Spelling suggestions: "subject:"subthreshold"" "subject:"subthereshold""
41 |
Energy-efficient digital design of reliable, low-throughput wireless biomedical systemsTolbert, Jeremy Reynard 24 August 2012 (has links)
The main objective of this research is to improve the energy efficiency of low throughput wireless biomedical systems by employing digital design techniques. The power consumed in conventional wireless EEG (biomedical) systems is dominated by digital microcontroller and the radio frequency (RF) transceiver. To reduce the power associated with the digital processor, data compression can reduce the volume of data transmitted. An adaptive data compression algorithm has been proposed to ensure accurate representations of critical epileptic signals, while also preserving the overall power. Further advances in power reduction are also presented by designing a custom baseband processor for data compression. A functional system has been hardware verified and ASIC optimized to reduce the power by over 9X compared to existing methods. The optimized processor can operate at 32MHz with a near threshold supply of 0.5V in a conventional 45nm technology. While attempting to reach high frequencies in the near threshold regime, the probability of timing violations can reduce the robustness of the system. To further optimize the implementation, a low voltage clock tree design has been investigated to improve the reliability of the digital processor. By implementing the proposed clock tree design methodology, the digital processor can improve its robustness (by reducing the probability of timing violations) while reducing the overall power by more than 5 percent. Future work suggests examining new architectures for low-throughput processing and investigating the proposed systems' potential for a multi-channel EEG implementation.
|
42 |
Stress driven changes in the kinetics of bilayer embedded proteins: a membrane spandex and a voltage-gated sodium channelBoucher, Pierre-Alexandre 27 May 2011 (has links)
Bilayer embedded proteins are affected by stress. This general affirmation is, in this thesis, embodied by two types of proteins: membrane spandex and voltage-gated sodium channels. In this work, we essentially explore, using methods from physics, the theoretical consequences of ideas drawn from experimental biology.
Membrane spandex was postulated to exist and we study the theoretical implications and possible benefits for a cell to have such proteins embedded in its bilayer. There are no specific membrane spandex proteins, rather any protein with a transition involving a large enough area change between two non-conducting states could act as spandex. Bacterial cells have osmovalve channels which open at near-lytic tensions to protect themselves against rupture. Spandex expanding at tensions just below the osmovalves’ opening tension could relieve tension enough as to avoid costly accidental osmovalve opening due to transient bilayer tension excursions. Another possible role for spandex is a tension-damper: spandex could be used to maintain bilayer tension at a fixed level. This would be useful as many bilayer embedded channels are known to be modulated by tension.
The Stress/shear experienced in traumatic brain injury cause an immediate (< 2 min) and irreversible TTX-sensitive rise in axonal calcium. In situ, this underlies an untreatable
condition, diffuse axonal injury. TTX sensitivity indicates that leaky voltage-gated sodium (Nav) channels mediate the calcium increase. Wang et al. showed that the mammalian adult CNS Nav isoform, Nav1.6, expressed in Xenopus oocytes becomes “leaky” when subjected to bleb-inducing pipette aspiration. This “leaky” condition is caused by a hyperpolarized-shift (left-shift or towards lower potentials, typically 20 mV) of the kinetically coupled processes of activation and inactivation thus effectively degrading a well-confined window conductance
into a TTX-sensitive Na leak. We propose experimental protocols to determine whether this left-shift is the result of an all-or-none or graded process and whether persistent Na currents are also left-shifted by trauma. We also use modeling to assess whether left-shifted Nav channel kinetics could lead to Na+ (and hence Ca2+ ) loading of axons and to study saltatory propagation after traumatizing a single node of Ranvier.
|
43 |
Stress driven changes in the kinetics of bilayer embedded proteins: a membrane spandex and a voltage-gated sodium channelBoucher, Pierre-Alexandre 27 May 2011 (has links)
Bilayer embedded proteins are affected by stress. This general affirmation is, in this thesis, embodied by two types of proteins: membrane spandex and voltage-gated sodium channels. In this work, we essentially explore, using methods from physics, the theoretical consequences of ideas drawn from experimental biology.
