• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 492
  • 148
  • 55
  • 49
  • 34
  • 30
  • 13
  • 12
  • 11
  • 7
  • 6
  • 6
  • 4
  • 3
  • 2
  • Tagged with
  • 1027
  • 1027
  • 658
  • 444
  • 371
  • 237
  • 229
  • 169
  • 169
  • 160
  • 147
  • 144
  • 139
  • 129
  • 119
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

Novel Approaches For Demand Forecasting In Semiconductor Manufacturing

Kumar, Chittari Prasanna 01 1900 (has links)
Accurate demand forecasting is a key capability for a manufacturing organization, more so, a semiconductor manufacturer. Many crucial decisions are based on demand forecasts. The semiconductor industry is characterized by very short product lifecycles (10 to 24 months) and extremely uncertain demand. The pace at which both the manufacturing technology and the product design changes, induce change in manufacturing throughput and potential demand. Well known methods like exponential smoothing, moving average, weighted moving average, ARMA, ARIMA, econometric methods and neural networks have been used in industry with varying degrees of success. We propose a novel forecasting technique which is based on Support Vector Regression (SVR). Specifically, we formulate ν-SVR models for semiconductor product demand data. We propose a 3-phased input vector modeling approach to comprehend demand characteristics learnt while building a standard ARIMA model on the data. Forecasting Experimentations are done for different semiconductor product demand data like 32 & 64 bit CPU products, 32bit Micro controller units, DSP for cellular products, NAND and NOR Flash Products. Demand data was provided by SRC(Semiconductor Research Consortium) Member Companies. Demand data was actual sales recorded at every month. Model performance is judged based on different performance metrics used in extant literature. Results of experimentation show that compared to other demand forecasting techniques ν-SVR can significantly reduce both mean absolute percentage errors and normalized mean-squared errors of forecasts. ν-SVR with our 3-phased input vector modeling approach performs better than standard ARIMA and simple ν-SVR models in most of the cases.
122

[en] MACHINE LEARNING FOR SENTIMENT CLASSIFICATION / [pt] APRENDIZADO DE MÁQUINA PARA O PROBLEMA DE SENTIMENT CLASSIFICATION

PEDRO OGURI 18 May 2007 (has links)
[pt] Sentiment Analysis é um problema de categorização de texto no qual deseja-se identificar opiniões favoráveis e desfavoráveis com relação a um tópico. Um exemplo destes tópicos de interesse são organizações e seus produtos. Neste problema, documentos são classificados pelo sentimento, conotação, atitudes e opiniões ao invés de se restringir aos fatos descritos neste. O principal desafio em Sentiment Classification é identificar como sentimentos são expressados em textos e se tais sentimentos indicam uma opinião positiva (favorável) ou negativa (desfavorável) com relação a um tópico. Devido ao crescente volume de dados disponível na Web, onde todos tendem a ser geradores de conteúdo e expressarem opiniões sobre os mais variados assuntos, técnicas de Aprendizado de Máquina vem se tornando cada vez mais atraentes. Nesta dissertação investigamos métodos de Aprendizado de Máquina para Sentiment Analysis. Apresentamos alguns modelos de representação de documentos como saco de palavras e N-grama. Testamos os classificadores SVM (Máquina de Vetores Suporte) e Naive Bayes com diferentes modelos de representação textual e comparamos seus desempenhos. / [en] Sentiment Analysis is a text categorization problem in which we want to identify favorable and unfavorable opinions towards a given topic. Examples of such topics are organizations and its products. In this problem, docu- ments are classifed according to their sentiment, connotation, attitudes and opinions instead of being limited to the facts described in it. The main challenge in Sentiment Classification is identifying how sentiments are expressed in texts and whether they indicate a positive (favorable) or negative (unfavorable) opinion towards a topic. Due to the growing volume of information available online in an environment where we all tend to be content generators and express opinions on a variety of subjects, Machine Learning techniques have become more and more attractive. In this dissertation, we investigate Machine Learning methods applied to Sentiment Analysis. We present document representation models such as bag-of-words and N-grams.We compare the performance of the Naive Bayes and the Support Vector Machine classifiers for each proposed model
123

Utilização do algoritmo de aprendizado de máquinas para monitoramento de falhas em estruturas inteligentes /

