditions. Thus, the optimal pH, temperature, substrate quantity, enzyme quantity, and reaction duration can be determined for this specific mutant. These experiments will determine if the R382W mutation has a significant impact on the substrate specificity or reaction conditions for the enzyme. A change in activity to include other classes of flavonoids besides flavonols indicates that the mutation site has a direct impact on the conformation of the binding site. Failure of the mutation to change substrate specificity still provides valuable information for the structure and function of the enzyme. This has implications for engineering enzymes to perform specific functions.
62

Characterization of Epoxide Hydrolases from Yeast and Potato

Tronstad-Elfström, Lisa January 2005 (has links)
<p>Epoxides are three-membered cyclic ethers formed in the metabolism of foreign substances and as endogenous metabolites. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to yield the corresponding diols. EHs have been implicated in diverse functions such as detoxification of various toxic epoxides, as well as regulation of signal substance levels.</p><p>The main goal of this thesis was to investigate and characterize the α/β hydrolase fold EH. The first part concerns the identifictaion of an EH in <i>Saccharomyces cerevisiae</i>. The second part involves detailed mechanistic and structural studies of a plant EH from potato, StEH1. </p><p>Despite the important function of EH, no EH has previously been established in <i>S. cerevisiae</i>. By sequence analysis, we have identified a new subclass of EH present in yeast and in a wide range of microorganisms. The <i>S. cerevisiae</i> protein was produced recombinantly and was shown to display low catalytic activity with tested epoxide substrates. </p><p>In plants, EHs are involved in the general defence system, both in the metabolism of the cutin layer and in stress response to pathogens. The catalytic mechanism of recombinantly expressed wild type and mutant potato EH were investigated in detail using the two enantiomers of <i>trans</i>-stilbene oxide (TSO). The proposed catalytic residues of StEH1 were confirmed. StEH1 is slightly enantioselective for the <i>S,S</i>-enantiomer of<i> trans</i>-stilbene oxide. Furthermore, distinct pH dependence of the two enantiomers probably reflects differences in the microscopic rate constants of the substrates. The detailed function of the two catalytic tyrosines was also studied. The behavior of the tyrosine pair resembles that of a bidentate Lewis acid and we conclude that these tyrosines function as Lewis acids rather then proton donors.</p><p>The three dimensional structure of StEH1 was solved, representing the first structure of a plant EH. The structure provided information about the substrate specificity of StEH1.</p>
63

Characterization of Epoxide Hydrolases from Yeast and Potato

Tronstad-Elfström, Lisa January 2005 (has links)
Epoxides are three-membered cyclic ethers formed in the metabolism of foreign substances and as endogenous metabolites. Epoxide hydrolases (EHs) are enzymes that catalyze the hydrolysis of epoxides to yield the corresponding diols. EHs have been implicated in diverse functions such as detoxification of various toxic epoxides, as well as regulation of signal substance levels. The main goal of this thesis was to investigate and characterize the α/β hydrolase fold EH. The first part concerns the identifictaion of an EH in Saccharomyces cerevisiae. The second part involves detailed mechanistic and structural studies of a plant EH from potato, StEH1. Despite the important function of EH, no EH has previously been established in S. cerevisiae. By sequence analysis, we have identified a new subclass of EH present in yeast and in a wide range of microorganisms. The S. cerevisiae protein was produced recombinantly and was shown to display low catalytic activity with tested epoxide substrates. In plants, EHs are involved in the general defence system, both in the metabolism of the cutin layer and in stress response to pathogens. The catalytic mechanism of recombinantly expressed wild type and mutant potato EH were investigated in detail using the two enantiomers of trans-stilbene oxide (TSO). The proposed catalytic residues of StEH1 were confirmed. StEH1 is slightly enantioselective for the S,S-enantiomer of trans-stilbene oxide. Furthermore, distinct pH dependence of the two enantiomers probably reflects differences in the microscopic rate constants of the substrates. The detailed function of the two catalytic tyrosines was also studied. The behavior of the tyrosine pair resembles that of a bidentate Lewis acid and we conclude that these tyrosines function as Lewis acids rather then proton donors. The three dimensional structure of StEH1 was solved, representing the first structure of a plant EH. The structure provided information about the substrate specificity of StEH1.
64

