• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 13
  • 10
  • 7
  • 5
  • 4
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 108
  • 36
  • 26
  • 23
  • 21
  • 15
  • 14
  • 14
  • 13
  • 13
  • 13
  • 13
  • 11
  • 11
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Sur la répartition des zéros de certaines fonctions méromorphes liées à la fonction zêta de Riemann

Velasquez Castanon, Oswaldo 19 September 2008 (has links)
Nous traitons trois problèmes liés à la fonction zêta de Riemann : 1) L'établissement de conditions pour déterminer l'alignement et la simplicité de la quasi-totalité des zéros d'une fonction de la forme f(s)=h(s)±h(2c-s), où h(s) est une fonction méromorphe et c un nombre réel. Cela passe par la généralisation du théorème d'Hermite-Biehler sur la stabilité des fonctions entières. Comme application, nous avons obtenu des résultats sur la répartition des zéros des translatées de la fonction zêta de Riemann et de fonctions L, ainsi que sur certaines intégrales de séries d'Eisenstein. 2) L'étude de la répartition des zéros des sommes partielles de la fonction zêta, et des ses approximations issues de la formule d'Euler-Maclaurin. 3) L'étude du prolongement méromorphe et de la frontière naturelle pour une classe de produits eulériens, qui inclut une série de Dirichlet utilisée dans l'étude de la répartition des valeurs de l'indicatrice d'Euler. / We deal with three problems related to the Riemann zeta function: 1) The establishment of conditions to determine the alignment and simplicity of most of the zeros of a function of the form f(s)=h(s)±h(2c-s), where h(s) is a meromorphic function and c a real number. To this end, we generalise the Hermite-Biehler theorem concerning the stability of entire functions. As an application, we obtain some results about the distribution of zeros of translations of the Riemann Zeta Function and L functions, and about certain integrals of Eisenstein series. 2) The study of the distribution of the zeros of the partial sums of the zeta function, and of some approximations issued from the Euler-Maclaurin formula. 3) The study of the meromorphic continuation and the natural boundary of a class of Euler products, which includes a Dirichlet series used in the study of the distribution of values of the Euler totient.
72

Espaços de Banach com várias estruturas complexas / Banach spaces with various complex structures

Cuellar Carrera, Wilson Albeiro 29 April 2015 (has links)
No presente trabalho, estudamos alguns aspectos da teoria de estruturas complexas em espaços de Banach. Demonstramos que se um espaço de Banach real $X$ tem a propriedade $P$, então todas as estruturas complexas em $X$ também satisfazem $P$, quando $P$ é qualquer uma das seguintes propriedades: propriedade de aproximação limitada, \\emph{G.L-l.u.st}, ser injetivo e ser complementado num espaço dual. Abordamos o problema da unicidade de estruturas complexas em espaços de Banach com base subsimétrica, provando que um espaço de Banach real $E$ com base subsimétrica e isomorfo ao espaço de sequências $E[E]$ admite estrutura complexa única. Por outro lado, apresentamos um exemplo de espaço de Banach com exatamente $\\omega$ estruturas complexas distintas. Também usamos a teoria de estruturas complexas para estudar o clássico problema dos hiperplanos no espaço $Z_2$ de Kalton-Peck. Com o propósito de distinguir $Z_2$ de seus hiperplanos nos perguntamos se os hiperplanos admitem estrutura complexa. Nesse sentido, provamos que os hiperplanos de $Z_2$ contendo a cópia canônica de $\\ell_2$ não admitem estruturas complexas que sejam extensões de estruturas complexas em $\\ell_2$. Também construímos uma estrutura complexa em $\\ell_2$ que não pode-se estender a nenhum operador em $Z_2$. / In this work, we study some aspects of the theory of complex structures in Banach spaces. We show that if a real Banach space $X$ has the property $P$, then all its complex structures also satisfy $P$, where $P$ is any of the following properties: bounded approximation property, \\emph{G.L-l.u.st}, being injective and being complemented in a dual space. We address the problem of uniqueness of complex structures in Banach spaces with subsymmetric basis by proving that a real Banach space $E$ with subsymmetric basis and isomorphic to the space of sequences $E [E]$ admits a unique complex structure. On the other hand, we show an example of Banach space with exactly $\\omega$ different complex structures. We also use the theory of complex structures to study the classical problem of hyperplanes in the Kalton-Peck space $Z_2$. In order to distinguish between $Z_2$ and its hyperplanes we wonder whether the hyperplanes admit complex structures. In this sense we prove that no complex structure on $\\ell_2$ can be extended to a complex structure on the hyperplanes of $Z_2$ containing the canonical copy $l_2$. We also constructed a complex structure on $l_2$ that can not be extended to any operator in $Z_2$.
73

