• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 124
  • 109
  • 15
  • 3
  • Tagged with
  • 255
  • 229
  • 158
  • 112
  • 65
  • 64
  • 64
  • 58
  • 58
  • 55
  • 54
  • 54
  • 51
  • 50
  • 46
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Learning sensori-motor mappings using little knowledge : application to manipulation robotics / Apprentissage de couplages sensori-moteur en utilisant très peu d'informations : application à la robotique de manipulation

De La Bourdonnaye, François 18 December 2018 (has links)
La thèse consiste en l'apprentissage d'une tâche complexe de robotique de manipulation en utilisant très peu d'aprioris. Plus précisément, la tâche apprise consiste à atteindre un objet avec un robot série. L'objectif est de réaliser cet apprentissage sans paramètres de calibrage des caméras, modèles géométriques directs, descripteurs faits à la main ou des démonstrations d'expert. L'apprentissage par renforcement profond est une classe d'algorithmes particulièrement intéressante dans cette optique. En effet, l'apprentissage par renforcement permet d’apprendre une compétence sensori-motrice en se passant de modèles dynamiques. Par ailleurs, l'apprentissage profond permet de se passer de descripteurs faits à la main pour la représentation d'état. Cependant, spécifier les objectifs sans supervision humaine est un défi important. Certaines solutions consistent à utiliser des signaux de récompense informatifs ou des démonstrations d'experts pour guider le robot vers les solutions. D'autres consistent à décomposer l'apprentissage. Par exemple, l'apprentissage "petit à petit" ou "du simple au compliqué" peut être utilisé. Cependant, cette stratégie nécessite la connaissance de l'objectif en termes d'état. Une autre solution est de décomposer une tâche complexe en plusieurs tâches plus simples. Néanmoins, cela n'implique pas l'absence de supervision pour les sous tâches mentionnées. D'autres approches utilisant plusieurs robots en parallèle peuvent également être utilisés mais nécessite du matériel coûteux. Pour notre approche, nous nous inspirons du comportement des êtres humains. Ces derniers généralement regardent l'objet avant de le manipuler. Ainsi, nous décomposons la tâche d'atteinte en 3 sous tâches. La première tâche consiste à apprendre à fixer un objet avec un système de deux caméras pour le localiser dans l'espace. Cette tâche est apprise avec de l'apprentissage par renforcement profond et un signal de récompense faiblement supervisé. Pour la tâche suivante, deux compétences sont apprises en parallèle : la fixation d'effecteur et une fonction de coordination main-oeil. Comme la précédente tâche, un algorithme d'apprentissage par renforcement profond est utilisé avec un signal de récompense faiblement supervisé. Le but de cette tâche est d'être capable de localiser l'effecteur du robot à partir des coordonnées articulaires. La dernière tâche utilise les compétences apprises lors des deux précédentes étapes pour apprendre au robot à atteindre un objet. Cet apprentissage utilise les mêmes aprioris que pour les tâches précédentes. En plus de la tâche d'atteinte, un predicteur d'atteignabilité d'objet est appris. La principale contribution de ces travaux est l'apprentissage d'une tâche de robotique complexe en n'utilisant que très peu de supervision. / The thesis is focused on learning a complex manipulation robotics task using little knowledge. More precisely, the concerned task consists in reaching an object with a serial arm and the objective is to learn it without camera calibration parameters, forward kinematics, handcrafted features, or expert demonstrations. Deep reinforcement learning algorithms suit well to this objective. Indeed, reinforcement learning allows to learn sensori-motor mappings while dispensing with dynamics. Besides, deep learning allows to dispense with handcrafted features for the state spacerepresentation. However, it is difficult to specify the objectives of the learned task without requiring human supervision. Some solutions imply expert demonstrations or shaping rewards to guiderobots towards its objective. The latter is generally computed using forward kinematics and handcrafted visual modules. Another class of solutions consists in decomposing the complex task. Learning from easy missions can be used, but this requires the knowledge of a goal state. Decomposing the whole complex into simpler sub tasks can also be utilized (hierarchical learning) but does notnecessarily imply a lack of human supervision. Alternate approaches which use several agents in parallel to increase the probability of success can be used but are costly. In our approach,we decompose the whole reaching task into three simpler sub tasks while taking inspiration from the human behavior. Indeed, humans first look at an object before reaching it. The first learned task is an object fixation task which is aimed at localizing the object in the 3D space. This is learned using deep reinforcement learning and a weakly supervised reward function. The second task consists in learning jointly end-effector binocular fixations and a hand-eye coordination function. This is also learned using a similar set-up and is aimed at localizing the end-effector in the 3D space. The third task uses the two prior learned skills to learn to reach an object and uses the same requirements as the two prior tasks: it hardly requires supervision. In addition, without using additional priors, an object reachability predictor is learned in parallel. The main contribution of this thesis is the learning of a complex robotic task with weak supervision.
102

