Spelling suggestions: "subject:"8upport vector machines"" "subject:"6upport vector machines""
371 |
Vision-based moving pedestrian recognition from imprecise and uncertain data / Reconnaissance de piétons par vision à partir de données imprécises et incertainesZhou, Dingfu 05 December 2014 (has links)
La mise en oeuvre de systèmes avancés d’aide à la conduite (ADAS) basée vision, est une tâche complexe et difficile surtout d’un point de vue robustesse en conditions d’utilisation réelles. Une des fonctionnalités des ADAS vise à percevoir et à comprendre l’environnement de l’ego-véhicule et à fournir l’assistance nécessaire au conducteur pour réagir à des situations d’urgence. Dans cette thèse, nous nous concentrons sur la détection et la reconnaissance des objets mobiles car leur dynamique les rend plus imprévisibles et donc plus dangereux. La détection de ces objets, l’estimation de leurs positions et la reconnaissance de leurs catégories sont importants pour les ADAS et la navigation autonome. Par conséquent, nous proposons de construire un système complet pour la détection des objets en mouvement et la reconnaissance basées uniquement sur les capteurs de vision. L’approche proposée permet de détecter tout type d’objets en mouvement en fonction de deux méthodes complémentaires. L’idée de base est de détecter les objets mobiles par stéréovision en utilisant l’image résiduelle du mouvement apparent (RIMF). La RIMF est définie comme l’image du mouvement apparent causé par le déplacement des objets mobiles lorsque le mouvement de la caméra a été compensé. Afin de détecter tous les mouvements de manière robuste et de supprimer les faux positifs, les incertitudes liées à l’estimation de l’ego-mouvement et au calcul de la disparité doivent être considérées. Les étapes principales de l’algorithme sont les suivantes : premièrement, la pose relative de la caméra est estimée en minimisant la somme des erreurs de reprojection des points d’intérêt appariées et la matrice de covariance est alors calculée en utilisant une stratégie de propagation d’erreurs de premier ordre. Ensuite, une vraisemblance de mouvement est calculée pour chaque pixel en propageant les incertitudes sur l’ego-mouvement et la disparité par rapport à la RIMF. Enfin, la probabilité de mouvement et le gradient de profondeur sont utilisés pour minimiser une fonctionnelle d’énergie de manière à obtenir la segmentation des objets en mouvement. Dans le même temps, les boîtes englobantes des objets mobiles sont générées en utilisant la carte des U-disparités. Après avoir obtenu la boîte englobante de l’objet en mouvement, nous cherchons à reconnaître si l’objet en mouvement est un piéton ou pas. Par rapport aux algorithmes de classification supervisée (comme le boosting et les SVM) qui nécessitent un grand nombre d’exemples d’apprentissage étiquetés, notre algorithme de boosting semi-supervisé est entraîné avec seulement quelques exemples étiquetés et de nombreuses instances non étiquetées. Les exemples étiquetés sont d’abord utilisés pour estimer les probabilités d’appartenance aux classes des exemples non étiquetés, et ce à l’aide de modèles de mélange de gaussiennes après une étape de réduction de dimension réalisée par une analyse en composantes principales. Ensuite, nous appliquons une stratégie de boosting sur des arbres de décision entraînés à l’aide des instances étiquetées de manière probabiliste. Les performances de la méthode proposée sont évaluées sur plusieurs jeux de données de classification de référence, ainsi que sur la détection et la reconnaissance des piétons. Enfin, l’algorithme de détection et de reconnaissances des objets en mouvement est testé sur les images du jeu de données KITTI et les résultats expérimentaux montrent que les méthodes proposées obtiennent de bonnes performances dans différents scénarios de conduite en milieu urbain. / Vision-based Advanced Driver Assistance Systems (ADAS) is a complex and challenging task in real world traffic scenarios. The ADAS aims at perceiving andunderstanding the surrounding environment of the ego-vehicle and providing necessary assistance for the drivers if facing some emergencies. In this thesis, we will only focus on detecting and recognizing moving objects because they are more dangerous than static ones. Detecting these objects, estimating their positions and recognizing their categories are significantly important for ADAS and autonomous navigation. Consequently, we propose to build a complete system for moving objects detection and recognition based on vision sensors. The proposed approach can detect any kinds of