Enzyme selectivity as a tool in analytical chemistry

Hamberg, Anders January 2007 (has links)
<p>Enzymes are useful tools as specific analytical reagents. Two different analysis methods were developed for use in the separate fields of protein science and organic synthesis. Both methods rely on the substrate specificity of enzymes. Enzyme catalysis and substrate specificity is described and put in context with each of the two developed methods.</p><p>In <strong>paper I </strong>a method for C-terminal peptide sequencing was developed based on conventional Carboxypeptidase Y digestion combined with matrix assisted laser desorption/ionization mass spectrometry. An alternative nucleophile was used to obtain a stable peptide ladder and improve sequence coverage.</p><p>In paper<strong> II </strong>and <strong>III</strong>, three different enzymes were used for rapid analysis of enantiomeric excess and conversion of O-acylated cyanohydrins synthesized by a defined protocol. Horse liver alcohol dehydrogenase,<em> Candida antarctica</em> lipase<strong> </strong>B<strong> </strong>and pig liver esterase were sequentially added to a solution containing the O-acylated cyanohydrin. Each enzyme caused a drop in absorbance from oxidation of NADH to NAD<sup>+</sup>. The conversion and enantiomeric excess of the sample could be calculated from the relative differences in absorbance.</p>
65

Ribosomal RNA Modification Enzymes : Structural and functional studies of two methyltransferases for 23S rRNA modification in Escherichia coli

Punekar, Avinash S. January 2014 (has links)
Escherichia coli ribosomal RNA (rRNA) is post-transcriptionally modified by site-specific enzymes. The role of most modifications is not known and little is known about how these enzymes recognize their target substrates. In this thesis, we have structurally and functionally characterized two S-adenosyl-methionine (SAM) dependent 23S rRNA methyltransferases (MTases) that act during the early stages of ribosome assembly in E. coli. RlmM methylates the 2'O-ribose of C2498 in 23S rRNA. We have solved crystal structures of apo RlmM at 1.9Å resolution and of an RlmM-SAM complex at 2.6Å resolution. The RlmM structure revealed an N-terminal THUMP domain and a C-terminal catalytic Rossmann-fold MTase domain. A continuous patch of conserved positive charge on the RlmM surface is likely used for RNA substrate recognition. The SAM-binding site is open and shallow, suggesting that the RNA substrate may be required for tight cofactor binding. Further, we have shown RlmM MTase activity on in vitro transcribed 23S rRNA and its domain V. RlmJ methylates the exocyclic N6 atom of A2030 in 23S rRNA. The 1.85Å crystal structure of RlmJ revealed a Rossmann-fold MTase domain with an inserted small subdomain unique to the RlmJ family. The 1.95Å structure of the RlmJ-SAH-AMP complex revealed that ligand binding induces structural rearrangements in the four loop regions surrounding the active site. The active site of RlmJ is similar to N6-adenine DNA MTases. We have shown RlmJ MTase activity on in vitro transcribed 23S rRNA and a minimal substrate corresponding to helix 72, specific for adenosine. Mutagenesis experiments show that residues Y4, H6, K18 and D164 are critical for catalytic activity. These findings have furthered our understanding of the structure, evolution, substrate recognition and mechanism of rRNA MTases.
66

Role of Protein Flexibility in Function, Resistance Pathways and Substrate Recognition Specificity in HIV-1 Protease: A Dissertation

