• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 2
  • 1
  • Tagged with
  • 6
  • 6
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Glass cullet as a new supplementary cementitious material (SCM)

Mirzahosseini, Mohammadreza January 1900 (has links)
Doctor of Philosophy / Department of Civil Engineering / Kyle A. Riding / Finely ground glass has the potential for pozzolanic reactivity and can serve as a supplementary cementitious material (SCM). Glass reaction kinetics depends on both temperature and glass composition. Uniform composition, amorphous nature, and high silica content of glass make ground glass an ideal material for studying the effects of glass type and particle size on reactivity at different temperature. This study focuses on how three narrow size ranges of clear and green glass cullet, 63–75 [mu]m, 25–38 [mu]m, and smaller than 25 [mu]m, as well as combination of glass types and particle sizes affects the microstructure and performance properties of cementitious systems containing glass cullet as a SCM. Isothermal calorimetry, chemical shrinkage, thermogravimetric analysis (TGA), quantitative analysis of X-ray diffraction (XRD), and analysis of scanning electron microscope (SEM) images in backscattered (BS) mode were used to quantify the cement reaction kinetics and microstructure. Additionally, compressive strength and water sorptivity experiments were performed on mortar samples to correlate reactivity of cementitious materials containing glass to the performance of cementitious mixtures. A recently-developed modeling platform called “[mu]ic the model” was used to simulated pozzolanic reactivity of single type and fraction size and combined types and particle sizes of finely ground glass. Results showed that ground glass exhibits pozzolanic properties, especially when particles of clear and green glass below 25 [mu]m and their combination were used at elevated temperatures, reflecting that glass cullet is a temperature-sensitive SCM. Moreover, glass composition was seen to have a large impact on reactivity. In this study, green glass showed higher reactivity than clear glass. Results also revealed that the simultaneous effect of sizes and types of glass cullet (surface area) on the degree of hydration of glass particles can be accounted for through a linear addition, reflecting that the surface area would significantly affect glass cullet reactivity and that the effects of SCM material interaction on reaction kinetics were minimal. However, mechanical properties of cementitious systems containing combined glass types and sizes behaved differently, as they followed the weaker portion of the two particles. This behavior was attributed to the pores sizes, distruibution, and connectiity. Simulations of combined glass types and sizes showed that more work on microstructural models is needed to properly model the reactivity of mixed glass particle systems.
2

The productive reuse of coal, biomass and co-fired fly ash

Shearer, Christopher R. 27 August 2014 (has links)
Stricter greenhouse gas emission limits and renewable energy requirements are expected to further increase the worldwide practices of firing biomass and co-firing biomass with coal, which are both considered more sustainable energy sources than coal-only combustion. Reuse options for the by-products of these processes -biomass ash and co-fired fly ash -remain limited. Therefore, this research examines their use as supplementary cementitious materials (SCMs) in concrete and as precursors for alkali-activated geopolymers. Toward their potential use as an SCM, after characterizing these ashes assessing their compliance with ASTM C618 requirements, their impact on early-age hydration kinetics, rheology, setting time and permeability was assessed. Furthermore, the pozzolanic reactivity and the microstructural and hydrated phase development of the cement-ash samples were analyzed. The results show that a wood biomass ash sample was not satisfactory for use as an SCM. On the other hand, the findings demonstrate that co-fired fly ashes can significantly improve the strength and durability properties of concrete compared to ordinary portland cement, in part due to their pozzolanicity. Thus, it is recommended that the ASTM C618 standard be modified to permit co-fired fly ash sources that meet existing requirements and any additional requirements deemed necessary to ensure their satisfactory performance when used in concrete. Toward their potential use in geopolymers, this study characterized the early-age reaction kinetics and rheological behavior of these materials, showing that their exothermic reactivity, plastic viscosity and yield stress are significantly influenced by the activator solution chemistry and other characteristics of the ash. Two co-fired fly ashes were successfully polymerized, with compressive strengths generally highest for ashes activated with solutions with a molar ratio of SiO₂/(Na₂O + K₂O) = 1. The results show that geopolymerization is a viable beneficial reuse for these emerging by-products. Further characterization of these materials by scanning transmission X-ray microscopy analysis revealed the heterogeneity of the aluminosilicate phase composition of the co-fired fly ash geopolymer gel at the nano- to micro-scale.
3

Utilization of Recycled Brick Powder as Supplementary Cementitious Materials - A Comprehensive Review