moving objects based on two adjacent frames only. The core idea is to detect the moving pixels by using the Residual Image Motion Flow (RIMF). The RIMF is defined as the residual image changes caused by moving objects with compensated camera motion. In order to robustly detect all kinds of motion and remove false positive detections, uncertainties in the ego-motion estimation and disparity computation should also be considered. The main steps of our general algorithm are the following : first, the relative camera pose is estimated by minimizing the sum of the reprojection errors of matched features and its covariance matrix is also calculated by using a first-order errors propagation strategy. Next, a motion likelihood for each pixel is obtained by propagating the uncertainties of the ego-motion and disparity to the RIMF. Finally, the motion likelihood and the depth gradient are used in a graph-cut-based approach to obtain the moving objects segmentation. At the same time, the bounding boxes of moving object are generated based on the U-disparity map. After obtaining the bounding boxes of the moving object, we want to classify the moving objects as a pedestrian or not. Compared to supervised classification algorithms (such as boosting and SVM) which require a large amount of labeled training instances, our proposed semi-supervised boosting algorithm is trained with only a few labeled instances and many unlabeled instances. Firstly labeled instances are used to estimate the probabilistic class labels of the unlabeled instances using Gaussian Mixture Models after a dimension reduction step performed via Principal Component Analysis. Then, we apply a boosting strategy on decision stumps trained using the calculated soft labeled instances. The performances of the proposed method are evaluated on several state-of-the-art classification datasets, as well as on a pedestrian detection and recognition problem.Finally, both our moving objects detection and recognition algorithms are tested on the public images dataset KITTI and the experimental results show that the proposed methods can achieve good performances in different urban scenarios.
|
372 |
Machine Learning for Market Prediction : Soft Margin Classifiers for Predicting the Sign of Return on Financial AssetsAbo Al Ahad, George, Salami, Abbas January 2018 (has links)
Forecasting procedures have found applications in a wide variety of areas within finance and have further shown to be one of the most challenging areas of finance. Having an immense variety of economic data, stakeholders aim to understand the current and future state of the market. Since it is hard for a human to make sense out of large amounts of data, different modeling techniques have been applied to extract useful information from financial databases, where machine learning techniques are among the most recent modeling techniques. Binary classifiers such as Support Vector Machines (SVMs) have to some extent been used for this purpose where extensions of the algorithm have been developed with increased prediction performance as the main goal. The objective of this study has been to develop a process for improving the performance when predicting the sign of return of financial time series with soft margin classifiers. An analysis regarding the algorithms is presented in this study followed by a description of the methodology that has been utilized. The developed process containing some of the presented soft margin classifiers, and other aspects of kernel methods such as Multiple Kernel Learning have shown pleasant results over the long term, in which the capability of capturing different market conditions have been shown to improve with the incorporation of different models and kernels, instead of only a single one. However, the results are mostly congruent with earlier studies in this field. Furthermore, two research questions have been answered where the complexity regarding the kernel functions that are used by the SVM have been studied and the robustness of the process as a whole. Complexity refers to achieving more complex feature maps through combining kernels by either adding, multiplying or functionally transforming them. It is not concluded that an increased complexity leads to a consistent improvement, however, the combined kernel function is superior during some of the periods of the time series used in this thesis for the individual models. The robustness has been investigated for different signal-to-noise ratio where it has been observed that windows with previously poor performance are more exposed to noise impact.