Guimarães, Ana Paula Alves January 2016 (has links)
Orientador: Vicente Lopes Junior / Resumo: Structural health monitoring (SHM) is an area that has been extensively studied for allowing the construction of systems that have the ability to identify damages at an early stage, thus being able to avoid serious future losses. Ideally, these systems have the minimum of human interference. Systems that address the concept of learning have the ability to be autonomous. It is believed that by having these properties, the machine learning algorithms are an excellent choice to perform the steps of identifying, locating and assessing damage with ability to obtain highly accurate results with minimum error rates. This work is mainly focused on using support vector machine algorithm for monitoring structural condition and, thus, get better accuracy in identifying the presence or absence of damage, reducing error rates through the approaches of machine learning. It allows an intelligent and efficient monitoring system. LIBSVM library was used for analysing and validation of the proposed approach. Thus, it was feasible to conduct training and classification of data promoting the identification of damages. It was also possible to locate the damages in the structure. The results of identification and location of the damage was quite satisfactory. / Mestre
124

Monitoramento da cobertura do solo no entorno de hidrelétricas utilizando o classificador SVM (Support Vector Machines). / Land cover monitoring in hydroelectric domain area using Support Vector Machines (SVM) classifier.

Rafael Walter de Albuquerque 07 December 2011 (has links)
A classificação de imagens de satélite é muito utilizada para elaborar mapas de cobertura do solo. O objetivo principal deste trabalho consistiu no mapeamento automático da cobertura do solo no entorno da Usina de Lajeado (TO) utilizando-se o classificador SVM. Buscou-se avaliar a dimensão de áreas antropizadas presentes na represa e a acurácia da classificação gerada pelo algoritmo, que foi comparada com a acurácia da classificação obtida pelo tradicional classificador MAXVER. Esta dissertação apresentou sugestões de calibração do algoritmo SVM para a otimização do seu resultado. Verificou-se uma alta acurácia na classificação SVM, que mostrou o entorno da represa hidrelétrica em uma situação ambientalmente favorável. Os resultados obtidos pela classificação SVM foram similares aos obtidos pelo MAXVER, porém este último contextualizou espacialmente as classes de cobertura do solo com uma acurácia considerada um pouco menor. Apesar do bom estado de preservação ambiental apresentado, a represa deve ter seu entorno devidamente monitorado, pois foi diagnosticada uma grande quantidade de incêndios gerados pela população local, sendo que as ferramentas discutidas nesta dissertação auxiliam esta atividade de monitoramento. / Satellite Image Classification are very useful for building land cover maps. The aim of this study consists on an automatic land cover mapping in the domain area of Lajeados dam, at Tocantins state, using the SVM classifier. The aim of this work was to evaluate anthropic dimension areas near the dam and also to verify the algorithms classification accuracy, which was compared to the results of the standard ML (Maximum Likelihood) classifier. This work presents calibration suggestions to the SVM algorithm for optimizing its results. SVM classification presented high accuracy, suggesting a good environmental situation along Lajeados dam region. Classification results comparison between SVM and ML were quite similar, but SVMs spatial contextual mapping areas were slightly better. Although environmental situation of the study area was considered good, monitoring ecosystem is important because a significant quantity of burnt areas was noticed due to local communities activities. This fact emphasized the importance of the tools discussed in this work, which helps environmental monitoring.
125

Wavelets, predição linear e LS-SVM aplicados na análise e classificação de sinais de vozes patológicas / Wavelets, LPC and LS-SVM applied for analysis and identification of pathological voice signals