Salli Bideci, Ö., Bideci, A., Ashour, Ashraf 26 July 2024 (has links)
Yes / Over the past two decades, extensive research has been conducted to explore alternative supplementary cementitious materials (SCMs) in order to address the environmental concerns associated with the cement industry. Bricks, which are frequently preferred in the construction sector, generate a lot of waste during the production and demolition of existing buildings, requiring environmentally sustainable recycling practices. Therefore, many studies have been carried out in recent years on the use of brick waste as supplementary cementitious materials (SCMs) in cement mortar and concrete production. This critical review evaluates the impact of waste brick powder (WBP) on the mechanical and durability properties of mortar and concrete when used as a partial replacement for cement. It was observed that the properties of WBP-blended cement mortar or concrete depend on several factors, including WBP particle size, replacement ratio, pozzolanic activity, and mineralogical structure. The findings indicate that WBP with a particle size range of 100 µm to 25 µm, with a maximum cement replacement level of 10–20%, exhibits a positive impact on the compressive strength of both mortars and concretes. However, it is crucial to emphasize that a minimum curing duration of 28 days is imperative to facilitate the development of a pozzolanic reaction. This temporal requirement plays a vital role in realizing the optimal benefits of utilizing waste brick powder as a supplementary cementitious material in mortars and concretes.
4

Hydratation d'un système cimentaire binaire contenant des cendres volantes de biomasse

Davidenko, Tatyana January 2015 (has links)
Résumé : L’utilisation des cendres volantes générées par la combustion de biomasse présente une solution très prometteuse pour la conception de bétons écologiques de haute performance. Cependant, leur comportement dans un milieu cimentaire est encore peu étudié. Ce projet est concentré sur la compréhension des processus d’hydratation d’un système cimentaire contenant les cendres volantes de biomasse disponibles localement. Lors du programme expérimental, la caractérisation physico-chimique des cendres volantes étudiées a d’abord été réalisée. Ensuite, leur effet sur les propriétés rhéologiques, la cinétique d’hydratation, l’évolution des hydrates avec le temps et le développement des résistances ont été examinés. Les systèmes étudiés sont des pâtes et des mortiers avec différents taux de remplacement de ciment par les cendres volantes et deux rapports eau/liant de 0,5 et 0,4 en absence et en présence de superplastifiant. La variation des propriétés physico-chimiques de différents échantillons des cendres volantes (finesse, teneur en chaux libre, en sulfates et en calcite) a été utilisée pour déterminer l’effet de chacun de ces paramètres sur les performances des mélanges. Le remplacement partiel du ciment par les cendres volantes de biomasse entraine des changements sur la rhéologie, la cinétique d’hydratation, la composition des hydrates et la microstructure des pâtes hydratées. De plus, certains problèmes de compatibilité entre les cendres volantes et les superplastifiants sont observés. En se basant sur l’analyse des résultats obtenus, les explications des phénomènes qui se produisent dans les systèmes cimentaires contenant les cendres volantes de biomasse sont proposées. / Abstract : The use of wastepaper sludge ash (WSA) represents a very promising solution for ecological high performance concrete design. However, the effect of WSA on cementitious systems properties is still insufficiently studied. The present project intends to understand the hydration process in Portland cement systems containing locally available WSA. The experimental program begins with characterization of WSA physico-chemical properties. Then, the effect of WSA on rheology, hydration kinetics, hydration products evolution over time and strength development in cement blends is investigated. The systems discussed here are cement pastes and mortars with different cement replacement by WSA ratio and two water to binder ratio (0,5 and 0,4) with and without superplasticizer. The variation of physico-chemical properties (fineness; free lime, sulphate and calcite content) between different WSA samples was used to determine the effect of each of these parameters on blended cement performances. Partial cement replacement by WSA leads to changes in rheology, hydration kinetics, composition of the hydrates and microstructure of hydrated pastes. Moreover, some incompatibility problems between WSA and superplasticizers used are observed. Based on experimental results analysis, the explanations of the phenomena taking place in cement systems containing WSA are proposed.
5

Performance of concrete incorporating amorphous silica residue and biomass fly ash / Performance du béton intégrant les résidus de silice amorphe et les cendres des boues de désencrage

