Spelling suggestions: "subject:"sums"" "subject:"gums""
81 |
Manejo de pastagem natural em pastoreio rotativo no período de outono/invernoKuinchtner, Bruno Castro 21 February 2013 (has links)
Conselho Nacional de Desenvolvimento Científico e Tecnológico / The aim of this study was to evaluate the performance, the ingestive behavior and
dry matter intake of beef heifers receiving supplementation on natural pasture grazed
in two thermal sums, which defined the interval of rest between grazing during
autumn-winter season. A complete randomized block design experiment with two
treatments and three replications was conducted from May to September 2011 in an
experiment area of theUniversidadeFederal de Santa Maria, located at Depressão
Central region, in Rio Grande do Sul state, Brazil. The treatments were two thermal
sums: 375 and 750 degrees-days (DD) determined by the intervals between
rotational grazing periods, the 375 DD treatment favors prostrate
species(Axonopusaffinis e Paspalumnotatum) and the 750 DD treatment favors
tussock species(Aristidalaevis e Saccharumangustifolius). The 23ha experimental
area was divided into six experimental units, which housed two treatments and three
replications. A total of 36 beef heifers with an average age of 18 months each, 18
Angus heifers with an average initial weight of 212 ± 19kg and 18 Charolais × Nellore
crossbreed heifers with average initial weight of 227 ± 9.9 kg.Throughout the
experiment all heifers received a ground corn supplement at a rate of 0.5% of body
weight daily at 2:00 p.m. and had free access to mineral supplementation protein
(45% CP). The use of functional groups morphogenic traits to determine the rest
intervals of the paddocks in the rotational grazing method results in better pasture
quality and high stocking rate Maintain at least 30% of leaf blade avoids discomfort in
behavior activities and average height of at least 10cm of lower strata in natural
pastures avoids reduction in intake in grazing beef heifers. / O objetivo deste estudo foi avaliar o desempenho, o comportamento ingestivo e o
consumo de matéria seca de novilhas de corte recebendo suplemento em pastagem
natural, durante o outono-inverno, em pastoreio rotativo. O delineamento
experimental foi o de blocos completamente casualizados, com dois tratamentos e
três repetições de área, as repetições foram subdivididas em seis e oitos piquetes,
para cada um dos tratamentos. O experimento foi realizado de maio a setembro de
2011, em área pertencente à Universidade Federal de Santa Maria, localizada região
fisiográfica Depressão Central do Rio Grande do Sul, Brasil. Os tratamentos foram
duas somas térmicas: 375 e 750 graus-dias (GD), que determinaram os intervalos
entre os pastoreios, o tratamento de 375 GD, foi definido pela duração da expansão
foliar de espécies de crescimento prostrado (Axonopusaffinis e Paspalumnotatum) e
o tratamento de 750 GD, pela duração da expansão foliar de espécies cespitosas
(Aristidalaevis e Saccharumangustifolius). A área experimental possuía 23 ha e foi
dividida em seis unidades experimentais, que abrigavam os dois tratamentos e as
três repetições. Foram utilizadas 36 novilhas de corte com idade média de 18
meses, sendo 18 oriundas de cruzamentos entre as raças Charolês × Nelore, com
peso médio no inicio do experimento de 227 ± 9,9 kg e 18 da raça Red Angus com
peso médio inicial de 212 ± 19 kg. Durante todo o experimento, as novilhas
receberam como suplemento grão de milho moído a uma taxa de 0,5% de peso vivo
por dia, às 14 horas e tiveram livre acesso à suplementação proteínada (45% PB). A
quantidade de material morto da pastagem é um complicador do manejo, fazendo
que os animais tenham mais dificuldade em selecionar a dieta. A utilização das
características morfogênicas para determinar o tempo de descanso em pastoreio
rotativo melhora a qualidade do pasto e aliado ao fornecimento de suplementos
torna o sistema de produção pecuário competitivo. O maior número de touceiras não
altera as atividades comportamentais e o consumo por novilhas de corte.