Mittal, Seema 24 August 2011 (has links)
In the 30 years since the Center for Disease Control's Morbidity and Mortality Weekly Report published the first mention of what later was determined to be AIDS (Acquired immunodeficiency syndrome) and HIV (Human immunodeficiency virus) recognized as the causative pathogen, much has been done to understand this disease’s pathogenesis, development of drugs and emergence of drug resistance under selective drug therapy. Highly Active Antiretroviral Therapy (HAART), a combination of drugs that includes HIV-1 reverse transcriptase, protease, and more recently, integrase and entry inhibitors, have helped stabilize the HIV prevalence at extraordinarily high levels. Despite the recent stabilization of this global epidemic, its dimensions remain staggering with estimated (33-36 million) people living with HIV-AIDS in 2007 alone. This is because the available drugs against AIDS provide treatment for infected individuals, but HIV evolves rapidly under drug pressure and develops resistant strains, rendering the therapy ineffective. Therefore, a better understanding underlying the molecular mechanisms of viral infection and evolution is required to tackle drug resistance and develop improved drugs and treatment regimens. HIV-1 protease is an important target for developing anti-HIV drugs. However, resistant mutations rapidly emerge within the active site of the protease and greatly reduce its affinity for the protease inhibitors. Frequently, these active site drug resistant mutations co-occur with secondary/ non-active site/ associated or compensatory mutations distal to the active site. The role of these accessory mutations is often suggested to be in maintaining viral fitness and stability of protease. Many of the non-active site drug resistant mutations are clustered in the hydrophobic core in each monomer of the protease. Molecular dynamic simulation studies suggest that the hydrophobic core residues facilitate the conformational changes that occur in protease upon ligand binding. There is a complex interdependence and interplay between the inherent adaptability, drug resistant mutations and substrate recognition by the protease. Protease is inherently dynamic and has wide substrate specificity. The PI (protease inhibitor) resistant mutations, perhaps, modulate this dynamics and bring about changes in molecular recognition, such that, in resistant proteases, the substrates are recognized specifically over the PIs for the same binding site. In this thesis research, I have investigated these three complementary phenomena in concert. Chapter II examines the importance of hydrophobic core dynamics in modulating protease function. The hydrophobic core in the WT protease is intrinsically flexible and undergoes conformational changes required for protease to bind its substrates. This study investigated if dynamics is important for protease function by engineering restricted vs. flexible hydrophobic core region in each monomer of the protease, using disulfide chemistry. Under oxidizing conditions, disulfide bond established cross-link at the interface of putative moving domains in each monomer, thereby, restricting motion in this region. Upon reduction of the disulfide bond, the constraining influence was reversed and flexibility returned to near WT. The disulfide cross-linked protease showed significant loss of function when tested in functional cleavage assay. Two protease variants (G16C/L38C) and (R14C/E65C) were engineered and examined for changes in structure and enzymatic activity under oxidizing and reducing conditions. (R14C/E65C) was engineered as an internal control variant, such that cysteines were engineered between putative non-moving domains. Structurally, both the variants were very similar with no structural perturbations under oxidizing or reducing conditions. While significant loss in function was observed for (G16C/L38C) only under oxidizing conditions, (R14C/E65C) did not show any loss of function under oxidizing or reduced conditions, as expected. Successful regain of function for cross-linked (G16C/L38C) was obtained upon reversible reduction of the disulfide bond. Taken together, these data demonstrate that the hydrophobic core dynamics modulates protease function and support the hypothesis that the distal drug resistant mutations, possibly causing drug resistance by modulating hydrophobic core dynamics via long range structural perturbations. Since protease recognizes and cleaves more than 10 substrates at different rates, our further interest is to investigate if there is a differential loss of activity for some specific substrates over the others, and whether the order of polypeptide cleavage is somehow affected by restricted core mobility. In order to better answer these questions it is essential to understand: what determines the substrate binding specificity in protease? A two-pronged approach was applied to address this question as described in chapter III and IV respectively. In chapter III, I investigated the determinants of substrate specificity in HIV-1 protease by using computational positive design and engineered specificity-designed asymmetric protease (Pr3, A28S/D30F/G48R) that would preferentially bind to one of its natural substrates, RT-RH over two other substrates, p2-NC and CA-p2, respectively. The designed protease was expressed, purified and analyzed for changes in structure and function relative to WT. Kinetic studies on Pr3 showed that the specificity of Pr3 for RT-RH was increased significantly compared to the wild-type (WT), as predicted by the positive design. ITC (Isothermal Titration Calorimetry) studies confirmed the kinetic data on RT-RH. Crystal structural of substrate complexes of WT protease and Pr3 variant with RT-RH, CA-p2 and p2-NC were further obtained and analyzed. The structural analysis, however, only partially confirmed to the positive design due to the inherent structural pliability of the protease. Overall, this study supports the positive computational design approach as an invaluable tool in facilitating our understanding of complex proteins such as HIV 1 protease and also proposes the integration of internal protein flexibility in the design algorithms to make the in-silico designs more robust and dependable. Chapter IV probed the substrate specificity determining factors in HIV-1protease system by focusing on the substrate sequences. Previous studies have demonstrated that three N-terminal residues immediate to the scissile bond (P1-P3) are important in determining recognition specificity. This work investigated the structural basis of substrate binding to the protease. Catalytically active WT protease was crystallized with decameric polypeptides corresponding to five of the natural cleavage sites of protease. The structural analyses of these complexes revealed distinct P side product bound in all the structures, demonstrating the higher binding affinity of N terminal substrate for protease. This thesis research successfully establishes that intrinsic hydrophobic core flexibility modulates function in HIV-1 protease and proposes a potential mechanism to explain the role of non-active site mutations in conferring drug resistance in protease. Additionally, the work on specificity designed and N terminal product bound protease complexes advances our understanding of substrate recognition in HIV protease.
67