Jerban, Majid January 2016 (has links)
L'industrie du ciment est l'une des principales sources d'émission de dioxyde de carbone. L'industrie mondiale du ciment contribue à environ 7% des émissions de gaz à effet de serre dans l'atmosphère. Afin d'aborder les effets environnementaux associés à la fabrication de ciment exploitant en permanence les ressources naturelles, il est nécessaire de développer des liants alternatifs pour fabriquer du béton durable. Ainsi, de nombreux sous-produits industriels ont été utilisés pour remplacer partiellement le ciment dans le béton afin de générer plus d'économie et de durabilité. La performance d'un additif de ciment est dans la cinétique d'hydratation et de la synergie entre les additions et de ciment Portland. Dans ce projet, deux sous-produits industriels sont étudiés comme des matériaux cimentaires alternatifs: le résidu de silice amorphe (RSA) et les cendres des boues de désencrage. Le RSA est un sous-produit de la production de magnésium provenant de l'Alliance Magnésium des villes d'Asbestos et Thedford Mines, et les cendres des boues de désencrage est un sous-produit de la combustion des boues de désencrage, l'écorce et les résidus de bois dans le système à lit fluidisé de l'usine de Brompton située près de Sherbrooke, Québec, Canada. Récemment, les cendres des boues de désencrage ont été utilisées comme des matériaux cimentaires alternatifs. L'utilisation de ces cendres comme matériau cimentaire dans la fabrication du béton conduit à réduire la qualité des bétons. Ces problèmes sont causés par des produits d'hydratation perturbateurs des cendres volantes de la biomasse quand ces cendres sont partiellement mélangées avec du ciment dans la fabrication du béton. Le processus de pré-mouillage de la cendre de boue de désencrage avant la fabrication du béton réduit les produits d'hydratation perturbateurs et par conséquent les propriétés mécaniques du béton sont améliorées. Les approches pour étudier la cendre de boue de désencrage dans ce projet sont : 1) caractérisation de cette cendre volante régulière et pré-humidifiée, 2) l'étude de la performance du mortier et du béton incorporant cette cendre volante régulière et pré-humidifiée. Le RSA est un nouveau sous-produit industriel. La haute teneur en silice amorphe en RSA est un excellent potentiel en tant que matériau cimentaire dans le béton. Dans ce projet, l'évaluation des RSA comme matériaux cimentaires alternatifs compose trois étapes. Tout d'abord, la caractérisation par la détermination des propriétés minéralogiques, physiques et chimiques des RSA, ensuite, l'optimisation du taux de remplacement du ciment par le RSA dans le mortier, et enfin l'évaluation du RSA en remplacement partiel du ciment dans différents types de béton dans le système binaire et ternaire. Cette étude a révélé que le béton de haute performance (BHP) incorporant le RSA a montré des propriétés mécaniques et la durabilité, similaire du contrôle. Le RSA a amélioré les propriétés des mécaniques et la durabilité du béton ordinaire (BO). Le béton autoplaçant (BAP) incorporant le RSA est stable, homogène et a montré de bonnes propriétés mécaniques et la durabilité. Le RSA avait une bonne synergie en combinaison de liant ternaire avec d'autres matériaux cimentaires supplémentaires. Cette étude a montré que le RSA peut être utilisé comme nouveaux matériaux cimentaires dans le béton. / Abstract : Cement manufacturing industry is one of the carbon dioxide emitting sources. The global cement industry contributes about 7% of greenhouse gas emission to the earth’s atmosphere. In order to address environmental effects associated with cement manufacturing and constantly depleting natural resources, there is necessity to develop alternative binders to make sustainable concrete. Thus, many industrial by-products have been used to partially substitute cement in order to generate more economic and durable concrete. The performance of a cement additive depends on kinetics hydration and synergy between additions and Portland cement. In this project, two industrial by-products are investigated as alternative supplementary cementitious materials (ASCMs), non-toxic amorphous silica residue (AmSR) and wastepaper sludge ash (WSA). AmSR is by-product of production of magnesium from Alliance Magnesium near of Asbestos and Thetford Mines Cities, and wastepaper sludge ash is by-product of combustion of de-inking sludge, bark and residues of woods in fluidized-bed system from Brompton mill located near Sherbrooke, Quebec, Canada. The AmSR is new industrial by-products. Recently, wastepaper sludge ash has been used as cementitious materials. Utilization of these ashes as cementitious material in concrete manufacturing leads to reduce the mechanical properties of concretes. These problems are caused by disruptive hydration products of biomass fly ash once these ashes partially blended with cement in concrete manufacturing. The pre-wetting process of WSA before concrete manufacturing reduced disruptive hydration products and consequently improved concrete mechanical properties. Approaches for investigation of WSA in this project consist on characterizing regular and pre-wetted WSA, the effect of regular and pre-wetted WSA on performance of mortar and concrete. The high content of amorphous silica in AmSR is excellent potential as cementitious material in concrete. In this project, evaluation of AmSR as cementitious materials consists of three steps. Characterizing and determining physical, chemical and mineralogical properties of AmSR. Then, effect of different rates of replacement of cement by AmSR in mortar. Finally, study of effect of AmSR as partial replacement of cement in different concrete types with binary and ternary binder combinations. This study revealed that high performance concrete (HPC) incorporating AmSR showed similar mechanical properties and durability, compared to control mixture. AmSR improved mechanical properties and durability of ordinary concrete. Self-consolidating (SCC) concrete incorporating AmSR was stable, homogenous and showed good mechanical properties and durability. AmSR had good synergy in ternary binder combination with other supplementary cementitious materials (SCMs). This study showed AmSR can be use as new cementitious materials in concrete.
6