Everthon Silva Fonseca 24 April 2008 (has links)
Neste trabalho, foram utilizadas as vantagens da ferramenta matemática de análise temporal e espectral, a transformada wavelet discreta (DWT), além dos coeficientes de predição linear (LPC) e do algoritmo de inteligência artificial, Least Squares Support Vector Machines (LS-SVM), para aplicações em análise de sinais de voz e classificação de vozes patológicas. Inúmeros trabalhos na literatura têm demonstrado o grande interesse existente por ferramentas auxiliares ao diagnóstico de patologias da laringe. Os componentes da DWT forneceram parâmetros de medida para a análise e classificação das vozes patológicas, principalmente aquelas provenientes de pacientes com edema de Reinke e nódulo nas pregas vocais. O banco de dados com as vozes patológicas foi obtido do Departamento de Otorrinolaringologia e Cirurgia de Cabeça e Pescoço do Hospital das Clínicas da Faculdade de Medicina de Ribeirão Preto (FMRP-USP). Utilizando-se o algoritmo de reconhecimento de padrões, LS-SVM, mostrou-se que a combinação dos componentes da DWT de Daubechies com o filtro LP inverso levou a um classificador de bom desempenho alcançando mais de 90% de acerto na classificação das vozes patológicas. / The main objective of this work was to use the advantages of the time-frequency analysis mathematical tool, discrete wavelet transform (DWT), besides the linear prediction coefficients (LPC) and the artificial intelligence algorithm, Least Squares Support Vector Machines (LS-SVM), for applications in voice signal analysis and classification of pathological voices. A large number of works in the literature has been shown that there is a great interest for auxiliary tools to the diagnosis of laryngeal pathologies. DWT components gave measure parameters for the analysis and classification of pathological voices, mainly that ones from patients with Reinke\'s edema and nodule in the vocal folds. It was used a data bank with pathological voices from the Otolaryngology and the Head and Neck Surgery sector of the Clinical Hospital of the Faculty of Medicine at Ribeirão Preto, University of Sao Paulo (FMRP-USP), Brazil. Using the automatic learning algorithm applied in pattern recognition problems, LS-SVM, results have showed that the combination of Daubechies\' DWT components and inverse LP filter leads to a classifier with good performance reaching more than 90% of accuracy in the classification of the pathological voices.
126

"Classificação de páginas na internet" / "Internet pages classification"

José Martins Júnior 11 April 2003 (has links)
O grande crescimento da Internet ocorreu a partir da década de 1990 com o surgimento dos provedores comerciais de serviços, e resulta principalmente da boa aceitação e vasta disseminação do uso da Web. O grande problema que afeta a escalabilidade e o uso de tal serviço refere-se à organização e à classificação de seu conteúdo. Os engenhos de busca atuais possibilitam a localização de páginas na Web pela comparação léxica de conjuntos de palavras perante os conteúdos dos hipertextos. Tal mecanismo mostra-se ineficaz quando da necessidade pela localização de conteúdos que expressem conceitos ou objetos, a exemplo de produtos à venda oferecidos em sites de comércio eletrônico. A criação da Web Semântica foi anunciada no ano de 2000 para esse propósito, visando o estabelecimento de novos padrões para a representação formal de conteúdos nas páginas Web. Com sua implantação, cujo prazo inicialmente previsto foi de dez anos, será possível a expressão de conceitos nos conteúdos dos hipertextos, que representarão objetos classificados por uma ontologia, viabilizando assim o uso de sistemas, baseados em conhecimento, implementados por agentes inteligentes de software. O projeto DEEPSIA foi concebido como uma solução centrada no comprador, ao contrário dos atuais Market Places, para resolver o problema da localização de páginas Web com a descrição de produtos à venda, fazendo uso de métodos de classificação de textos, apoiados pelos algoritmos k-NN e C4.5, no suporte ao processo decisório realizado por um agente previsto em sua arquitetura, o Crawler Agent. Os testes com o sistema em sites brasileiros denotaram a necessidade pela sua adaptação em diversos aspectos, incluindo-se o processo decisório envolvido, que foi abordado pelo presente trabalho. A solução para o problema envolveu a aplicação e a avaliação do método Support Vector Machines, e é descrita em detalhes. / The huge growth of the Internet has been occurring since 90s with the arrival of the internet service providers. One important reason is the good acceptance and wide dissemination of the Web. The main problem that affects its scalability and usage is the organization and classification of its content. The current search engines make possible the localization of pages in the Web by means of a lexical comparison among sets of words and the hypertexts contents. In order to find contents that express concepts or object, such as products for sale in electronic commerce sites such mechanisms are inefficient. The proposition of the Semantic Web was announced in 2000 for this purpose, envisioning the establishment of new standards for formal contents representation in the Web pages. With its implementation, whose deadline was initially stated for ten years, it will be possible to express concepts in hypertexts contents, that will fully represent objects classified into an ontology, making possible the use of knowledge based systems implemented by intelligent softwares agents. The DEEPSIA project was conceived as a solution centered in the purchaser, instead of current Market Places, in order to solve the problem of finding Web pages with products for sale description, making use of methods of text classification, with k-NN and C4.5 algorithms, to support the decision problem to be solved by an specific agent designed, the Crawler Agent. The tests of the system in Brazilian sites have denoted the necessity for its adaptation in many aspects, including the involved decision process, which was focused in present work. The solution for the problem includes the application and evaluation of the Support Vector Machines method, and it is described in detail.
127