Understanding Small RNA Formation in Drosophila Melanogaster: A Dissertation

Cenik, Elif Sarinay 09 July 2012 (has links)
Drosophila Dicer-2 generates small interfering RNAs (siRNAs) from long double-stranded RNA (dsRNA), whereas Dicer-1 produces microRNAs from premicroRNA. My thesis focuses on the functional characteristics of two Drosophila Dicers that makes them specific for their biological substrates. We found that RNA binding protein partners of Dicers and two small molecules, ATP and phosphate are key in regulating Drosophila Dicers’ specificity. Without any additional factor, recombinant Dicer-2 cleaves pre-miRNA, but its product is shorter than the authentic miRNA. However, the protein R2D2 and inorganic phosphate block pre-miRNA processing by Dicer-2. In contrast, Dicer-1 is inherently capable of processing the substrates of Dicer, long dsRNAs. Yet, partner protein of Dicer-1, Loqs-PB and ATP increase the efficiency of miRNA production from pre-miRNAs by Dicer-1, therefore enhance substrate specificity of Dicer-1. Our data highlight the role of ATP and regulatory dsRNA-binding partner proteins to achieve substrate specificity in Drosophila RNA silencing. Our study also sheds light onto the function of the helicase domain in Drosophila Dicers. Although Dicer-1 doesn’t hydrolyze ATP, ATP enhances miRNA production by increasing Dicer-1’s substrate specificity through lowering its KM. On the other hand, Dicer-2 is a dsRNA-stimulated ATPase that hydrolyzes ATP to ADP, and ATP hydrolysis is required for Dicer-2 to process long dsRNA. Wild-type Dicer-2, but not a mutant defective in ATP hydrolysis, is processive; generating siRNAs faster than it can dissociate from a long dsRNA substrate. We propose that the Dicer-2 helicase domain uses ATP to generate many siRNAs from a single molecule of dsRNA before dissociating from its substrate. Piwi-dependent small RNAs, namely piRNAs, are a third class of small RNAs that are distinct from miRNAs and siRNAs. Their primary function is to repress transposons in the animal germline. piRNAs are Dicer-independent, and require Piwi family proteins for their biogenesis and function. Recently in addition to their presence in animal germlines, the presence and function of piRNA-like RNAs in the somatic tissues have been suggested (Yan et al. 2011; Morazzani et al. 2012; Rajasethupathy et al. 2012). We have investigated whether the piRNA-like reads in our many Drosophila head libraries come from the germline as a contaminant or are soma-specific. Most of the piRNA reads in our published head libraries show high similarity to germline piRNAs. However, piRNA-like reads from manually dissected heads are distinct from germline piRNAs, proving the presence of somatic piRNA-like small RNAs. We are currently asking the question whether these distinct piRNA-like reads in the heads are dependent on the Piwi family proteins, like the germline piRNAs.
68