Conditions for Industrial Symbiosis surrounding a hydrogen based steel industry / Förutsättningar för industriell symbios kring en vätebaserad stålindustri

Nylund, Erland January 2023 (has links)
There is an ongoing transition to a more sustainable industry with lower climate impact. As part of this transition, the steel industry is expected to move from the conventional process for producing iron and steel using Blast Furnace (BF) and Basic Oxygen Furnace (BOF) processes, consuming large amounts of fossil fuels. In Sweden, transition to an alternative process route using Hydrogen Direct Reduction of Iron (H DRI) combined with electric arc furnace s (EAFs) is underway. Large H DRI based steel industries are being established and are expected to produce significant volumes of residues. According to the principles of circular economy, these residues should be valorised as products or raw materials to as large an extent as possible. Industrial Symbiosis is a method for increasing industrial circularity by promoting transactions of information and residues to- provide economic and environmental synergies in a network of industry actors. There are existing industrial networks for valorising residues from the traditional iron and steel industry. Notably, large amounts of BF slags are used as a Supplementary Cementitious Material (SCMs) or raw material in cement production. However, there is a lack of research into how these existing networks can manage the residues produced in the new H DRI and EAF based process. There is also a need to better understand to what extent EAF slags can replace BF and BOF slags in valuable applications such as SCM or cement production. Research into these issues is complicated by the fact that no commercially operating HDRI based steel industries exist at present. Therefore, an exploratory and qualitative research approach was chosen to investigate the knowledge and current conditions in a region where such an industry is being established. A case study was conducted to investigate the industrial network surrounding an emerging steel industry that will use H DRI and EAF processes. A theoretical framework was constructed to assess conditions for the development of an Industrial Symbiosis Network (ISN) in such an industry. Social as well as technological conditions important for ISN development were identified.  The growing network of recyclers, metal industries and other actors surrounding the planned steel plant of H2 Green Steel (H2GS) in Boden was chosen as case. Potential ISN participants were identified and participated in four focus group workshops and ten in depth interviews. An overview of expected residues from H2GS was compiled, together with a list of potential methods for valorisation. The Technology Readiness Levels (TRL) of these valorisation processes were assessed, and the social conditions for ISN development were investigated. There seems to be an existing ISN kernel already forming among recyclers and waste management actors surrounding H2GS. Social networks and an exchange of experiences are in place, and technological and economic barriers are perceived as the main obstacles to efficient residue management. The presence of traditional iron and steel industries in the region seems to be a clear benefit to ISN development. Most of the residues originating in the planned H2GS plant are well known and similar to those produced by other steelmakers, except for the large volumes. However, valorisation of EAF slags is a significant challenge. The most mature technology valorising EAF slags as rocky materials in construction seems unlikely to be able to valorise large volumes of EAF slags in the long run. EAF slags has potential as an SCM material or as raw material for cement production. However, these applications require further refining using technologies that are not yet mature. When the development trajectory of these immature technologies can be predicted, the ISN participants can adjust and prepare for the opp ortunities they create. Some valorisation technologies would bring great ISN advantages by improving diversity of inputs and outputs. However, when development trajectories are unpredictable, ISN development is blocked. / Det pågår en omställning till en mer hållbar