Membrane spandex was postulated to exist and we study the theoretical implications and possible benefits for a cell to have such proteins embedded in its bilayer. There are no specific membrane spandex proteins, rather any protein with a transition involving a large enough area change between two non-conducting states could act as spandex. Bacterial cells have osmovalve channels which open at near-lytic tensions to protect themselves against rupture. Spandex expanding at tensions just below the osmovalves’ opening tension could relieve tension enough as to avoid costly accidental osmovalve opening due to transient bilayer tension excursions. Another possible role for spandex is a tension-damper: spandex could be used to maintain bilayer tension at a fixed level. This would be useful as many bilayer embedded channels are known to be modulated by tension.
The Stress/shear experienced in traumatic brain injury cause an immediate (< 2 min) and irreversible TTX-sensitive rise in axonal calcium. In situ, this underlies an untreatable
condition, diffuse axonal injury. TTX sensitivity indicates that leaky voltage-gated sodium (Nav) channels mediate the calcium increase. Wang et al. showed that the mammalian adult CNS Nav isoform, Nav1.6, expressed in Xenopus oocytes becomes “leaky” when subjected to bleb-inducing pipette aspiration. This “leaky” condition is caused by a hyperpolarized-shift (left-shift or towards lower potentials, typically 20 mV) of the kinetically coupled processes of activation and inactivation thus effectively degrading a well-confined window conductance
into a TTX-sensitive Na leak. We propose experimental protocols to determine whether this left-shift is the result of an all-or-none or graded process and whether persistent Na currents are also left-shifted by trauma. We also use modeling to assess whether left-shifted Nav channel kinetics could lead to Na+ (and hence Ca2+ ) loading of axons and to study saltatory propagation after traumatizing a single node of Ranvier.
|
44 |
Stress driven changes in the kinetics of bilayer embedded proteins: a membrane spandex and a voltage-gated sodium channelBoucher, Pierre-Alexandre 27 May 2011 (has links)
Bilayer embedded proteins are affected by stress. This general affirmation is, in this thesis, embodied by two types of proteins: membrane spandex and voltage-gated sodium channels. In this work, we essentially explore, using methods from physics, the theoretical consequences of ideas drawn from experimental biology.
Membrane spandex was postulated to exist and we study the theoretical implications and possible benefits for a cell to have such proteins embedded in its bilayer. There are no specific membrane spandex proteins, rather any protein with a transition involving a large enough area change between two non-conducting states could act as spandex. Bacterial cells have osmovalve channels which open at near-lytic tensions to protect themselves against rupture. Spandex expanding at tensions just below the osmovalves’ opening tension could relieve tension enough as to avoid costly accidental osmovalve opening due to transient bilayer tension excursions. Another possible role for spandex is a tension-damper: spandex could be used to maintain bilayer tension at a fixed level. This would be useful as many bilayer embedded channels are known to be modulated by tension.
The Stress/shear experienced in traumatic brain injury cause an immediate (< 2 min) and irreversible TTX-sensitive rise in axonal calcium. In situ, this underlies an untreatable
condition, diffuse axonal injury. TTX sensitivity indicates that leaky voltage-gated sodium (Nav) channels mediate the calcium increase. Wang et al. showed that the mammalian adult CNS Nav isoform, Nav1.6, expressed in Xenopus oocytes becomes “leaky” when subjected to bleb-inducing pipette aspiration. This “leaky” condition is caused by a hyperpolarized-shift (left-shift or towards lower potentials, typically 20 mV) of the kinetically coupled processes of activation and inactivation thus effectively degrading a well-confined window conductance
into a TTX-sensitive Na leak. We propose experimental protocols to determine whether this left-shift is the result of an all-or-none or graded process and whether persistent Na currents are also left-shifted by trauma. We also use modeling to assess whether left-shifted Nav channel kinetics could lead to Na+ (and hence Ca2+ ) loading of axons and to study saltatory propagation after traumatizing a single node of Ranvier.