Enzyme selectivity as a tool in analytical chemistry

Hamberg, Anders January 2007 (has links)
Enzymes are useful tools as specific analytical reagents. Two different analysis methods were developed for use in the separate fields of protein science and organic synthesis. Both methods rely on the substrate specificity of enzymes. Enzyme catalysis and substrate specificity is described and put in context with each of the two developed methods. In paper I a method for C-terminal peptide sequencing was developed based on conventional Carboxypeptidase Y digestion combined with matrix assisted laser desorption/ionization mass spectrometry. An alternative nucleophile was used to obtain a stable peptide ladder and improve sequence coverage. In paper II and III, three different enzymes were used for rapid analysis of enantiomeric excess and conversion of O-acylated cyanohydrins synthesized by a defined protocol. Horse liver alcohol dehydrogenase, Candida antarctica lipase B and pig liver esterase were sequentially added to a solution containing the O-acylated cyanohydrin. Each enzyme caused a drop in absorbance from oxidation of NADH to NAD+. The conversion and enantiomeric excess of the sample could be calculated from the relative differences in absorbance. / QC 20101108
69

Evidence that glycogen synthase kinase-3 isoforms have distinct substrate preference in the brain

Soutar, M.P., Kim, W.Y., Williamson, Ritchie, Peggie, M., Hastie, C.J., McLauchlan, H., Snider, W.D., Gordon-Weeks, P.R., Sutherland, C. January 2010 (has links)
Mammalian glycogen synthase kinase-3 (GSK3) is generated from two genes, GSK3alpha and GSK3beta, while a splice variant of GSK3beta (GSK3beta2), containing a 13 amino acid insert, is enriched in neurons. GSK3alpha and GSK3beta deletions generate distinct phenotypes. Here, we show that phosphorylation of CRMP2, CRMP4, beta-catenin, c-Myc, c-Jun and some residues on tau associated with Alzheimer's disease, is altered in cortical tissue lacking both isoforms of GSK3. This confirms that they are physiological targets for GSK3. However, deletion of each GSK3 isoform produces distinct substrate phosphorylation, indicating that each has a different spectrum of substrates (e.g. phosphorylation of Thr509, Thr514 and Ser518 of CRMP is not detectable in cortex lacking GSK3beta, yet normal in cortex lacking GSK3alpha). Furthermore, the neuron-enriched GSK3beta2 variant phosphorylates phospho-glycogen synthase 2 peptide, CRMP2 (Thr509/514), CRMP4 (Thr509), Inhibitor-2 (Thr72) and tau (Ser396), at a lower rate than GSK3beta1. In contrast phosphorylation of c-Myc and c-Jun is equivalent for each GSK3beta isoform, providing evidence that differential substrate phosphorylation is achieved through alterations in expression and splicing of the GSK3 gene. Finally, each GSK3beta splice variant is phosphorylated to a similar extent at the regulatory sites, Ser9 and Tyr216, and exhibit identical sensitivities to the ATP competitive inhibitor CT99021, suggesting upstream regulation and ATP binding properties of GSK3beta1 and GSK3beta2 are similar.
70

Kinetic studies of a xyloglucan endotransglycosylase, a key enzyme in plant cell morphogenesis