|
82 |
Propriétés arithmétiques et statistiques des fonctions digitales restreintesShawket, Zaid Esmat 22 July 2011 (has links)
Dans ce travail nous étudions les propriétés arithmétiques et statistiques d'une nouvelle classe de fonctions de comptage des chiffres appelées fonctions digitales restreintes. Nous présentons tout d'abord les principales propriétés des suites engendrées par une substitution ou un $q$-automate ainsi que la suite célèbre de Thue-Morse et ses généralisations, puis nous comparons ces notions avec celle de fonction digitale restreinte.Nous étudions ensuite les sommes d'exponentielles associées à ces fonctions digitales restreintes ainsi que leur application d'une part à l'étude de la répartition modulo 1 des fonctions digitales restreintes et d'autre part à l'étude des propriétés statistiques des suites arithmétiques définies par des fonctions digitales restreintes.Dans la dernière partie de ce travail on étudie la représentation géométrique de ces sommes d'exponentielle à la lumière des travaux antérieurs de Dekking et Mendès-France ce qui nous conduit à énoncer plusieurs problèmes ouverts. / In this work we study the arithmetic and statistic properties of a new class of digital counting functions called restricted digital functions. We first present the main properties of sequences generated by a substitution or a $q$-automate followed by presenting the famous Thue-Morse sequence and its generalizations, then we compare these notions with the one of the restricted digital function.We then study the exponential sums associated with these restricted digital function and their implementation on the one hand to the study of uniform distribution modulo 1 of these restricted digital functions and on the other, to the study of the statistical properties of the arithmetic sequences defined by restricted digital functions.In the last part of this work we study the geometric representation of these exponential sums in the light of previous works of Dekking and Mendès-France which leads us to announce several open problems.
|
83 |
Užití modelů diskrétních dat / Application of count data modelsReichmanová, Barbora January 2018 (has links)
Při analýze dat růstu rostlin v řádku dané délky bychom měli uvažovat jak pravděpodobnost, že semínko zdárně vyroste, tak i náhodný počet semínek, které byly zasety. Proto se v celé práci věnujeme analýze náhodných sum, kde počet nezávisle stejně rozdělených sčítanců je na nich nezávislé náhodné číslo. První část práce věnuje pozornost teoretickému základu, definuje pojem náhodná suma a uvádí vlastnosti, jako jsou číslené míry polohy nebo funkční charakteristiky popisující dané rozdělení. Následně je diskutována metoda odhadu parametrů pomocí maximální věrohodnosti a zobecněné lineární modely. Metoda kvazi-věrohodnosti je též krátce zmíněna. Tato část je ilustrována příklady souvisejícími s výchozím problémem. Poslední kapitola se věnuje aplikaci na reálných datech a následné analýze.
|
84 |
Chiffres des nombres premiers et d'autres suites remarquables / Digits of prime numbers and other remarkable sequencesSwaenepoel, Cathy 07 June 2019 (has links)
Dans ce travail, nous étudions la répartition des chiffres des nombres premiers. Bourgain (2015) a obtenu une formule asymptotique pour le nombre de nombres premiers avec une proportion$c > 0$ de chiffres préassignés en base 2 ($c$ est une constante absolue non précisée).Nous généralisons ce résultat à toute base $g \geq 2$ et nousdonnons des valeurs explicites pour la proportion $c$ en fonction de $g$. En adaptant, développant et précisant la stratégie introduite par Bourgain dans le cas $g=2$, nous présentons une démonstration détaillée du cas général.La preuve est fondée sur la méthode du cercle et combine des techniques d’analyse harmonique avec des résultats sur les zéros des fonctions $L$ de Dirichlet, notamment une région sans zérotrès fine due à Iwaniec.Ce travail s'inscrit aussi dans l'étude des nombres premiers dans des ensembles << rares >>.Nous étudions également la répartition des << chiffres >> (au sens de Dartyge et S\'ark\"ozy) de quelques suites remarquables dans le contexte des corps finis. Ce concept de << chiffre >> est à la base de la représentation des corps finis dans les logiciels de calcul formel.Nous étudions des suites variées comme les suites polynomiales, les générateurs ou encore les produits d'éléments de deux ensembles assez grands. Les méthodes développées permettent d'obtenir des estimations explicites très précises voire optimales dans certains cas. Les sommes d'exponentielles sur les corps finis jouent un rôle essentiel dans les démonstrations.Les résultats obtenus peuvent être reformulés d'un point de vue plus algébrique avec la fonction trace qui est très importante dans l'étude des corps finis. / In this work, we study the distribution of prime numbers' digits. Bourgain (2015) obtained an asymptotic formula for the number of prime numbers with a proportion $c > 0$ of preassigned digits in base 2 ($c$ is an absolute constant not specified). We generalize this result in any base $g \geq 2$ and we provide explicit admissible values for the proportion $c$ depending on $g$.By adapting, developing and refining Bourgain's strategy in the case $g=2$, we present a detailed proof for the general case.The proof is based onthe circle method and combines techniques from harmonic analysis together with results onzeros of Dirichlet $L$-functions, notably a very sharp zero-free region due to Iwaniec.This work also falls within the study of prime numbers in sparse ``sets''.In addition, we study the distribution of the ``digits'' (in the sense of Dartyge and S\'ark\"ozy) of some sequences of interest in the context of finite fields. This concept of ``digits'' is fundamental in the representation of finite fields in computer algebra systems. We study various sequences such as polynomial sequences, generators as well as products of elements of two large enough sets.Our methods provide very sharp explicit estimates which are even optimal in some cases.Exponential sums over finite fields play an essential role in the proofs.Our results can be reformulated from a more algebraic point of view with the trace function which is of basic importance in the study of finite fields.