|
45 |
Stress driven changes in the kinetics of bilayer embedded proteins: a membrane spandex and a voltage-gated sodium channelBoucher, Pierre-Alexandre January 2011 (has links)
Bilayer embedded proteins are affected by stress. This general affirmation is, in this thesis, embodied by two types of proteins: membrane spandex and voltage-gated sodium channels. In this work, we essentially explore, using methods from physics, the theoretical consequences of ideas drawn from experimental biology.
Membrane spandex was postulated to exist and we study the theoretical implications and possible benefits for a cell to have such proteins embedded in its bilayer. There are no specific membrane spandex proteins, rather any protein with a transition involving a large enough area change between two non-conducting states could act as spandex. Bacterial cells have osmovalve channels which open at near-lytic tensions to protect themselves against rupture. Spandex expanding at tensions just below the osmovalves’ opening tension could relieve tension enough as to avoid costly accidental osmovalve opening due to transient bilayer tension excursions. Another possible role for spandex is a tension-damper: spandex could be used to maintain bilayer tension at a fixed level. This would be useful as many bilayer embedded channels are known to be modulated by tension.
The Stress/shear experienced in traumatic brain injury cause an immediate (< 2 min) and irreversible TTX-sensitive rise in axonal calcium. In situ, this underlies an untreatable
condition, diffuse axonal injury. TTX sensitivity indicates that leaky voltage-gated sodium (Nav) channels mediate the calcium increase. Wang et al. showed that the mammalian adult CNS Nav isoform, Nav1.6, expressed in Xenopus oocytes becomes “leaky” when subjected to bleb-inducing pipette aspiration. This “leaky” condition is caused by a hyperpolarized-shift (left-shift or towards lower potentials, typically 20 mV) of the kinetically coupled processes of activation and inactivation thus effectively degrading a well-confined window conductance
into a TTX-sensitive Na leak. We propose experimental protocols to determine whether this left-shift is the result of an all-or-none or graded process and whether persistent Na currents are also left-shifted by trauma. We also use modeling to assess whether left-shifted Nav channel kinetics could lead to Na+ (and hence Ca2+ ) loading of axons and to study saltatory propagation after traumatizing a single node of Ranvier.
|
46 |
Design of CMOS Four-Quadrant Gilbert Cell Multiplier Circuits in Weak and Moderate InversionRemund, Craig Timothy 24 November 2004 (has links) (PDF)
This thesis presents four-quadrant CMOS current-mode multiplier architectures based on the bipolar Gilbert cell multiplier architecture. Multipliers are designed using the CMOS subthreshold region to take advantage of the subthreshold exponential I-V relationship that closely matches bipolar modeling. It is discovered that biasing to remove drift current components and to address higher order effects such as ideality factor mismatch, threshold mismatch, body effect, and short channel effects, is important to provide a linear multiplier. It is also shown that distortion caused by device size mismatch and offset input currents can be used to cancel the distortion introduced by drift currents when designing in weak and moderate inversion. This concept allows for linear multiplier designs with larger input currents which results in dramatic improvements in bandwidth over traditional weak inversion circuits. Three multiplier circuits are simulated and fabricated in an AMIS 0.35-um process. Circuits with less than 1 % nonlinear error and distortion (THD) across 100 % dynamic input range and with bandwidths greater than 100 MHz can be built. Also, low power multiplier solutions are presented that consume less than 40 nW of dynamic power.