Saura Valls, Marc 28 September 2007 (has links)
El present treball de recerca s'emmarca en un projecte Europeu anomenat E.D.E.N. (Enzyme Discovery in hybrid aspen for fibre ENgineering, QLK5-CT-2001-00443), l'objectiu del qual és la identificació de nous enzims vegetals per entendre amb major profunditat els processos de formació i modificació de les fibres vegetals per abordar en el futur la millora dels paràmetres de qualitat d'aquestes fibres, mitjançant la generació de línies transgèniques de plantes. En el present projecte es pretén aprofundir en el coneixement de les xiloglucà endotransglicosilases (XET), enzims claus en la construcció i modificació controlada de la xarxa de xiloglucà cel·lulosa, estudiant el seu mecanisme d'acció i la seva especificitat per substrat. En aquest treball s'estudia una XET de Populus tremula x tremuloides, concretament la XET16A (Ptt-XET16A). Es dissenya i es valida un nou assaig enzimàtic mitjançant electroforesis capil·lar (HPCE), que permet l'estudi cinètic de les XET, emprant oligosacàrids de baix pes molecular de xiloglucà amb una estructura coneguda. Aquest substrats han estat sintetitzats en el present treball i també per l'equip del Dr. Driguez en el CERMAV-CNRS. Es determina que el màxim d'activitat de la Ptt-XET16A es dóna entre pH 5 i 5.5 i entre 30 i 40 ºC. Es demostra que aquest enzim actua mitjançant un mecanisme cinètic bi-bi ping-pong, en el que l'acceptor actua com a inhibidor competitiu del donador unint-se a l'enzim lliure i en el que, depenent del donador emprat, aquest també poc actuar com a inhibidor competitiu de l'acceptor, unint-se als subsetis positius de l'intermedi glicosil-enzim i donant diferent reaccions secundàries com són la polimerització del donador o l'elongació del producte, només en el cas que el donador presenti un grup glucosil en l'extrem no reductor. S'avalua un llibreria de xilogluco-oligosacàrids sintetitzada per l'equip del Dr. Driguez al CERMAV-CNRS com a donadors de la Ptt-XET16A. D'aquesta forma s'aprofundeix en el coneixement de l'activitat de les XTH, en el coneixement de la seva especificitat per substrat i es realitza un mapeig del centre actiu, obtenint la contribució dels diferents subsetis de la Ptt-XET16A en l'estabilització de l'estat de transició de la reacció de transglicosidació catalitzada per l'enzim estudiat. Finalment, s'ha dissenyat un substrat bifluorogènic derivat del tetradecasacàrid emprat com a substrat estàndard en el present treball, per mesurar les activitats hidrolasa i transglicosilasa de les XETs mitjançant fluorescence resonance energy transfer (FRET). El substrat bifluorogènic ha estat obtingut i caracteritzat, tanmateix, no s'ha pogut demostrar si aquest substrat és adequat per mesurar les activitats hidrolasa i transglicosilasa de les XETs ja que les propietats fluorescents del marcador s'han perdut en el procés de síntesis del substrat. / El presente trabajo de investigación se enmarca en un proyecto Europeo llamado E.D.E.N. (Enzyme Discovery in hybrid aspen for fibre ENgineering, QLK5-CT-2001-00443), el objetivo del cual es la identificación de nuevos enzimas vegetales para entender con mayor profundidad los procesos de formación y modificación de las fibras vegetales para abordar en el futuro la mejora de los parámetros de calidad de estas fibras, mediante la generación de líneas transgénicas de plantas. En el presente proyecto se pretende profundizar en el conocimiento de las xiloglucano endotransglicosilasas (XET), enzimas claves en la construcción y modificación controlada de la red de xiloglucano-celulosa, estudiando su mecanismo de acción y su especificidad por sustrato. En este trabajo se estudia una XET de Populus tremula x tremuloides, concretamente la XET16A (Ptt-XET16A). Se diseña y se valida un nuevo ensayo enzimático mediante electroforesis capilar (HPCE), que permite el estudio cinético de las XET, utilizando oligosacáridos de xiloglucano de bajo peso molecular y de estructura conocida como sustratos. Estos sustratos han estado sintetizados en el presente trabajo y también por el equipo del Dr. Driguez en el CERMAV-CNRS. Se determina que el máximo de actividad de la Ptt-XET16A se da entre pH 5 y 5.5 y entre 30 y 40 ºC. Se demuestra que este