|
373 |
Adaptation des techniques actuelles de scoring aux besoins d'une institution de crédit : le CFCAL-Banque / Adaptation of current scoring techniques to the needs of a credit institution : the Crédit Foncier et Communal d'Alsace et de Lorraine (CFCAL-banque)Kouassi, Komlan Prosper 26 July 2013 (has links)
Les institutions financières sont, dans l’exercice de leurs fonctions, confrontées à divers risques, entre autres le risque de crédit, le risque de marché et le risque opérationnel. L’instabilité de ces facteurs fragilise ces institutions et les rend vulnérables aux risques financiers qu’elles doivent, pour leur survie, être à même d’identifier, analyser, quantifier et gérer convenablement. Parmi ces risques, celui lié au crédit est le plus redouté par les banques compte tenu de sa capacité à générer une crise systémique. La probabilité de passage d’un individu d’un état non risqué à un état risqué est ainsi au cœur de nombreuses questions économiques. Dans les institutions de crédit, cette problématique se traduit par la probabilité qu’un emprunteur passe d’un état de "bon risque" à un état de "mauvais risque". Pour cette quantification, les institutions de crédit recourent de plus en plus à des modèles de credit-scoring. Cette thèse porte sur les techniques actuelles de credit-scoring adaptées aux besoins d’une institution de crédit, le CFCAL-banque, spécialisé dans les prêts garantis par hypothèques. Nous présentons en particulier deux modèles non paramétriques (SVM et GAM) dont nous comparons les performances en termes de classification avec celles du modèle logit traditionnellement utilisé dans les banques. Nos résultats montrent que les SVM sont plus performants si l’on s’intéresse uniquement à la capacité de prévision globale. Ils exhibent toutefois des sensibilités inférieures à celles des modèles logit et GAM. En d’autres termes, ils prévoient moins bien les emprunteurs défaillants. Dans l’état actuel de nos recherches, nous préconisons les modèles GAM qui ont certes une capacité de prévision globale moindre que les SVM, mais qui donnent des sensibilités, des spécificités et des performances de prévision plus équilibrées. En mettant en lumière des modèles ciblés de scoring de crédit, en les appliquant sur des données réelles de crédits hypothécaires, et en les confrontant au travers de leurs performances de classification, cette thèse apporte une contribution empirique à la recherche relative aux modèles de credit-scoring. / Financial institutions face in their functions a variety of risks such as credit, market and operational risk. These risks are not only related to the nature of the activities they perform, but also depend on predictable external factors. The instability of these factors makes them vulnerable to financial risks that they must appropriately identify, analyze, quantify and manage. Among these risks, credit risk is the most prominent due to its ability to generate a systemic crisis. The probability for an individual to switch from a risked to a riskless state is thus a central point to many economic issues. In credit institution, this problem is reflected in the probability for a borrower to switch from a state of “good risk” to a state of “bad risk”. For this quantification, banks increasingly rely on credit-scoring models. This thesis focuses on the current credit-scoring techniques tailored to the needs of a credit institution: the CFCAL-banque specialized in mortgage credits. We particularly present two nonparametric models (SVM and GAM) and compare their performance in terms of classification to those of logit model traditionally used in banks. Our results show that SVM are more effective if we only focus on the global prediction performance of the models. However, SVM models give lower sensitivities than logit and GAM models. In other words the predictions of SVM models on defaulted borrowers are not satisfactory as those of logit or GAM models. In the present state of our research, even GAM models have lower global prediction capabilities, we recommend these models that give more balanced sensitivities, specificities and performance prediction. This thesis is not completely exhaustive about the scoring techniques for credit risk management. By trying to highlight targeted credit scoring models, adapt and apply them on real mortgage data, and compare their performance through classification, this thesis provides an empirical and methodological contribution to research on scoring models for credit risk management.