industri med lägre klimatavtryck. Som en del i denna omställning förväntas stålindustrin röra sig i väg från den konventionella framställningsprocessen för järn och stål som använder masugn och syrgaskonverter där stora mängder fossila bränslen förbrukas. I Sverige pågår en omställning till en alternativ processväg där direktreduktion med vätgas används tillsammans med ljusbågsugnar. Stora industrier baserade på direktreduktion med vätgas håller på att etablera sig och förväntas producera stora mängder restprodukter. Enligt principerna för cirkulär ekonomi bör dessa restprodukter användas som produkter eller råmaterial för andra processer i så stor utsträckning som möjligt. Industriell symbios är en metod för att förbättra industrins cirkularitet genom att främja utbyten av information och restprodukter som kan skapa ekonomiska och miljömässiga fördelar i ett industrinätverk. Det finns existerande industrinätverk för att använda restprodukter från den traditionella järn- och stålindustrin. Särskilt relevant är att stora mängder masugnsslagg används som alternativa cementmaterial eller som insatsvara i cementproduktion. Det finns dock en brist på forskning om hur sådana nätverk kan hantera restprodukterna från den nya processkedjan med vätgasreduktion och ljusbågsugn. Vidare finns ett behov av att förstå i vilken utsträckning ljusbågsugnsslagg kan ersätta masugnsslagg och konverterslagg i tillämpningar som cementproduktion eller produktion av alternativa cementmaterial. Forskning om dessa ämnen försvåras av att det ännu inte finns någon aktiv stålindustri i storskalig kommersiell drift som använder sig av vätgasreduktion och ljusbågsugnsprocesserna. Därför valdes en utforskande och kvalitativ forskningsdesign för att undersöka kunskapen och de nuvarande förutsättningarna i en region där en sådan industri håller på att etableras. En fallstudie genomfördes för att undersöka industrinätverket kring en framväxande stålindustri som kommer att använda vätgasreduktion och ljusbågsugn. Ett teoretiskt ramverk konstruerades för att bättre bedöma förutsättningarna för industriella symbiosnätverk att växa fram i en sådan industri. Sociala så väl som tekniska omständigheter som påverkar nätverkets framväxt identifierades. Det framväxande nätverket av återvinnare, metallindustrier och andra aktörer runt H2 Green Steels planerade stålverk i Boden valdes som fallstudie. Potentiella nätverksdeltagare identifierades och deltog i fyra fokusgruppworkshops samt tio djupintervjuer. En sammanställning av förväntade restmaterial från H2GS sammanställdes tillsammans med en lista över möjliga metoder för att nyttja dessa. Den tekniska färdighetsnivån (TRL-nivån) hos dessa nyttjandealternativ bedömdes och de sociala förutsättningarna för ett industriellt nätverk att växa fram undersöktes. Ett frö till symbiosnätverk verkar redan formas bland återvinnare och restmaterialhanterare runt H2GS. Sociala nätverk och utbyten av erfarenheter finns, och tekniska och ekonomiska barriärer ses som de största hindren för effektiv restmaterialhantering. Närvaron av traditionella järn- och stålindustrier verkar vara en tydlig fördel för framväxten av ett symbiosnätverk. De flesta av restprodukterna som förväntas från den planerade H2GS anläggningen är väl kända och lika de som produceras av andra stålverk, förutom att de kommer produceras i större volymer. Nyttjande av ljusbågsugnsslagg är dock en betydande utmaning Den mest mogna nyttjandemetoden för denna slagg är att använda den som ett stenmaterial i byggnadstillämpningar. Det verkar dock osannolikt att denna metod skulle kunna hitta avsättning för de stora mängderna ljusbågsslagg som väntas på lång sikt. Ljusbågsugnsslagg har potential som ett alternativt cementmaterial eller som insatsvara i cementproduktion. Dessa tillämpningar kräver dock vidare förädling av slaggen med hjälp av tekniker som inte är mogna ännu. När utvecklingsbanan för dessa tekniker kan förutsägas kan nätverksdeltagarna anpassa sig och förbereda för de möjligheter de skapar. Vissa nyttjandemetoder skulle ge stora symbiosfördelar till nätverket genom att öka mångfalden av insatsvaror och produkter som är möjliga. När utvecklingsbanorna inte går att förutsäga blockeras dock symbiosnätverkets utveckling.

Page generated in 0.1536 seconds