enzima actúa mediante un mecanismo cinético bi-bi ping-pong, en el que el aceptor actúa como inhibidor competitivo del dador uniéndose al enzima libre y en el que, dependiendo del dador utilizado , éste también puede actuar como inhibidor competitivo del aceptor uniéndose en los subsitios positivos del intermedio glicosilo-enzima y dando diferentes reacciones secundarias como son la polimerización del dador o la elongación del producto, solamente si el dador presenta un grupo glucosilo en el extremo no reductor. Se evalúa una librería de xilogluco-oligosacáridos sintetizada por el equipo del Dr. Driguez en el CERMAV-CNRS como dadores de la Ptt-XET16A. De esta forma se profundiza en el conocimiento de la actividad de las XTHs, en el conocimiento de su especificidad por sustrato y se realiza un mapeo del centro activo del enzima, obteniéndose la contribución de los diferentes subsitios de la Ptt-XET16A en la estabilización del estado de transición de la reacción de transglicosidación catalizada por el enzima estudiado. Finalmente, se ha diseñado un sustrato bifuorogénico derivado del tetradecasacárido utilizado como sustrato estándar en el presente trabajo para medir las actividades hidrolasa y transglicosilasa de las XETs mediante fluorescence resonance energy transfer (FRET). El sustrato biofluorogénico ha sido obtenido y caracterizado, sin embargo no se ha podido demostrar si este sustrato es adecuado para medir las actividades hidrolasa y transglicosilasas de las XETs, ya que las propiedades fluorescentes del marcador se han perdido durante la síntesis del sustrato. / The present work is part of an European project named E.D.E.N. (Enzyme Discovery in hybrid aspen for fibre ENgineering, QLK5-CT-2001-00443). The general objective of the project is to identify novel plant enzymes for deeper understanding of the process of fiber formation and modification for future improvement of the quality parameters of wood fibers. The present project pretends to increase the knowledge about xyloglucan endotransglycosylases (XET), which are thought to be key enzymes in the construction and controlled modification of the xyloglucan¬cellulose network. It is pretended to study the mechanism of action and the substrate specificity of a XET from Populus tremula x tremuloides, concretely XET16A (Ptt-XET16A). A new enzymatic assay based on capillary electrophoresis is designed and validated. This assay allows the kinetic study of XETs using as substrates, low molecular mass xyloglucan oligosaccharides with defined structures. These substrates have been synthesized in the present work and also in collaboration with Dr. Driguez team from CERMAV-CNRS. It is concluded that the maximum of activity of Ptt-XET16A is between pH 5 and 5.5 and 30 and 40 ºC. It is demonstrated that Ptt-XET16A follows a bi-bi ping-pong kinetic mechanism, in which the acceptor acts as competitive inhibitor of the donor binding to the free enzyme and depending on the donor used, this one can act also as competitive inhibitor of the acceptor binding to the acceptor subsites of the glycosyl-enzyme intermediate giving rise to side reaction such as donor polymerization and product elongation only in case that the donor shows a glucosyl residue in the non reducing end. A library of xylogluco-oligosaccharides, synthesized in CERMAV-CNRS by Dr. Driguez team, is evaluated as Ptt-XET16A donors. With this studies we are able to deeper understand the activity of XETs, their substrate specificity and a subsite maping of the binding cleft is done, obtaining the contribution of different subsites of Ptt-XET16A to the stabilization of the transition state of the transglycosylation reaction catalyzed by the studied enzyme. Finally, a bifluorogenic substrate derived from the tetradecasacharide used as standard substrate in this project has been designed to measure hydrolase and transferase activities of XET enzymes by fluorescense resonance energy transfer (FRET). The bifluorogenic substrate was obtained, however, it could not be demonstrated if it is an adequate substrate to measure hydrolase and transferase activities because the fluorescent properties of the label were lost during substrate synthesis.

Page generated in 0.2794 seconds