|
374 |
Multiple classifier systems for the classification of hyperspectral data / ystème de classifieurs multiple pour la classification de données hyperspectralesXia, Junshi 23 October 2014 (has links)
Dans cette thèse, nous proposons plusieurs nouvelles techniques pour la classification d'images hyperspectrales basées sur l'apprentissage d'ensemble. Le cadre proposé introduit des innovations importantes par rapport aux approches précédentes dans le même domaine, dont beaucoup sont basées principalement sur un algorithme individuel. Tout d'abord, nous proposons d'utiliser la Forêt de Rotation (Rotation Forest) avec différentes techiniques d'extraction de caractéristiques linéaire et nous comparons nos méthodes avec les approches d'ensemble traditionnelles, tels que Bagging, Boosting, Sous-espace Aléatoire et Forêts Aléatoires. Ensuite, l'intégration des machines à vecteurs de support (SVM) avec le cadre de sous-espace de rotation pour la classification de contexte est étudiée. SVM et sous-espace de rotation sont deux outils puissants pour la classification des données de grande dimension. C'est pourquoi, la combinaison de ces deux méthodes peut améliorer les performances de classification. Puis, nous étendons le travail de la Forêt de Rotation en intégrant la technique d'extraction de caractéristiques locales et l'information contextuelle spatiale avec un champ de Markov aléatoire (MRF) pour concevoir des méthodes spatio-spectrale robustes. Enfin, nous présentons un nouveau cadre général, ensemble de sous-espace aléatoire, pour former une série de classifieurs efficaces, y compris les arbres de décision et la machine d'apprentissage extrême (ELM), avec des profils multi-attributs étendus (EMaPS) pour la classification des données hyperspectrales. Six méthodes d'ensemble de sous-espace aléatoire, y compris les sous-espaces aléatoires avec les arbres de décision, Forêts Aléatoires (RF), la Forêt de Rotation (RoF), la Forêt de Rotation Aléatoires (Rorf), RS avec ELM (RSELM) et sous-espace de rotation avec ELM (RoELM), sont construits par multiples apprenants de base. L'efficacité des techniques proposées est illustrée par la comparaison avec des méthodes de l'état de l'art en utilisant des données hyperspectrales réelles dans de contextes différents. / In this thesis, we propose several new techniques for the classification of hyperspectral remote sensing images based on multiple classifier system (MCS). Our proposed framework introduces significant innovations with regards to previous approaches in the same field, many of which are mainly based on an individual algorithm. First, we propose to use Rotation Forests with several linear feature extraction and compared them with the traditional ensemble approaches, such as Bagging, Boosting, Random subspace and Random Forest. Second, the integration of the support vector machines (SVM) with Rotation subspace framework for context classification is investigated. SVM and Rotation subspace are two powerful tools for high-dimensional data classification. Therefore, combining them can further improve the classification performance. Third, we extend the work of Rotation Forests by incorporating local feature extraction technique and spatial contextual information with Markov random Field (MRF) to design robust spatial-spectral methods. Finally, we presented a new general framework, Random subspace ensemble, to train series of effective classifiers, including decision trees and extreme learning machine (ELM), with extended multi-attribute profiles (EMAPs) for classifying hyperspectral data. Six RS ensemble methods, including Random subspace with DT (RSDT), Random Forest (RF), Rotation Forest (RoF), Rotation Random Forest (RoRF), RS with ELM (RSELM) and Rotation subspace with ELM (RoELM), are constructed by the multiple base learners. The effectiveness of the proposed techniques is illustrated by comparing with state-of-the-art methods by using real hyperspectral data sets with different contexts.