Espaços de Banach com várias estruturas complexas / Banach spaces with various complex structures

Wilson Albeiro Cuellar Carrera 29 April 2015 (has links)
No presente trabalho, estudamos alguns aspectos da teoria de estruturas complexas em espaços de Banach. Demonstramos que se um espaço de Banach real $X$ tem a propriedade $P$, então todas as estruturas complexas em $X$ também satisfazem $P$, quando $P$ é qualquer uma das seguintes propriedades: propriedade de aproximação limitada, \\emph{G.L-l.u.st}, ser injetivo e ser complementado num espaço dual. Abordamos o problema da unicidade de estruturas complexas em espaços de Banach com base subsimétrica, provando que um espaço de Banach real $E$ com base subsimétrica e isomorfo ao espaço de sequências $E[E]$ admite estrutura complexa única. Por outro lado, apresentamos um exemplo de espaço de Banach com exatamente $\\omega$ estruturas complexas distintas. Também usamos a teoria de estruturas complexas para estudar o clássico problema dos hiperplanos no espaço $Z_2$ de Kalton-Peck. Com o propósito de distinguir $Z_2$ de seus hiperplanos nos perguntamos se os hiperplanos admitem estrutura complexa. Nesse sentido, provamos que os hiperplanos de $Z_2$ contendo a cópia canônica de $\\ell_2$ não admitem estruturas complexas que sejam extensões de estruturas complexas em $\\ell_2$. Também construímos uma estrutura complexa em $\\ell_2$ que não pode-se estender a nenhum operador em $Z_2$. / In this work, we study some aspects of the theory of complex structures in Banach spaces. We show that if a real Banach space $X$ has the property $P$, then all its complex structures also satisfy $P$, where $P$ is any of the following properties: bounded approximation property, \\emph{G.L-l.u.st}, being injective and being complemented in a dual space. We address the problem of uniqueness of complex structures in Banach spaces with subsymmetric basis by proving that a real Banach space $E$ with subsymmetric basis and isomorphic to the space of sequences $E [E]$ admits a unique complex structure. On the other hand, we show an example of Banach space with exactly $\\omega$ different complex structures. We also use the theory of complex structures to study the classical problem of hyperplanes in the Kalton-Peck space $Z_2$. In order to distinguish between $Z_2$ and its hyperplanes we wonder whether the hyperplanes admit complex structures. In this sense we prove that no complex structure on $\\ell_2$ can be extended to a complex structure on the hyperplanes of $Z_2$ containing the canonical copy $l_2$. We also constructed a complex structure on $l_2$ that can not be extended to any operator in $Z_2$.
74

Analyse of real-time systems from scheduling perspective / Analyse des systèmes temps réel de point de vue ordonnancement