Annotation of the human genome through the unsupervised analysis of high-dimensional genomic data / Annotation du génome humain grâce à l'analyse non supervisée de données de séquençage haut débit

Morlot, Jean-Baptiste 12 December 2017 (has links)
Le corps humain compte plus de 200 types cellulaires différents possédant une copie identique du génome mais exprimant un ensemble différent de gènes. Le contrôle de l'expression des gènes est assuré par un ensemble de mécanismes de régulation agissant à différentes échelles de temps et d'espace. Plusieurs maladies ont pour cause un dérèglement de ce système, notablement les certains cancers, et de nombreuses applications thérapeutiques, comme la médecine régénérative, reposent sur la compréhension des mécanismes de la régulation géniques. Ce travail de thèse propose, dans une première partie, un algorithme d'annotation (GABI) pour identifier les motifs récurrents dans les données de séquençage haut-débit. La particularité de cet algorithme est de prendre en compte la variabilité observée dans les réplicats des expériences en optimisant le taux de faux positif et de faux négatif, augmentant significativement la fiabilité de l'annotation par rapport à l'état de l'art. L'annotation fournit une information simplifiée et robuste à partir d'un grand ensemble de données. Appliquée à une base de données sur l'activité des régulateurs dans l'hématopoieïse, nous proposons des résultats originaux, en accord avec de précédentes études. La deuxième partie de ce travail s'intéresse à l'organisation 3D du génome, intimement lié à l'expression génique. Elle est accessible grâce à des algorithmes de reconstruction 3D à partir de données de contact entre chromosomes. Nous proposons des améliorations à l'algorithme le plus performant du domaine actuellement, ShRec3D, en permettant d'ajuster la reconstruction en fonction des besoins de l'utilisateur. / The human body has more than 200 different cell types each containing an identical copy of the genome but expressing a different set of genes. The control of gene expression is ensured by a set of regulatory mechanisms acting at different scales of time and space. Several diseases are caused by a disturbance of this system, notably some cancers, and many therapeutic applications, such as regenerative medicine, rely on understanding the mechanisms of gene regulation. This thesis proposes, in a first part, an annotation algorithm (GABI) to identify recurrent patterns in the high-throughput sequencing data. The particularity of this algorithm is to take into account the variability observed in experimental replicates by optimizing the rate of false positive and false negative, increasing significantly the annotation reliability compared to the state of the art. The annotation provides simplified and robust information from a large dataset. Applied to a database of regulators activity in hematopoiesis, we propose original results, in agreement with previous studies. The second part of this work focuses on the 3D organization of the genome, intimately linked to gene expression. This structure is now accessible thanks to 3D reconstruction algorithm from contact data between chromosomes. We offer improvements to the currently most efficient algorithm of the domain, ShRec3D, allowing to adjust the reconstruction according to the user needs.
103

Learning compact representations for large scale image search / Apprentissage de représentations compactes pour la recherche d'images à grande échelle