|
85 |
Long large character sumsBujold, Crystel 12 1900 (has links)
Cette thèse traite d’un sujet central de la théorie analytique des nombres, notamment celui des caractères de Dirichlet et plus particulièrememt, celui des sommes de caractères. Plus précisément, on y développe un résultat concernant la valeur maximale pouvant être atteinte par une longue somme de caractère. Chemin faisant, nous serons amenés à investiguer la structure de réseaux et nous en soutirerons un résultat intéressant. Dans le Chapitre 1 sont discutées les notions et techniques nécessaires à l’élaboration
de la preuve du résultat principal. On y discutera des notions d’analyse harmonique, de techniques classiques de théorique des nombres et l’on fera finalement un survol des nombres friables. Le Chapitre 2 introduira la théorie propre aux caractères de Dirichlet et aux sommes de
caractères. Les propriétés de bases et les théorèmes classiques seront couverts ainsi qu’un aperçu des résultats récents qui touchent de près au sujet principal de cette thèse. On donnera au Chapitre 3 un premier résultat qui fera diverger la thèse dans le domaine
des réseaux. Il s’agit d’un résultat auxiliaire au résultat principal, mais qui offre un intérêt indépendant aux sommes de caractères. Il sera question de l’ordre de grandeur des multiples d’un vecteur choisi dans un réseau, lorsque les multiplicateurs sont dans certaines classes de congruences. Le Chapitre 4 servira de lien entre les réseaux et les caractères et on y appliquera les
théorème démontrés au Chapitre 3. Les résultats sur les caractères qui en découlerons serons les éléments clés pour la preuve du théorème principal. Au chapitre 5, nous dériverons quelques estimés préliminaires qui seront nécessaires à la
preuve du théorème principal. En particulier, le chapitre sera divisé en deux sectioncs; l’une traitant de sommes exponentielles, l’autre de nombre friables. Finalement, le Chapitre 6 constitura le point culminant de cette thèse et servira à
démontrer le résultat principal sur les sommes de caractères. Nous y prouverons une borne inférieur sur le maximum pouvant être atteinte par un caractère parmi les caractères modulo un nombre premier q. / This thesis deals with a central topic in analytic number theory, namely that of characters and more specifically, that of character sums. More precisely, we will develop a result concerning the maximal value that can be attained by some long character sum. In Chapter 1 are discussed the notions and techniques that will be necessary in the
elaboration of the proof of the main result. We will discuss notions of harmonic analysis, classical number theoretic techniques, as well as give an overview of smooth numbers. Chapter 2 will serve as an introduction to the theory pertaining to Dirichlet characters
and character sums. Basic properties and classical theorems will be covered and we will provide a survey of recent results closely related to the main topic on interest in this thesis. We will give in Chapter 3 a first result which will lead this thesis to diverge into the
field of lattices. It comes up as an auxiliary result to the main result, but bares an interest independent to characters. We will discuss the order of magnitude of multiples of a chosen lattice vector, when the multipliers lie in prescribed congruence classes. Chapter 4 will serve as a bridge between lattices and characters and we will study the consequences of applying the theorems we proved in Chapter 3 to characters. We will derive results that will be key to the proof of our main theorem. In Chapter 5, we will prepare the ground for the proof of our main theorem by unveiling
some preliminary estimates that will be needed. In particular, the chapter will consist of two parts: one treating of exponential sums, while the other one will be concerned with smooth numbers. Finally, Chapter 6 will be the apex of this thesis and will provide the proof of our main
result on character sums. The argument built in this chapter will allow us to prove a lower bound for the maximal value that can be reached by a character among the characters modulo a prime number q.