Chadli, Mounir 21 November 2018 (has links)
Les logiciels sont devenus une partie importante de notre vie quotidienne, car ils sont maintenant utilisés dans de nombreux périphériques hétérogènes, tels que nos téléphones, nos voitures, nos appareils ménagers, etc. Ces périphériques sont parsemés d’un certain nombre de logiciels intégrés, chacun gérant une tâche spécifique. Ces logiciels intégrés sont conçus pour fonctionner à l’intérieur de systèmes plus vastes avec un matériel varié et hétérogène et des ressources limitées. L'utilisation de logiciels embarqués est motivée par la flexibilité et la simplicité que ces logiciels peuvent garantir, ainsi que par la réduction des coûts. Les Cyber-Physical System (CPS) sont des logiciels utilisés pour contrôler des systèmes physiques. Les CPS sont souvent intégrés et s'exécutent en temps réel, ce qui signifie qu'ils doivent réagir aux événements externes. Un CPS complexe peut contenir de nombreux systèmes en temps réel. Le fait que ces systèmes puissent être utilisés dans des domaines critiques tels que la médecine ou les transports exige un haut niveau de sécurité pour ces systèmes. Les systèmes temps réel (RTS), par définition, sont des systèmes informatiques de traitement qui doivent répondre à des entrées générées de manière externe. Ils sont appelés temps réel car leur réponse doit respecter des contraintes de temps strictes. Par conséquent, l'exactitude de ces systèmes ne dépend pas seulement de l'exactitude des résultats de leur traitement, mais également du moment auquel ces résultats sont donnés. Le principal problème lié à l'utilisation de systèmes temps réel est la difficulté de vérifier leurs contraintes de synchronisation. Un moyen de vérifier les contraintes de temps peut consister à utiliser la théorie de la planification, stratégie utilisée pour partager les ressources système entre ses différents composants. Outre les contraintes de temps, il convient de prendre en compte d'autres contraintes, telles que la consommation d'énergie ou la sécurité. Plusieurs méthodes de vérification ont été utilisées au cours des dernières années, mais avec la complexité croissante des logiciels embarqués, ces méthodes atteignent leurs limites. C'est pourquoi les chercheurs se concentrent maintenant sur la recherche de nouvelles méthodes et de nouveaux formalismes capables de vérifier l'exactitude des systèmes les plus complexes. Aujourd'hui, une classe de méthodes de vérification bien utilisées est les techniques basées sur des modèles. Ces techniques décrivent le comportement du système considéré à l'aide de formalismes mathématiques, puis, à l'aide de méthodes appropriées, permettent d'évaluer l'efficacité du système par rapport à un ensemble de propriétés. Dans ce manuscrit, nous nous concentrons sur l'utilisation de techniques basées sur des modèles pour développer de nouvelles techniques de planification afin d'analyser et de valider la satisfiabilité d'un certain nombre de propriétés sur des systèmes temps réel. L'idée principale est d'exploiter la théorie de l'ordonnancement pour proposer ces nouvelles techniques. Pour ce faire, nous proposons un certain nombre de nouveaux modèles afin de vérifier la satisfiabilité d'un certain nombre de propriétés telles que l'ordonnancement, la consommation d'énergie ou la fuite d'informations. / Software’s become an important part of our daily life as they are now used in many heterogeneous devices, such as our phones, our cars, our home appliances … etc. These devices are dotted with a number of embedded software’s, each handling a specific task. These embedded software’s are designed to run inside larger systems with various and heterogeneous hardware and limited resources. The use of embedded software is motivated by the flexibility and the simplicity that these software can guarantee, and to minimize the cost. Cyber-Physical System (CPS) are software used to control physical systems. CPS are often embedded and run in real-time, which means that they must react to external events. A complex CPS can contains many real-time systems. The fact that these systems can be used in critical domains like medicine or transport requires a high level of safety for these systems. Real-Time Systems (RTS) by definition are processing information systems that have to respond to externally generated inputs, and they are called real-time because their response must respect a strict timing constraints. Therefore, the correctness of these systems does not depend only on the correctness of their treatment results, but it also depends on the timings at which these results are given. The main problem with using real-time systems is the difficulty to verify their timing constraints. A way to verify timing constraints can be to use Scheduling theory which is a strategy used in order to share the system resources between its different components. In addition to the timing constraints, other constraints should be taken in consideration, like energy consumption or security. Several verification methods have been used in the last years, but with the increasing complexity of the embedded software these methods reach their limitation. That is why researchers are now focusing their works on finding new methods and formalisms capable of verifying the correctness of the most complex systems. Today, a well-used class of verification methods are model-based techniques. These techniques describe the behavior of the system under consideration using mathematical formalisms, then using appropriate methods they give the possibility to evaluate the correctness of the system with respect to a set of properties. In this manuscript we focus on using model-based techniques to develop new scheduling techniques in order to analyze and validate the satisfiability of a number of properties on real-time systems. The main idea is to exploit scheduling theory to propose these new techniques. To do that, we propose a number of new models in order to verify the satisfiability of a number of properties as schedulability, energy consumption or information leakage.
75