|
375 |
Détection multidimensionnelle au test paramétrique avec recherche automatique des causes / Multivariate detection at parametric test with automatic diagnosisHajj Hassan, Ali 28 November 2014 (has links)
Aujourd'hui, le contrôle des procédés de fabrication est une tâche essentielle pour assurer une production de haute qualité. A la fin du processus de fabrication du semi-conducteur, un test électrique, appelé test paramétrique (PT), est effectuée. PT vise à détecter les plaques dont le comportement électrique est anormal, en se basant sur un ensemble de paramètres électriques statiques mesurées sur plusieurs sites de chaque plaque. Le but de ce travail est de mettre en place un système de détection dynamique au niveau de PT, pour détecter les plaques anormales à partir d'un historique récent de mesures électriques. Pour cela, nous développons un système de détection en temps réel basé sur une technique de réapprentissage optimisée, où les données d'apprentissage et le modèle de détection sont mis à jour à travers une fenêtre temporelle glissante. Le modèle de détection est basé sur les machines à vecteurs supports à une classe (1-SVM), une variante de l'algorithme d'apprentissage statistique SVM largement utilisé pour la classification binaire. 1-SVM a été introduit dans le cadre des problèmes de classification à une classe pour la détection des anomalies. Pour améliorer la performance prédictive de l'algorithme de classification 1-SVM, deux méthodes de sélection de variables ont été développées. La première méthode de type filtrage est basé sur un score calculé avec le filtre MADe,une approche robuste pour la détection univariée des valeurs aberrantes. La deuxième méthode de type wrapper est une adaptation à l'algorithme 1-SVM de la méthode d'élimination récursive des variables avec SVM (SVM-RFE). Pour les plaques anormales détectées, nous proposons une méthode permettant de déterminer leurs signatures multidimensionnelles afin d'identifier les paramètres électriques responsables de l'anomalie. Finalement, nous évaluons notre système proposé sur des jeux de données réels de STMicroelecronics, et nous le comparons au système de détection basé sur le test de T2 de Hotelling, un des systèmes de détection les plus connus dans la littérature. Les résultats obtenus montrent que notre système est performant et peut fournir un moyen efficient pour la détection en temps réel. / Nowadays, control of manufacturing process is an essential task to ensure production of high quality. At the end of the semiconductor manufacturing process, an electric test, called Parametric Test (PT), is performed. The PT aims at detecting wafers whose electrical behavior is abnormal, based on a set of static electrical parameters measured on multiple sites of each wafer. The purpose of this thesis is to develop a dynamic detection system at PT level to detect abnormal wafers from a recent history of electrical measurements. For this, we develop a real time detection system based on an optimized learning technique, where training data and detection model are updated through a moving temporal window. The detection scheme is based on one class Support Vector Machines (1-SVM), a variant of the statistical learning algorithm SVM widely used for binary classification. 1-SVM was introduced in the context of one class classification problems for anomaly detection. In order to improve the predictive performance of the 1-SVM classification algorithm, two variable selection methods are developed. The first one is a filter method based on a calculated score with MADe filter, a robust approach for univariate outlier detection. The second one is of wrapper type that adapts the SVM Recursive Feature Elimination method (SVM-RFE) to the 1-SVM algorithm. For detected abnormal wafers, we propose a method to determine their multidimensional signatures to identify the electrical parameters responsible for the anomaly. Finally, we evaluate our proposed system on real datasets of STMicroelecronics and compare it to the detection system based on Hotelling's T2 test, one of the most known detection systems in the literature. The results show that our system yields very good performance and can provide an efficient way for real-time detection.
|
376 |
Analysis, Diagnosis and Design for System-level Signal and Power Integrity in Chip-package-systemsAmbasana, Nikita January 2017 (has links) (PDF)
The Internet of Things (IoT) has ushered in an age where low-power sensors generate data which are communicated to a back-end cloud for massive data computation tasks. From the hardware perspective this implies co-existence of several power-efficient sub-systems working harmoniously at the sensor nodes capable of communication and high-speed processors in the cloud back-end. The package-board system-level design plays a crucial role in determining the performance of such low-power sensors and high-speed computing and communication systems. Although there exist several commercial solutions for electromagnetic and circuit analysis and verification, problem diagnosis and design tools are lacking leading to longer design cycles and non-optimal system designs. This work aims at developing methodologies for faster analysis, sensitivity based diagnosis and multi-objective design towards signal integrity and power integrity of such package-board system layouts.