|
86 |
Fast and approximate computation of Laplace and Fourier transforms / Schnelle und approximative Berechnung von Laplace- und Fourier-TransformationenMelzer, Ines 04 April 2016 (has links)
In this thesis, we treat the computation of transforms with asymptotically smooth and oscillatory kernels. We introduce the discrete Laplace transform in a modern form including a generalization to more general kernel functions. These more general kernels lead to specific function transforms. Moreover, we treat the butterfly fast Fourier transform. Based on a local error analysis, we develop a rigorous error analysis for the whole butterfly scheme. In the final part of the thesis, the Laplace and Fourier transform are combined to a fast Fourier transform for nonequispaced complex evaluation nodes. All theoretical results on accuracy and computational complexity are illustrated by numerical experiments.
|
87 |
Multiplicative functions with small partial sums and an estimate of Linnik revisitedSachpazis, Stylianos 07 1900 (has links)
Cette thèse se compose de deux projets. Le premier concerne la structure des fonctions multiplicatives dont les moyennes sont petites. En particulier, dans ce projet, nous établissons le comportement moyen des valeurs \(f(p)\) de \(f\) aux nombres premiers pour des fonctions \(f\) multiplicatives appropriées lorsque leurs sommes partielles \(\sum_{n\leqslant x}f(n)\) sont plus petites que leur borne supérieure triviale par un facteur d′une puissance de \(\log x\). Ce résultat poursuit un travail antérieur de Koukoulopoulos et Soundararajan et il est construit sur des idées provenant du traitement plus soigné de Koukoulopoulos sur le cas special des fonctions multiplicatives bornées.
Le deuxième projet de la thèse est inspiré par un analogue d’une estimation que Linnik a déduit dans sa tentative de prouver son célèbre théorème concernant la taille du plus petit nombre premier d’une progression arithmétique. Cette estimation fournit une formule asymptotique fortement uniforme pour les sommes de la fonction de von Mangoldt \(\Lambda\) sur les progressions arithmétiques. Dans la littérature, ses preuves existantes utilisent des informations non triviales sur les zéros des fonctions \(L\) de Dirichlet \(L(\cdot,\chi)\) et le but du deuxième projet est de présenter une approche différente, plus élémentaire qui récupère cette estimation en évitant la “langue” de ces zéros. Pour le développement de cette méthode alternative, nous utilisons des idées qui apparaissent dans le grand crible prétentieux (pretentious large sieve) de Granville, Harper et Soundararajan. De plus, comme dans le cas du premier projet, nous empruntons également des idées du travail de Koukoulopoulos sur la structure des fonctions multiplicatives bornées à petites moyennes. / This thesis consists of two projects. The first one is concerned with the structure of multiplicative functions whose averages are small. In particular, in this project, we establish the average behaviour of the prime values \(f(p)\) for suitable multiplicative functions \(f\) when their partial sums \(\sum_{n\leqslant x}f(n)\) admit logarithmic cancellations over their trivial upper bound. This result extends previous related work of Koukoulopoulos and Soundararajan and it is built upon ideas coming from the more careful treatment of Koukoulopoulos on the special case of bounded multiplicative functions.
The second project of the dissertation is inspired by an analogue of an estimate that Linnik deduced in his attempt to prove his celebrated theorem regarding the size of the smallest prime number of an arithmetic progression. This estimate provides a strongly uniform asymptotic formula for the sums of the von Mangoldt function \(\Lambda\) on arithmetic progressions. In the literature, its existing proofs involve non-trivial information about the zeroes of Dirichlet \(L\)-functions \(L(\cdot,\chi)\) and the purpose of the second project is to present a different, more elementary approach which recovers this estimate by avoiding the “language” of those zeroes. For the development of this alternative method, we make use of ideas that appear in the pretentious large sieve of Granville, Harper and Soundararajan. Moreover, as in the case of the first project, we also borrow insights from the work of Koukoulopoulos on the structure of bounded multiplicative functions with small averages.