Lehmer Numbers with at Least 2 Primitive Divisors

Juricevic, Robert January 2007 (has links)
In 1878, Lucas \cite{lucas} investigated the sequences $(\ell_n)_{n=0}^\infty$ where $$\ell_n=\frac{\alpha^n-\beta^n}{\alpha-\beta},$$ $\alpha \beta$ and $\alpha+\beta$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. Lucas sequences are divisibility sequences; if $m|n$, then $\ell_m|\ell_n$, and more generally, $\gcd(\ell_m,\ell_n)=\ell_{\gcd(m,n)}$ for all positive integers $m$ and $n$. Matijasevic utilised this divisibility property of Lucas sequences in order to resolve Hilbert's 10th problem. \noindent In 1930, Lehmer \cite{lehmer} introduced the sequences $(u_n)_{n=0}^\infty$ where \begin{eqnarray*} u_n& = & \frac{\alpha^{n}-\beta^n}{\alpha^{\epsilon(n)}-\beta^{\epsilon(n)}},\\ \epsilon(n)&=&\left\{\begin{array}{ll} 1, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 1 \pmod 2;\\ 2, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 0\pmod 2;\end{array}\right. \end{eqnarray*} $\alpha \beta$ and $(\alpha +\beta)^2$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. The sequences $(u_n)_{n=0}^\infty$ are known as Lehmer sequences, and the terms of these sequences are known as Lehmer numbers. Lehmer showed that his sequences had similar divisibility properties to those of Lucas sequences, and he used them to extend the Lucas test for primality. \noindent We define a prime divisor $p$ of $u_n$ to be a primitive divisor of $u_n$ if $p$ does not divide $$(\alpha^2-\beta^2)^2u_3\cdots u_{n-1}.$$ Note that in the list of prime factors of the first $n-1$ terms of the sequence $(u_n)_{n=0}^\infty$, a primitive divisor of $u_n$ is a new prime factor. \noindent We let \begin{eqnarray*} \kappa& = & k(\alpha \beta\max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}),\\ \eta & = & \left\{\begin{array}{ll}1\hspace{.1in}\mbox{if}\hspace{.1in}\kappa\equiv 1\pmod 4,\\ 2\hspace{.1in}\mbox{otherwise},\end{array}\right. \end{eqnarray*} where $k(\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\})$ is the squarefree kernel of $\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}$. On the one hand, building on the work of Schinzel \cite{schinzelI}, we prove that if $n>4$, $n\neq 6$, $n/(\eta \kappa)$ is an odd integer, and the triple $(n,\alpha,\beta)$, in case $(\alpha-\beta)^2>0$, is not equivalent to a triple $(n,\alpha,\beta)$ from an explicit table, then the $n$th Lehmer number $u_n$ has at least two primitive divisors. Moreover, we prove that if $n\geq 1.2\times 10^{10}$, and $n/(\eta \kappa)$ is an odd integer, then the $n$th Lehmer number $u_n$ has at least two primitive divisors. On the other hand, building on the work of Stewart \cite{stewart77}, we prove that there are only finitely many triples $(n,\alpha,\beta)$, where $n>6$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, such that the $n$th Lehmer number $u_n$ has less than two primitive divisors, and that these triples may be explicitly determined. We determine all of these triples $(n,\alpha,\beta)$ up to equivalence explicitly when $6<n\leq 30$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, and we tabulate the triples $(n,\alpha,\beta)$ we discovered, up to equivalence, for $30<n\leq 500$. Finally, we show that the conditions $n>6$, $n\neq 12$, are best possible, subject to the truth of two plausible conjectures.
76