The first part of this work aims at developing a methodology to enable faster and more exhaustive design space analysis. Electromagnetic analysis of packages and boards can be performed in time domain, resulting in metrics like eye-height/width and in frequency domain resulting in metrics like s-parameters and z-parameters. The generation of eye-height/width at higher bit error rates require longer bit sequences in time domain circuit simulation, which is compute-time intensive. This work explores learning based modelling techniques that rapidly map relevant frequency domain metrics like differential insertion-loss and cross-talk, to eye-height/width therefore facilitating a full-factorial design space sweep. Numerical results performed with artificial neural network as well as least square support vector machine on SATA 3.0 and PCIe Gen 3 interfaces generate less than 2% average error with order of magnitude speed-up in eye-height/width computation.
Accurate power distribution network design is crucial for low-power sensors as well as a cloud sever boards that require multiple power level supplies. Achieving target power-ground noise levels for low power complex power distribution networks require several design and analysis cycles. Although various classes of analysis tools, 2.5D and 3D, are commercially available, the presence of design tools is limited. In the second part of the thesis, a frequency domain mesh-based sensitivity formulation for DC and AC impedance (z-parameters) is proposed. This formulation enables diagnosis of layout for maximum impact in achieving target specifications. This sensitivity information is also used for linear approximation of impedance profile updates for small mesh variations, enabling faster analysis.
To enable designing of power delivery networks for achieving target impedance, a mesh-based decoupling capacitor sensitivity formulation is presented. Such an analytical gradient is used in gradient based optimization techniques to achieve an optimal set of decoupling capacitors with appropriate values and placement information in package/boards, for a given target impedance profile. Gradient based techniques are far less expensive than the state of the art evolutionary optimization techniques used presently for a decoupling capacitor network design. In the last part of this work, the functional similarities between package-board design and radio frequency imaging are explored. Qualitative inverse-solution methods common to the radio frequency imaging community, like Tikhonov regularization and Landweber methods are applied to solve multi-objective, multi-variable signal integrity package design problems. Consequently a novel Hierarchical Search Linear Back Projection algorithm is developed for an efficient solution in the design space using piecewise linear approximations. The presented algorithm is demonstrated to converge to the desired signal integrity specifications with minimum full wave 3D solve iterations.
|
377 |
Sistema inteligente para diagn?stico de patologias na laringe utilizando m?quinas de vetor de suporteAlmeida, N?thalee Cavalcanti de 23 July 2010 (has links)
Made available in DSpace on 2014-12-17T14:54:56Z (GMT). No. of bitstreams: 1
NathaleeCA_DISSERT.pdf: 1318151 bytes, checksum: d2471205a640d8428567d06ace6c3b31 (MD5)
Previous issue date: 2010-07-23 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The human voice is an important communication tool and any disorder of the
voice can have profound implications for social and professional life of an individual.