"Investigação de estratégias para a geração de máquinas de vetores de suporte multiclasses" / Investigation of strategies for the generation of multiclass support vector machines

Ana Carolina Lorena 16 February 2006 (has links)
Diversos problemas envolvem a classificação de dados em categorias, também denominadas classes. A partir de um conjunto de dados cujas classes são conhecidas, algoritmos de Aprendizado de Máquina (AM) podem ser utilizados na indução de um classificador capaz de predizer a classe de novos dados do mesmo domínio, realizando assim a discriminação desejada. Dentre as diversas técnicas de AM utilizadas em problemas de classificação, as Máquinas de Vetores de Suporte (Support Vector Machines - SVMs) se destacam por sua boa capacidade de generalização. Elas são originalmente concebidas para a solução de problemas com apenas duas classes, também denominados binários. Entretanto, diversos problemas requerem a discriminação dos dados em mais que duas categorias ou classes. Nesta Tese são investigadas e propostas estratégias para a generalização das SVMs para problemas com mais que duas classes, intitulados multiclasses. O foco deste trabalho é em estratégias que decompõem o problema multiclasses original em múltiplos subproblemas binários, cujas saídas são então combinadas na obtenção da classificação final. As estratégias propostas visam investigar a adaptação das decomposições a cada aplicação considerada, a partir de informações do desempenho obtido em sua solução ou extraídas de seus dados. Os algoritmos implementados foram avaliados em conjuntos de dados gerais e em aplicações reais da área de Bioinformática. Os resultados obtidos abrem várias possibilidades de pesquisas futuras. Entre os benefícios verificados tem-se a obtenção de decomposições mais simples, que requerem menos classificadores binários na solução multiclasses. / Several problems involve the classification of data into categories, also called classes. Given a dataset containing data whose classes are known, Machine Learning (ML) algorithms can be employed for the induction of a classifier able to predict the class of new data from the same domain, thus performing the desired discrimination. Among the several ML techniques applied to classification problems, the Support Vector Machines (SVMs) are known by their high generalization ability. They are originally conceived for the solution of problems with only two classes, also named binary problems. However, several problems require the discrimination of examples into more than two categories or classes. This thesis investigates and proposes strategies for the generalization of SVMs to problems with more than two classes, known as multiclass problems. The focus of this work is on strategies that decompose the original multiclass problem into multiple binary subtasks, whose outputs are then combined to obtain the final classification. The proposed strategies aim to investigate the adaptation of the decompositions for each multiclass application considered, using information of the performance obtained for its solution or extracted from its examples. The implemented algorithms were evaluated on general datasets and on real applications from the Bioinformatics domain. The results obtained open possibilities of many future work. Among the benefits observed is the obtainment of simpler decompositions, which require less binary classifiers in the multiclass solution.
128

IntelliChair : a non-intrusive sitting posture and sitting activity recognition system