Lehmer Numbers with at Least 2 Primitive Divisors

Juricevic, Robert January 2007 (has links)
In 1878, Lucas \cite{lucas} investigated the sequences $(\ell_n)_{n=0}^\infty$ where $$\ell_n=\frac{\alpha^n-\beta^n}{\alpha-\beta},$$ $\alpha \beta$ and $\alpha+\beta$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. Lucas sequences are divisibility sequences; if $m|n$, then $\ell_m|\ell_n$, and more generally, $\gcd(\ell_m,\ell_n)=\ell_{\gcd(m,n)}$ for all positive integers $m$ and $n$. Matijasevic utilised this divisibility property of Lucas sequences in order to resolve Hilbert's 10th problem. \noindent In 1930, Lehmer \cite{lehmer} introduced the sequences $(u_n)_{n=0}^\infty$ where \begin{eqnarray*} u_n& = & \frac{\alpha^{n}-\beta^n}{\alpha^{\epsilon(n)}-\beta^{\epsilon(n)}},\\ \epsilon(n)&=&\left\{\begin{array}{ll} 1, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 1 \pmod 2;\\ 2, \hspace{.1in}\mbox{if}\hspace{.1in}n\equiv 0\pmod 2;\end{array}\right. \end{eqnarray*} $\alpha \beta$ and $(\alpha +\beta)^2$ are coprime integers, and where $\beta/\alpha$ is not a root of unity. The sequences $(u_n)_{n=0}^\infty$ are known as Lehmer sequences, and the terms of these sequences are known as Lehmer numbers. Lehmer showed that his sequences had similar divisibility properties to those of Lucas sequences, and he used them to extend the Lucas test for primality. \noindent We define a prime divisor $p$ of $u_n$ to be a primitive divisor of $u_n$ if $p$ does not divide $$(\alpha^2-\beta^2)^2u_3\cdots u_{n-1}.$$ Note that in the list of prime factors of the first $n-1$ terms of the sequence $(u_n)_{n=0}^\infty$, a primitive divisor of $u_n$ is a new prime factor. \noindent We let \begin{eqnarray*} \kappa& = & k(\alpha \beta\max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}),\\ \eta & = & \left\{\begin{array}{ll}1\hspace{.1in}\mbox{if}\hspace{.1in}\kappa\equiv 1\pmod 4,\\ 2\hspace{.1in}\mbox{otherwise},\end{array}\right. \end{eqnarray*} where $k(\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\})$ is the squarefree kernel of $\alpha \beta \max\{(\alpha-\beta)^2,(\alpha+\beta)^2\}$. On the one hand, building on the work of Schinzel \cite{schinzelI}, we prove that if $n>4$, $n\neq 6$, $n/(\eta \kappa)$ is an odd integer, and the triple $(n,\alpha,\beta)$, in case $(\alpha-\beta)^2>0$, is not equivalent to a triple $(n,\alpha,\beta)$ from an explicit table, then the $n$th Lehmer number $u_n$ has at least two primitive divisors. Moreover, we prove that if $n\geq 1.2\times 10^{10}$, and $n/(\eta \kappa)$ is an odd integer, then the $n$th Lehmer number $u_n$ has at least two primitive divisors. On the other hand, building on the work of Stewart \cite{stewart77}, we prove that there are only finitely many triples $(n,\alpha,\beta)$, where $n>6$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, such that the $n$th Lehmer number $u_n$ has less than two primitive divisors, and that these triples may be explicitly determined. We determine all of these triples $(n,\alpha,\beta)$ up to equivalence explicitly when $6<n\leq 30$, $n\neq 12$, and $n/(\eta \kappa)$ is an odd integer, and we tabulate the triples $(n,\alpha,\beta)$ we discovered, up to equivalence, for $30<n\leq 500$. Finally, we show that the conditions $n>6$, $n\neq 12$, are best possible, subject to the truth of two plausible conjectures.
77

Zeros and Asymptotics of Holonomic Sequences

Noble, Rob 21 March 2011 (has links)
In this thesis we study the zeros and asymptotics of sequences that satisfy linear recurrence relations with generally nonconstant coefficients. By the theorem of Skolem-Mahler-Lech, the set of zero terms of a sequence that satisfies a linear recurrence relation with constant coefficients taken from a field of characteristic zero is comprised of the union of finitely many arithmetic progressions together with a finite exceptional set. Further, in the nondegenerate case, we can eliminate the possibility of arithmetic progressions and conclude that there are only finitely many zero terms. For generally nonconstant coefficients, there are generalizations of this theorem due to Bézivin and to Methfessel that imply, under fairly general conditions, that we obtain a finite union of arithmetic progressions together with an exceptional set of density zero. Further, a condition is given under which one can exclude the possibility of arithmetic progressions and obtain a set of zero terms of density zero. In this thesis, it is shown that this condition reduces to the nondegeneracy condition in the case of constant coefficients. This allows for a consistent definition of nondegeneracy valid for generally nonconstant coefficients and a unified result is obtained. The asymptotic theory of sequences that satisfy linear recurrence relations with generally nonconstant coefficients begins with the basic theorems of Poincaré and Perron. There are some generalizations of these theorems that hold in greater generality, but if we restrict the coefficient sequences of our linear recurrences to be polynomials in the index, we obtain full asymptotic expansions of a predictable form for the solution sequences. These expansions can be obtained by applying a transfer method of Flajolet and Sedgewick or, in some cases, by applying a bivariate method of Pemantle and Wilson. In this thesis, these methods are applied to a family of binomial sums and full asymptotic expansions are obtained. The leading terms of the expansions are obtained explicitly in all cases, while in some cases a field containing the asymptotic coefficients is obtained and some divisibility properties for the asymptotic coefficients are obtained using a generalization of a method of Stoll and Haible.
78

Transcribing an Animation: The case of the Riemann Sums

Hamdan, May 16 April 2012 (has links) (PDF)
In this paper I present a theoretical analysis (genetic decomposition) of the cognitive constructions for the concept of infinite Riemann sums following Piaget\'s model of epistemology. This genetic decomposition is primarily based on my own mathematical knowledge as well as on my continual observations of students in the process of learning. Based on this analysis I plan to suggest instructional procedures that motivate the mental activities described in the proposed genetic decomposition. In a later study, I plan to present empirical data in the form of informal interviews with students at different stages of learning. The analysis of those interviews may suggest a review of my initial genetic decomposition.
79