Techniques of digital signal processing have been used by acoustic analysis of vocal
disorders caused by pathologies in the larynx, due to its simplicity and noninvasive
nature. This work deals with the acoustic analysis of voice signals affected by
pathologies in the larynx, specifically, edema, and nodules on the vocal folds. The
purpose of this work is to develop a classification system of voices to help pre-diagnosis
of pathologies in the larynx, as well as monitoring pharmacological treatments and after
surgery. Linear Prediction Coefficients (LPC), Mel Frequency cepstral coefficients
(MFCC) and the coefficients obtained through the Wavelet Packet Transform (WPT)
are applied to extract relevant characteristics of the voice signal. For the classification
task is used the Support Vector Machine (SVM), which aims to build optimal
hyperplanes that maximize the margin of separation between the classes involved. The
hyperplane generated is determined by the support vectors, which are subsets of points
in these classes. According to the database used in this work, the results showed a good
performance, with a hit rate of 98.46% for classification of normal and pathological
voices in general, and 98.75% in the classification of diseases together: edema and
nodules / A voz humana ? uma importante ferramenta de comunica??o e qualquer
funcionamento inadequado da voz pode ter profundas implica??es na vida social e
profissional de um indiv?duo. T?cnicas de processamento digital de sinais t?m sido
utilizadas atrav?s da an?lise ac?stica de desordens vocais provocadas por patologias na
laringe, devido ? sua simplicidade e natureza n?o-invasiva. Este trabalho trata da an?lise
ac?stica de sinais de vozes afetadas por patologias na laringe, especificamente, edemas
e n?dulos nas pregas vocais. A proposta deste trabalho ? desenvolver um sistema de
classifica??o de vozes para auxiliar no pr?-diagn?stico de patologias na laringe, bem
como no acompanhamento de tratamentos farmacol?gicos e p?s-cir?rgicos. Os
coeficientes de Predi??o Linear (LPC), Coeficientes Cepstrais de Freq??ncia Mel
(MFCC) e os coeficientes obtidos atrav?s da Transformada Wavelet Packet (WPT) s?o
aplicados para extra??o de caracter?sticas relevantes do sinal de voz. ? utilizada para a
tarefa de classifica??o M?quina de Vetor de Suporte (SVM), a qual tem como objetivo
construir hiperplanos ?timos que maximizem a margem de separa??o entre as classes
envolvidas. O hiperplano gerado ? determinado pelos vetores de suporte, que s?o
subconjuntos de pontos dessas classes. De acordo com o banco de dados utilizado neste
trabalho, os resultados apresentaram um bom desempenho, com taxa de acerto de
98,46% para classifica??o de vozes normais e patol?gicas em geral, e 98,75% na
classifica??o de patologias entre si: edemas e n?dulos
|
378 |
Classifica??o de padr?es atrav?s de um comit? de m?quinas aprimorado por aprendizagem por refor?oLima, Naiyan Hari C?ndido 13 August 2012 (has links)
Made available in DSpace on 2014-12-17T14:56:07Z (GMT). No. of bitstreams: 1
NaiyanHCL_DISSERT.pdf: 1452285 bytes, checksum: 018fb1e8fa51e8f7094cce68a18c6c73 (MD5)
Previous issue date: 2012-08-13 / Reinforcement learning is a machine learning technique that, although finding a large
number of applications, maybe is yet to reach its full potential. One of the inadequately tested
possibilities is the use of reinforcement learning in combination with other methods for the
solution of pattern classification problems.
It is well documented in the literature the problems that support vector machine ensembles
face in terms of generalization capacity. Algorithms such as Adaboost do not deal appropriately
with the imbalances that arise in those situations. Several alternatives have been proposed,
with varying degrees of success.
This dissertation presents a new approach to building committees of support vector machines.
The presented algorithm combines Adaboost algorithm with a layer of reinforcement
learning to adjust committee parameters in order to avoid that imbalances on the committee
components affect the generalization performance of the final hypothesis. Comparisons were
made with ensembles using and not using the reinforcement learning layer, testing benchmark
data sets widely known in area of pattern classification / A aprendizagem por refor?o ? uma t?cnica de aprendizado de m?quina que, embora j? tenha
encontrado uma grande quantidade de aplica??es, talvez ainda n?o tenha alcan?ado seu
pleno potencial. Uma das possibilidades que n?o foi devidamente testada at? hoje foi a utiliza??o
da aprendizagem por refor?o em conjunto com outros m?todos para a solu??o de problemas
de classifica??o de padr?es.
? bem documentada na literatura a problem?tica que ensembles de m?quinas de vetor de
suporte encontram em termos de capacidade de generaliza??o. Algoritmos como Adaboost
n?o lidam apropriadamente com os desequil?brios que podem surgir nessas situa??es. V?rias
alternativas j? foram propostas, com margens variadas de sucesso.