|
88 |
Entiers friables et formes binaires / Friable integers and binary formsLachand, Armand 02 December 2014 (has links)
Un entier est dit y-friable si tous ses facteurs premiers n'excèdent pas y. Les valeurs friables de formes binaires interviennent de manière essentielle dans l'algorithme de factorisation du crible algébrique (NFS). Dans cette thèse, nous obtenons des formules asymptotiques pour le nombre de représentations des entiers friables par différentes familles de polynômes. Nous considérons dans la première partie les formes binaires qui se décomposent comme produit d'une forme linéaire et d'une forme quadratique. Nous combinons pour cela le principe d'inclusion-exclusion à des idées issues de travaux sur la distribution multiplicative de certaines suites d'entiers représentés par des formes quadratiques développés par Fouvry et Iwaniec, puis Balog, Blomer, Dartyge et Tenenbaum. Dans un second temps, nous nous concentrons sur les valeurs friables de formes cubiques irréductibles. En adaptant les travaux de Heath-Brown et Moroz sur les nombres premiers représentés par de tels polynômes, nous obtenons des formules asymptotiques valides dans un vaste domaine de friabilité. Notre méthode permet également d'évaluer des moyennes sur les valeurs d'une forme cubique pour d'autres fonctions arithmétiques comprenant en particulier les fonctions de Möbius et de Liouville. Dans le dernier chapitre, nous étudions les corrélations de l'indicatrice des friables avec les nilsuites. En employant la méthode nilpotente de Green et Tao, nous en déduisons une formule pour le nombre de valeurs friables d'un produit de formes affines deux à deux affinement indépendantes / An integer is called y-friable if its largest prime factor does not exceed y. Friable values of binary forms play a central role in the integer factoring algorithm NFS (Number Field Sieve). In this thesis, we obtain some asymptotic formulas for the number of representations of friable integers by various classes of polynomials. In the first part, we focus on binary forms which split as a product of a linear form and a quadratic form. To achieve this, we combine the inclusion-exclusion principle with ideas based on works of Fouvry and Iwaniec and Balog, Blomer, Dartyge and Tenenbaum related to the distribution of some sequences of integers represented by quadratic forms. We then take a closer look at friable values of irreducible cubic forms. Extending some previous works of Heath-Brown and Moroz concerning primes represented by such polynomials, we provide some asymptotic formulas which hold in a large range of friability. With this method, we also evaluate some means over the values of an irreducible cubic form for other multiplicative functions including the Möbius function and the Liouville function. In the last chapter, we investigate the correlations between nilsequences and the characteristic function of friable integers. By using the nilpotent method of Green and Tao, our work provides a formula for the number of friable integers represented by a product of affine forms such that any two forms are affinely independent
|
89 |
Methoden zur Beschreibung von chemischen Strukturen beliebiger Dimensionalität mit der Dichtefunktionaltheorie unter periodischen RandbedingungenBurow, Asbjörn Manfred 28 November 2011 (has links)
Die vorliegende Arbeit ist ein Beitrag auf dem Gebiet der theoretischen Chemie und beschäftigt sich mit der Entwicklung effizienter Berechnungsmethoden für die Elektronendichte und die Energie des Grundzustands molekularer und periodischer Systeme im Rahmen der Kohn-Sham-Dichtefunktionaltheorie (Kohn-Sham-DFT) und unter Verwendung von lokalen Basisfunktionen. Im Vordergrund steht dabei die einheitliche Beschreibung von Molekülen und ausgedehnten Systemen beliebiger Periodizität (zum Beispiel Volumenkristalle, dünne Filme und Polymere) mit einfachen Algorithmen bei einem hohen Maß an numerischer Genauigkeit und Recheneffizienz. Dafür hat der Verfasser bewährte molekulare Simulationsmethoden in neuartiger Form auf periodische Randbedingungen erweitert und zu einer vollständigen DFT-Methode vereint. Von diesen Methoden ist das völlig neue Konzept für die RI-Methode (resolution of identity, Zerlegung der Einheit), die auf den Coulomb-Term angewendet wird, die Schlüsseltechnologie in dieser Arbeit. Ein Merkmal der Methode ist, dass sie ausschließlich im direkten Raum arbeitet. Neben der RI-Methode wurden weitere methodische Ansätze entwickelt werden, um eine gute Speicher- und Zeiteffizienz der gesamten DFT-Methode zu gewährleisten. Dazu gehören die Komprimierung