Jain, Himalaya 04 June 2018 (has links)
Cette thèse aborde le problème de la recherche d'images à grande échelle. Pour aborder la recherche d'images à grande échelle, il est nécessaire de coder des images avec des représentations compactes qui peuvent être efficacement utilisées pour comparer des images de manière significative. L'obtention d'une telle représentation compacte peut se faire soit en comprimant des représentations efficaces de grande dimension, soit en apprenant des représentations compactes de bout en bout. Le travail de cette thèse explore et avance dans ces deux directions. Dans notre première contribution, nous étendons les approches de quantification vectorielle structurée telles que la quantification de produit en proposant une représentation somme pondérée de codewords. Nous testons et vérifions les avantages de notre approche pour la recherche approximative du plus proche voisin sur les caractéristiques d'image locales et globales, ce qui est un moyen important d'aborder la recherche d'images à grande échelle. L'apprentissage de la représentation compacte pour la recherche d'images a récemment attiré beaucoup d'attention avec diverses approches basées sur le hachage profond proposées. Dans de telles approches, les réseaux de neurones convolutifs profonds apprennent à coder des images en codes binaires compacts. Dans cette thèse, nous proposons une approche d'apprentissage supervisé profond pour la représentation binaire structurée qui rappelle une approche de quantification vectorielle structurée telle que PQ. Notre approche bénéficie de la recherche asymétrique par rapport aux approches de hachage profond et apporte une nette amélioration de la précision de la recherche au même débit binaire. L'index inversé est une autre partie importante du système de recherche à grande échelle en dehors de la représentation compacte. À cette fin, nous étendons nos idées pour l'apprentissage de la représentation compacte supervisée pour la construction d'index inversés. Dans ce travail, nous abordons l'indexation inversée avec un apprentissage approfondi supervisé et essayons d'unifier l'apprentissage de l'indice inversé et de la représentation compacte. Nous évaluons minutieusement toutes les méthodes proposées sur divers ensembles de données accessibles au public. Nos méthodes surpassent ou sont compétitives avec l'état de l'art. / This thesis addresses the problem of large-scale image search. To tackle image search at large scale, it is required to encode images with compact representations which can be efficiently employed to compare images meaningfully. Obtaining such compact representation can be done either by compressing effective high dimensional representations or by learning compact representations in an end-to-end manner. The work in this thesis explores and advances in both of these directions. In our first contribution, we extend structured vector quantization approaches such as Product Quantization by proposing a weighted codeword sum representation. We test and verify the benefits of our approach for approximate nearest neighbor search on local and global image features which is an important way to approach large scale image search. Learning compact representation for image search recently got a lot of attention with various deep hashing based approaches being proposed. In such approaches, deep convolutional neural networks are learned to encode images into compact binary codes. In this thesis we propose a deep supervised learning approach for structured binary representation which is a reminiscent of structured vector quantization approaches such as PQ. Our approach benefits from asymmetric search over deep hashing approaches and gives a clear improvement for search accuracy at the same bit-rate. Inverted index is another important part of large scale search system apart from the compact representation. To this end, we extend our ideas for supervised compact representation learning for building inverted indexes. In this work we approach inverted indexing with supervised deep learning and make an attempt to unify the learning of inverted index and compact representation. We thoroughly evaluate all the proposed methods on various publicly available datasets. Our methods either outperform, or are competitive with the state-of-the-art.
104

Architectures de circuits nanoélectroniques neuro-inspirée / Neuro-inspired architectures for nano-circuits

Chabi, Djaafar 09 March 2012 (has links)
Les nouvelles techniques de fabrication nanométriques comme l’auto-assemblage ou la nanoimpression permettent de réaliser des matrices régulières (crossbars) atteignant des densités extrêmes (jusqu’à 1012 nanocomposants/cm2) tout en limitant leur coût de fabrication. Cependant, il est attendu que ces technologies s’accompagnent d’une augmentation significative du nombre de défauts et de dispersions de caractéristiques. La capacité à exploiter ces crossbars est alors conditionnée par le développement de nouvelles techniques de calcul capables de les spécialiser et de tolérer une grande densité de défauts. Dans ce contexte, l’approche neuromimétique qui permet tout à la fois de configurer les nanodispositifs et de tolérer leurs défauts et dispersions de caractéristiques apparaît spécialement pertinente. L’objectif de cette thèse est de démontrer l’efficacité d’une telle approche et de quantifier la fiabilité obtenue avec une architecture neuromimétique à base de crossbar de memristors, ou neurocrossbar (NC). Tout d’abord la thèse introduit des algorithmes permettant l’apprentissage de fonctions logiques sur un NC. Par la suite, la thèse caractérise la tolérance du modèle NC aux défauts et aux variations de caractéristiques des memristors. Des modèles analytiques probabilistes de prédiction de la convergence de NC ont été proposés et confrontés à des simulations Monte-Carlo. Ils prennent en compte l’impact de chaque type de défaut et de dispersion. Grâce à ces modèles analytiques il devient possible d’extrapoler cette étude à des circuits NC de très grande taille. Finalement, l’efficacité des méthodes proposées est expérimentalement démontrée à travers l’apprentissage de fonctions logiques par un NC composé de transistors à nanotube de carbone à commande optique (OG-CNTFET). / Novel manufacturing techniques, such as nanoscale self-assembly or nanoimprint, allow a cost-efficient way to fabricate high-density crossbar matrices (1012 nanodevices/cm2). However, it is expected that these technologies will be accompanied by a significant increase of defects and dispersion in device characteristics. Thus, programming these crossbars require new computational techniques that possess high tolerance for such variations. In this context, approaches based on neural networks are promising for configuring nanodevices, since they provide a natural way for tolerating low yields and device variations. The main objective of this thesis is to explore such a neural-network approach, by examining factors such as efficiency and reliability, using the memristor crossbar architecture or neurocrossbar (NC). We introduce algorithms for learning the logic functions on the NC, and the tolerance of NC against static defects (stuck-defect) and dispersion of device properties is discussed. Probabilistic analytical models for predicting the convergence of NC are proposed and compared with Monte Carlo simulations, which take into account the impact of each type of defect and dispersion. These analytical models can be extrapolated to study large-sized NCs. Finally, the effectiveness of the proposed methods is experimentally demonstrated through the learning of logic functions by a real NC made of Optically Gated Carbon Nanotube Field Effect Transistor (OG-CNTFET).
105