|
47 |
A High-Gain, Low-Power CMOS Operational Amplifier Using Composite Cascode Stage in the Subthreshold RegionSingh, Rishi Pratap 15 March 2011 (has links) (PDF)
This thesis demonstrates that the composite cascode differential stage, operating in the subthreshold region, can form the basis of a high gain (113 dB) and low-power op amp (28.1 µW). The circuit can be fabricated without adding a compensation capacitance. The advantages of this architecture include high voltage gain, low bandwidth, low harmonic distortion, low quiescent current and power, and small chip area. These advantages suggest that this design might be well-suited for biomedical applications where low power, low noise bio-signal amplifiers capable of amplifying signals in the millihertz-to-kilohertz range is required.
|
48 |
Wireless Implantable EMG Sensing MicrosystemFarnsworth, Bradley David 30 July 2010 (has links)
No description available.
|
49 |
Subliminal stimulation and inhibition of visual processingBareither, Isabelle 29 January 2015 (has links)
Bei einem Spaziergang im Mondlicht nehmen wir Ereignisse verschiedenster Intensität wahr. Vom blendenden Licht eines vorbeifahrenden Motorrads bis hin zu undeutlichen Schatten. Verarbeiten wir diese Ereignisse alle gleich? In dieser Arbeit untersuchte ich, wie das visuelle System auf Stimuli reagiert, die so niedrig in ihrer Intensität sind, dass wir sie nicht wahrnehmen. Frühere somatosensorische Studien zeigten eine kortikale Deaktivierung aufgrund subliminaler Stimulation. Diese wurde als Hemmungsmechanismus interpretiert zur Unterdrückung kortikalen Rauschens. Unterstützt wurde diese Aussage durch ein Verhaltensexperiment, in dem der Schwellwert für somatosensorische Stimuli bei subliminaler Stimulation erhöht war. Gibt es im visuellen System äquivalente Hemmungsmechanismen? In Studie I untersuchte ich die Wahrnehmung schwellnaher visueller Zielreize: die Wahrnehmung verschlechterte sich bei gleichzeitiger subliminaler Stimulation im selben Hemifield. Inhibitorische Interneurone könnten diesen Effekt hervorrufen. Gleichzeitig zeigten Nervenzell-Studien die Degeneration intrakortikaler Inhibition mit dem fortschreitendem Alter von Affen. In Studie II untersuchte ich daher Unterschiede inhibitorischer Mechanismen einer kleinen Gruppe von älteren Probanden und verglich diese mit den jüngeren Probanden aus Studie I. In Studie III, einer elektrophysiologischen Studie, führt subliminale Stimulation zu einer Verstärkung des Alpha-Rhythmus. Supraliminale Stimulation führt zu einer Verstärkung niedriger Frequenzen und einer Abschwächung des Alpha-Rhythmus. Die spezifische neuronale Signatur aufgrund subliminaler Stimulation deutet darauf hin, dass die neuronale Verarbeitung des Stimulus zu einer Verringerung der Aktivität in involvierten Arealen führt. Ein Rauschunterdrückungs-Mechanismus wurde im somatosensorischen System beschrieben und könnte für die verringerte Wahrnehmung der schwellnahen Zielreize bei subliminaler Stimulation verantwortlich sein. / Walking along a street on a moonlit night, we can perceive visual events at a wide range of intensities – from the blinding light of a passing motorcycle to faint shadows. Does the visual system react similarly to all of these events? Here, I investigated how the visual system reacts to stimuli that are so low in their intensity that they are not perceived. It has been shown that subliminal low-intensity somatosensory stimuli lead to a cortical deactivation or inhibition. This deactivation was interpreted as inhibition mechanism that usually protects the cortex against activation by noise. Also, a behavioural experiment showed an increased sensitivity threshold for peri-liminal stimuli during subliminal stimulation. Does a similar mechanism exist within the visual System? In Study I, I investigated the perception of visual peri-liminal target-stimuli under different conditions. The threshold for target-stimuli significantly increased when presented during subliminal stimulation on the same side as the target-stimulus. The underlying mechanism could be mediated through intracortical inhibition. Concurrently, studies in macaque senescent neurons suggest a degradation of intracortical inhibition with age. In Study II, I therefore investigated differences of inhibitory responses in a group of elderly subjects and compared the results to the young participants in Study I. In Study III, using electroencephalography, I show that subliminal stimulation leads to an alpha-band power increase, whereas supraliminal stimulation leads to a lower frequency increase and an alpha-band power decrease. Specific neural signature in response to subliminal stimulation indicate neural processing of the stimulus that lead to a down-regulation of areas involved in stimulus processing. This mechanism could serve a suppression of input noise that has been described in the somatosensory system and may lead to decreased detection of peri-liminal target-stimuli during subliminal stimulation.