der speicherintensiven Dichte- und Kohn-Sham-Matrizes und die numerische Integration des Austausch-Korrelationsterms durch die Anwendung eines adaptiven, numerischen Integrationsschemas. Die vorgestellten Methoden werden zum Prototypen eines RI-DFT-Programms zusammengefügt. Dieses Programm ermöglicht die Berechnung von single point-Energien am Gamma-Punkt für Systeme mit abgeschlossenen Schalen. Anhand von Berechnungen werden die numerische Genauigkeit und Effizienz bewertet. Das Programm bildet die Basis für ein effizientes und leistungsfähiges DFT-Programm, das Moleküle und periodische Systeme methodisch einheitlich und numerisch genau behandelt. / This work contributes to the field of theoretical chemistry and is aimed at the development of efficient methods for computation of the electron density and the energy belonging to the ground state of molecular and periodic systems. It is based on the use of Kohn Sham density functional theory (Kohn Sham DFT) and local basis functions. In this scope, the molecular and the periodic systems of any dimensionality (e.g., bulk crystals, thin films, and polymers) are treated on an equal footing using methods which are easy to implement, numerically accurate, and highly efficient. For this, the author has augmented established methods of molecular simulations for their use with periodic boundary conditions applying novel techniques. These methods have been combined to a complete DFT method. Among these methods, the innovative approach for the RI (resolution of identity) method applied to the Coulomb term represents the key technology of this work. As a striking feature, this approach operates exclusively in real space. Although the RI method is the chief ingredient, the development of further methods is required to achieve overall efficiency for the consumption of storage and time. One of these methods is used to compress the density and Kohn Sham matrices. Moreover, numerical integration of the exchange-correlation term has been improved applying an adaptive numerical integration scheme. The methods presented in this thesis are combined to the prototype of an RI-DFT program. Using this program single point energies on the gamma point can be calculated for systems with closed shells. Calculations have been performed and the results are used to assess the accuracy and efficiency achieved. This program forms the foundation of an efficient and competitive DFT code. It works numerically accurate and treats molecules and periodic systems on an equal footing.
|
90 |
Faisceau automorphe unipotent pour G₂, nombres de Franel, et stratification de Thom-Boardman / Unipotent automorphic sheaf for G₂, Franel numbers, and Thom-Boardman stratificationYe, Lizao 27 September 2019 (has links)
Dans cette thèse, d’une part, nous généralisons au cas équivariant un résultat de J. Denef et F. Loeser sur les sommes trigonométriques sur un tore ; d’autre part, nous étudions la stratification de Thom-Boardman associée à la multiplication des sections globales des fibrés en droites sur une courbe. Nous montrons une inégalité subtile sur les dimensions de ces strates. Notre motivation vient du programme de Langlands géométrique. En s’appuyant sur les travaux de W. T. Gan, N. Gurevich, D. Jiang et de S. Lysenko, nous proposons, pour le groupe réductif G de type G2, une construction conjecturale du faisceau automorphe dont le paramètre d’Arthur est unipotent et sous-régulier. En utilisant nos deux résultats ci-dessus, nous déterminons les rangs génériques de toutes les composantes isotypiques d’un faisceau S₃-équivariant qui apparaît dans notre conjecture, ce S₃ étant le centralisateur du SL2 sous-régulier dans le groupe dual de Langlands de G. / In this thesis, on the one hand, we generalise to the equivariant case a result of J. Denef and F. Loeser about trigonometric sums on tori ; on the other hand, we study the Thom-Boardman stratification associated to the multiplication of global sections of line bundles on a curve. We prove a subtle inequaliity about the dimensions of these strata. Our motivation comes from the geometric Langlands program. Based on works of W. T. Gan, N. Gurevich, D. Jiang and S. Lysenko, we propose, for the reductive group G of type G2, a conjectural construction of the automorphic sheaf whose Arthur parameter is unipotent and sub-regular. Using our two results above, we determine the generic ranks of all isotypic components of an S3-equivaraint sheaf which appears in our conjecture, this S3 being the centraliser of the sub-regular SL2 inside the Langlands dual group of G.
|
Page generated in 0.052 seconds