Hypernode graphs for learning from binary relations between sets of objects / Un modèle d'hypergraphes pour apprendre des relations binaires entre des ensembles d'objets

Ricatte, Thomas 23 January 2015 (has links)
Cette étude a pour sujet les hypergraphes. / This study has for subject the hypergraphs.
106

No Press Diplomacy

Paquette, Philip 08 1900 (has links)
No description available.
107

Inversion bayésienne myope et non-supervisée pour l'imagerie sur-résolue. Application à l'instrument SPIRE de l'observatoire spatial Herschel.

Orieux, François 16 November 2009 (has links) (PDF)
Les travaux concernent le traitement de données pour l'imagerie sur-résolue avec une application en astronomie. On s'intéresse en particulier aux données issues de l'instrument SPIRE de l'observatoire spatial Herschel de l'ESA, dédié aux infrarouges lointains. Les problèmes soulevés sont principalement : la réponse de l'optique qui atténue les fréquences spatiales, le sous-échantillonnage ainsi que la présence d'une dérive thermique. L'approche proposée est l'inversion de données, c'est à dire la prise en compte du processus d'acquisition en plus d'information a priori, pour estimer le ciel d'intérêt. La première partie des travaux concerne la modélisation du processus d'acquisition des données. Le modèle est composé d'une optique, de filtres en longueur d'onde, du capteur sensible à la température à base de bolomètres ainsi que du protocole de pointage. Le modèle obtenu, linéaire mais non invariant à cause de l'échantillonnage, est étudié. Des propriétés intéressantes, notamment dans une perspective de traitement de données, sont dégagées en particulier en lien avec la sur-résolution. L'analyse du modèle permet également de faire ressortir des propriétés utiles pour un algorithmique de calcul. La deuxième partie des travaux repose sur une démarche d'inférence inscrite dans le formalisme bayésien usuel. Toute l'information ne passant pas à travers l'instrument ou étant dégradée, le problème inverse est mal-conditionné. La méthode employée, en plus de formaliser une information de régularité spatiale sur le ciel permettant de lever le problème de conditionnement, propose l'estimation des paramètres des lois réglant le compromis entre les différentes sources d'information (hyper-paramètres). De plus, l'approche proposée permet l'estimation de paramètres instruments ainsi que l'estimation d'une dérive thermique lente affectant l'ensemble du capteur conjointement aux autres paramètres. L'ensemble de l'information utilisée pour résoudre le problème est formalisé au travers d'une loi a posteriori jointe pour l'ensemble des inconnues. L'estimateur choisi est la moyenne a posteriori calculée par un algorithme MCMC. Une étude expérimentale démontre la capacité de la méthode à restaurer de hautes fréquences spatiales. L'étude montre également le potentiel de l'approche pour l'estimation des hyper-paramètres et des paramètres instruments.
108

Contrôle d'exécution réactif de mouvements de véhicules en environnement dynamique structuré