Self-Normalized Sums and Directional Conclusions

Jonsson, Fredrik January 2012 (has links)
This thesis consists of a summary and five papers, dealing with self-normalized sums of independent, identically distributed random variables, and three-decision procedures for directional conclusions. In Paper I, we investigate a general set-up for Student's t-statistic. Finiteness of absolute moments is related to the corresponding degree of freedom, and relevant properties of the underlying distribution, assuming independent, identically distributed random variables. In Paper II, we investigate a certain kind of self-normalized sums. We show that the corresponding quadratic moments are greater than or equal to one, with equality if and only if the underlying distribution is symmetrically distributed around the origin. In Paper III, we study linear combinations of independent Rademacher random variables. A family of universal bounds on the corresponding tail probabilities is derived through the technique known as exponential tilting. Connections to self-normalized sums of symmetrically distributed random variables are given. In Paper IV, we consider a general formulation of three-decision procedures for directional conclusions. We introduce three kinds of optimality characterizations, and formulate corresponding sufficiency conditions. These conditions are applied to exponential families of distributions. In Paper V, we investigate the Benjamini-Hochberg procedure as a means of confirming a selection of statistical decisions on the basis of a corresponding set of generalized p-values. Assuming independence, we show that control is imposed on the expected average loss among confirmed decisions. Connections to directional conclusions are given.
80

Exponential sum estimates and Fourier analytic methods for digitally based dynamical systems / Estimation de sommes d'exponentielles et méthodes d'analyse de Fourier pour les systèmes dynamiques basés sur les développements digitaux

Müllner, Clemens 21 February 2017 (has links)
La présente thèse a été fortement influencée par deux conjectures, l'une de Gelfond et l'autre de Sarnak.En 1968, Gelfond a prouvé que la somme des chiffres modulo m est asymtotiquement équirépartie dans des progressions arithmétiques, et il a formulé trois problèmes nouveaux.Le deuxième et le troisième problèmes traitent des sommes des chiffres pour les nombres premiers et les suites polynomiales.En ce qui concerne les nombres premiers et les carrés, Mauduit et Rivat ont résolu ces problèmes en 2010 et 2009, respectivement.Drmota, Mauduit et Rivat ont réussi généraliser le résultat concernant la suite des sommes des chiffres des carrés.Ils ont démontré que chaque bloc apparaît asymptotiquement avec la même fréquence.Selon la conjecture de Sarnak, il n'y a pas de corrélation entre la fonction de Möbius et des fonctions simples.La présente thèse traite de la répartition de suites automatiques le long de sous-suites particulières ainsi que d'autres propriétés de suites automatiques.Selon l'un des résultats principaux du présent travail, toutes les suites automatiques vérifient la conjecture de Sarnak.Moyennant une approche légèrement modifiée, nous traitons également la répartition de suites automatiques le long de la suite des nombres premiers.Dans le cadre du traitement de suites automatiques générales, nous avons mis au point une nouvelle structure destinée aux automates finisdéterministes ouvrant une vision nouvelle pour les automates et/ou les suites automatiques.Nous étendons les résultat de Drmota, Mauduit et Rivat concernant les suites digitales.Cette approche peut également être considérée comme une généralisation du troisième problème de Gelfond. / The present dissertation was inspired by two conjectures, one by Gelfond and one of Sarnak.In 1968 Gelfond proved that the sum of digits modulo m is asymptotically equally distributed along arithmetic progressions.Furthermore, he stated three problems which are nowadays called Gelfond problems.The second and third questions are concerned with the sum of digits of prime numbers and polynomial subsequences.Mauduit and Rivat were able to solve these problems for primes and squares in 2010 and 2009 respectively.Drmota, Mauduit and Rivat generalized the result concerning the sequence of the sum of digits of squares.They showed that each block appears asymptotically equally frequently.Sarnak conjectured in 2010 that the Mobius function does not correlate with deterministic functions.This dissertation deals with the distribution of automatic sequences along special subsequences and other properties of automatic sequences.A main result of this thesis is that all automatic sequences satisfy the Sarnak conjecture.Through a slightly modified approach, we also deal with the distribution of automatic sequences along the subsequence of primes.In the course of the treatment of general automatic sequences, a new structure for deterministic finite automata is developed,which allows a new view for automata or automatic sequences.We extend the result of Drmota, Mauduit and Rivat to digital sequences.This is also a generalization of the third Gelfond problem.

Page generated in 0.0471 seconds