Fu, Teng January 2015 (has links)
Current Ambient Intelligence and Intelligent Environment research focuses on the interpretation of a subject’s behaviour at the activity level by logging the Activity of Daily Living (ADL) such as eating, cooking, etc. In general, the sensors employed (e.g. PIR sensors, contact sensors) provide low resolution information. Meanwhile, the expansion of ubiquitous computing allows researchers to gather additional information from different types of sensor which is possible to improve activity analysis. Based on the previous research about sitting posture detection, this research attempts to further analyses human sitting activity. The aim of this research is to use non-intrusive low cost pressure sensor embedded chair system to recognize a subject’s activity by using their detected postures. There are three steps for this research, the first step is to find a hardware solution for low cost sitting posture detection, second step is to find a suitable strategy of sitting posture detection and the last step is to correlate the time-ordered sitting posture sequences with sitting activity. The author initiated a prototype type of sensing system called IntelliChair for sitting posture detection. Two experiments are proceeded in order to determine the hardware architecture of IntelliChair system. The prototype looks at the sensor selection and integration of various sensor and indicates the best for a low cost, non-intrusive system. Subsequently, this research implements signal process theory to explore the frequency feature of sitting posture, for the purpose of determining a suitable sampling rate for IntelliChair system. For second and third step, ten subjects are recruited for the sitting posture data and sitting activity data collection. The former dataset is collected byasking subjects to perform certain pre-defined sitting postures on IntelliChair and it is used for posture recognition experiment. The latter dataset is collected by asking the subjects to perform their normal sitting activity routine on IntelliChair for four hours, and the dataset is used for activity modelling and recognition experiment. For the posture recognition experiment, two Support Vector Machine (SVM) based classifiers are trained (one for spine postures and the other one for leg postures), and their performance evaluated. Hidden Markov Model is utilized for sitting activity modelling and recognition in order to establish the selected sitting activities from sitting posture sequences.2. After experimenting with possible sensors, Force Sensing Resistor (FSR) is selected as the pressure sensing unit for IntelliChair. Eight FSRs are mounted on the seat and back of a chair to gather haptic (i.e., touch-based) posture information. Furthermore, the research explores the possibility of using alternative non-intrusive sensing technology (i.e. vision based Kinect Sensor from Microsoft) and find out the Kinect sensor is not reliable for sitting posture detection due to the joint drifting problem. A suitable sampling rate for IntelliChair is determined according to the experiment result which is 6 Hz. The posture classification performance shows that the SVM based classifier is robust to “familiar” subject data (accuracy is 99.8% with spine postures and 99.9% with leg postures). When dealing with “unfamiliar” subject data, the accuracy is 80.7% for spine posture classification and 42.3% for leg posture classification. The result of activity recognition achieves 41.27% accuracy among four selected activities (i.e. relax, play game, working with PC and watching video). The result of this thesis shows that different individual body characteristics and sitting habits influence both sitting posture and sitting activity recognition. In this case, it suggests that IntelliChair is suitable for individual usage but a training stage is required.
129

Robust South African sign language gesture recognition using hand motion and shape

Frieslaar, Ibraheem January 2014 (has links)
Magister Scientiae - MSc / Research has shown that five fundamental parameters are required to recognize any sign language gesture: hand shape, hand motion, hand location, hand orientation and facial expressions. The South African Sign Language (SASL) research group at the University of the Western Cape (UWC) has created several systems to recognize sign language gestures using single parameters. These systems are, however, limited to a vocabulary size of 20 – 23 signs, beyond which the recognition accuracy is expected to decrease. The first aim of this research is to investigate the use of two parameters – hand motion and hand shape – to recognise a larger vocabulary of SASL gestures at a high accuracy. Also, the majority of related work in the field of sign language gesture recognition using these two parameters makes use of Hidden Markov Models (HMMs) to classify gestures. Hidden Markov Support Vector Machines (HM-SVMs) are a relatively new technique that make use of Support Vector Machines (SVMs) to simulate the functions of HMMs. Research indicates that HM-SVMs may perform better than HMMs in some applications. To our knowledge, they have not been applied to the field of sign language gesture recognition. This research compares the use of these two techniques in the context of SASL gesture recognition. The results indicate that, using two parameters results in a 15% increase in accuracy over the use of a single parameter. Also, it is shown that HM-SVMs are a more accurate technique than HMMs, generally performing better or at least as good as HMMs.
130

Evaluation von Signaleigenschaften zur Lokalisierung von Einschlägen mit Piezokeramischen Sensoren

Böhle, André 16 July 2019 (has links)
Intelligente Bauteile sind zunehmend in der Forschung und Industrie von Interesse, aufgrund ihrer vielfältigen Einsatzmöglichkeiten. Ein Beispiel dafür ist ein aktuelles Projekt des Bundesexzellenzclusters MERGE, welches sich mit der Entwicklung einer Mittelkonsole befasst, die als Bedienelement in einem Kraftfahrzeug dienen und durch Berührungen Aktionen ausführen soll. Um diese Funktionalität zu ermöglichen, ist es notwendig, die mittels piezokeramischer Sensoren erzeugten elektrischen Signale hinsichtlich der Lokalisation des Einschlags auszuwerten. Dies bezüglich werden verschiedene Signaleigenschaften auf ihre Eignung unter Verwendung einer support vector machine untersucht. Die Ergebnisse zeigen, dass durch die energetische Betrachtung der Signale eine Einschlagslokalisation realisierbar ist, aber Einschränkungen in der praktischen Verwendbarkeit aufweist.

Page generated in 0.0751 seconds