|
50 |
Low-Power Low-Noise CMOS Analog and Mixed-Signal Design towards Epileptic Seizure DetectionQian, Chengliang 03 October 2013 (has links)
About 50 million people worldwide suffer from epilepsy and one third of them have seizures that are refractory to medication. In the past few decades, deep brain stimulation (DBS) has been explored by researchers and physicians as a promising way to control and treat epileptic seizures. To make the DBS therapy more efficient and effective, the feedback loop for titrating therapy is required. It means the implantable DBS devices should be smart enough to sense the brain signals and then adjust the stimulation parameters adaptively.
This research proposes a signal-sensing channel configurable to various neural applications, which is a vital part for a future closed-loop epileptic seizure stimulation system. This doctoral study has two main contributions, 1) a micropower low-noise neural front-end circuit, and 2) a low-power configurable neural recording system for both neural action-potential (AP) and fast-ripple (FR) signals.
The neural front end consists of a preamplifier followed by a bandpass filter (BPF). This design focuses on improving the noise-power efficiency of the preamplifier and the power/pole merit of the BPF at ultra-low power consumption. In measurement, the preamplifier exhibits 39.6-dB DC gain, 0.8 Hz to 5.2 kHz of bandwidth (BW), 5.86-μVrms input-referred noise in AP mode, while showing 39.4-dB DC gain, 0.36 Hz to 1.3 kHz of BW, 3.07-μVrms noise in FR mode. The preamplifier achieves noise efficiency factor (NEF) of 2.93 and 3.09 for AP and FR modes, respectively. The preamplifier power consumption is 2.4 μW from 2.8 V for both modes. The 6th-order follow-the-leader feedback elliptic BPF passes FR signals and provides -110 dB/decade attenuation to out-of-band interferers. It consumes 2.1 μW from 2.8 V (or 0.35 μW/pole) and is one of the most power-efficient high-order active filters reported to date. The complete front-end circuit achieves a mid-band gain of 38.5 dB, a BW from 250 to 486 Hz, and a total input-referred noise of 2.48 μVrms while consuming 4.5 μW from the 2.8 V power supply. The front-end NEF achieved is 7.6. The power efficiency of the complete front-end is 0.75 μW/pole. The chip is implemented in a standard 0.6-μm CMOS process with a die area of 0.45 mm^2.
The neural recording system incorporates the front-end circuit and a sigma-delta analog-to-digital converter (ADC). The ADC has scalable BW and power consumption for digitizing both AP and FR signals captured by the front end. Various design techniques are applied to the improvement of power and area efficiency for the ADC. At 77-dB dynamic range (DR), the ADC has a peak SNR and SNDR of 75.9 dB and 67 dB, respectively, while consuming 2.75-mW power in AP mode. It achieves 78-dB DR, 76.2-dB peak SNR, 73.2-dB peak SNDR, and 588-μW power consumption in FR mode. Both analog and digital power supply voltages are 2.8 V. The chip is fabricated in a standard 0.6-μm CMOS process. The die size is 11.25 mm^2.
The proposed circuits can be extended to a multi-channel system, with the ADC shared by all channels, as the sensing part of a future closed-loop DBS system for the treatment of intractable epilepsy.
|
Page generated in 0.0292 seconds