Garnier, Philippe 21 December 1995 (has links) (PDF)
Le travail présenté dans cette thèse se place dans le contexte de l'automatisation des mouvements de véhicules évoluant dans un environnement dynamique semi-structuré. Le sous-problème adressé est celui du contrôle réactif des mouvements de ces véhicules dans des environnements de type "parking aménagé" et "voie de circulation dédiée". La topologie des environnements considérés est alors connue a priori, mais divers obstacles statiques ou dynamiques peuvent à tout moment se trouver dans l'espace d'évolution du véhicule considéré. Il est donc nécessaire, d'une part, de planifier les mouvements de celui-ci sur la base d'un horizon temporel limité associé à une connaissance partielle du monde et, d'autre part, de mettre en place un mécanisme d'exécution réactif du plan nominal ainsi produit. C'est à ce niveau que se situe le travail présenté dans le mémoire. L'approche considérée pour aborder ce problème consiste à coupler un planificateur ciné-dynamique avec un contrôleur d'exécution réactif apte à amender en temps-réel le plan nominal produit régulièrement par le planificateur. Notre contrôleur est constitué d'un ensemble de comportements de base (suivi de trajectoires, évitement d'obstacles, etc.) activés en parallèle. Ces comportements sont ensuite combinés dans le but d'obtenir un comportement global correspondant à l'exécution des mouvements planifiés. La programmation de notre contrôleur repose sur la logique floue, au travers de l'utilisation d'un contrôleur flou de type Mamdani. L'intérêt essentiel de cette approche est de coder les comportements désirés sous la forme de règles pondérées, exprimées dans un langage proche du langage humain. Les résultats obtenus en simulation nous ont conduit naturellement à des expérimentations sur un véhicule réel dans le cadre du projet INRIA/INRETS Praxitèle qui constitue le cadre d'application de notre contrôleur d'exécution de mouvements.
109

Modélisation de comportements et apprentissage stochastique non supervisé de stratégies d'interactions sociales au sein de systèmes temps réel de recherche et d'accès à l'information

Castagnos, Sylvain 05 November 2008 (has links) (PDF)
Internet constitue un environnement évolutif déstructuré et quasi-infini proposant des documents hétérogènes notamment à travers le Web et les intranets d'entreprises. La recherche et l'accès à cette profusion de documents nécessite d'assister l'utilisateur. Cependant, les outils actuels d'accès à l'information atteignent leur limite et ne garantissent plus d'identifier les ressources les plus pertinentes (également appelées "items") dans un temps raisonnable. La problématique consiste à "apprendre l'utilisateur courant". La connaissance de ce dernier permet au système de fournir des items susceptibles de les intéresser ou de répondre à un critère d'utilité. Il s'agit alors de collecter des données brutes pour caractériser une information de haut niveau, à savoir la connaissance de l'utilisateur. L'emploi de l'Intelligence Artificielle permet d'identifier les données nécessaires et suffisantes à l'apprentissage supervisé en situation de l'utilisateur courant.<br /><br />Toutefois, les modèles utilisateurs souffrent d'un grand nombre de données manquantes. Notre approche consiste à exploiter collaborativement les données relatives à une population pour pallier le manque d'information inhérent à chaque utilisateur. L'emploi de techniques de filtrage collaboratif permet ainsi de bénéficier de l'expérience et des interactions au sein d'une population pour améliorer les services et prédire les futurs agissements d'un individu. Nous sommes partis du constat que, dans les approches centralisées, le nombre d'individus pris en compte dans la recherche des plus proches voisins ne peut excéder quelques milliers de candidats. Nos travaux nous ont donc conduit à distribuer le processus de filtrage sous plusieurs formes tant en terme de contenu que de calculs. L'objectif de cette thèse est de montrer comment il est possible d'assurer le passage à l'échelle, et faire face aux problèmes sous-jacents pouvant résulter de cette approche distribuée.
110

Modèles additifs parcimonieux

Avalos, Marta 21 December 2004 (has links) (PDF)
De nombreux algorithmes d'estimation fonctionnelle existent pour l'apprentissage statistique supervisé. Cependant, ils ont pour la plupart été développés dans le but de fournir des estimateurs précis, sans considérer l'interprétabilité de la solution. Les modèles additifs permettent d'expliquer les prédictions simplement, en ne faisant intervenir qu'une variable explicative à la fois, mais ils sont difficiles à mettre en ouvre. Cette thèse est consacrée au développement d'un algorithme d'estimation des modèles additifs. D'une part, leur utilisation y est simplifiée, car le réglage de la complexité est en grande partie intégré dans la phase d'estimation des paramètres. D'autre part, l'interprétabilité est favorisée par une tendance à éliminer automatiquement les variables les moins pertinentes. Des stratégies d'accélération des calculs sont également proposées. Une approximation du nombre effectif de paramètres permet l'utilisation de critères analytiques de sélection de modèle. Sa validité est testée par des simulations et sur des données réelles.

Page generated in 0.0608 seconds