Esta disserta??o apresenta uma nova abordagem para a constru??o de comit?s de m?quinas
de vetor de suporte. O algoritmo apresentado combina o algoritmo Adaboost com uma
camada de aprendizagem por refor?o, para ajustar par?metros do comit? evitando que desequil?brios
nos classificadores componentes do comit? prejudiquem o desempenho de generaliza??o
da hip?tese final. Foram efetuadas compara??es de comit?s com e sem essa camada
adicional de aprendizagem por refor?o, testando conjuntos de dados benchmarks amplamente
conhecidos na ?rea de classifica??o de padr?es
|
379 |
Algoritmos gen?ticos aplicados a um comit? de LS-SVM em problemas de classifica??oPadilha, Carlos Alberto de Ara?jo 31 January 2013 (has links)
Made available in DSpace on 2014-12-17T14:56:13Z (GMT). No. of bitstreams: 1
CarlosAAP_DISSERT.pdf: 1150903 bytes, checksum: a90e625336bbabe7e96da74cb85ee7aa (MD5)
Previous issue date: 2013-01-31 / Coordena??o de Aperfei?oamento de Pessoal de N?vel Superior / The pattern classification is one of the machine learning subareas that has the most
outstanding. Among the various approaches to solve pattern classification problems, the
Support Vector Machines (SVM) receive great emphasis, due to its ease of use and good
generalization performance. The Least Squares formulation of SVM (LS-SVM) finds the
solution by solving a set of linear equations instead of quadratic programming implemented
in SVM. The LS-SVMs provide some free parameters that have to be correctly
chosen to achieve satisfactory results in a given task. Despite the LS-SVMs having high
performance, lots of tools have been developed to improve them, mainly the development
of new classifying methods and the employment of ensembles, in other words, a combination
of several classifiers. In this work, our proposal is to use an ensemble and a Genetic
Algorithm (GA), search algorithm based on the evolution of species, to enhance the LSSVM
classification. In the construction of this ensemble, we use a random selection of
attributes of the original problem, which it splits the original problem into smaller ones
where each classifier will act. So, we apply a genetic algorithm to find effective values
of the LS-SVM parameters and also to find a weight vector, measuring the importance
of each machine in the final classification. Finally, the final classification is obtained by
a linear combination of the decision values of the LS-SVMs with the weight vector. We
used several classification problems, taken as benchmarks to evaluate the performance of
the algorithm and compared the results with other classifiers / A classifica??o de padr?es ? uma das sub?reas do aprendizado de m?quina que possui
maior destaque. Entre as v?rias t?cnicas para resolver problemas de classifica??o de padr?es,
as M?quinas de Vetor de Suporte (do ingl?s, Support Vector Machines ou SVM)
recebem grande ?nfase, devido a sua facilidade de uso e boa capacidade de generaliza??o.
A formula??o por M?nimos Quadrados da SVM (do ingl?s, Least Squares Support Vector
Machines ou LS-SVM) encontra um hiperplano de separa??o ?tima atrav?s da solu??o
de um sistema de equa??es lineares, evitando assim o uso da programa??o quadr?tica
implementada na SVM. As LS-SVMs fornecem alguns par?metros livres que precisam
ser corretamente selecionados para alcan?ar resultados satisfat?rios em uma determinada
tarefa. Apesar das LS-SVMs possuir elevado desempenho, v?rias ferramentas tem
sido desenvolvidas para aprimor?-la, principalmente o desenvolvimento de novos m?todos
de classifica??o e a utiliza??o de comit?s de m?quinas, ou seja, a combina??o de v?rios
classificadores. Neste trabalho, n?s propomos tanto o uso de um comit? de m?quinas
quanto o uso de um Algoritmo Gen?tico (AG), algoritmo de busca baseada na evolu??o
das esp?cies, para aprimorar o poder de classifica??o da LS-SVM. Na constru??o desse
comit?, utilizamos uma sele??o aleat?ria de atributos do problema original, que divide o
problema original em outros menores onde cada classificador do comit? vai atuar. Ent?o,
aplicamos o AG para encontrar valores efetivos para os par?metros de cada LS-SVM
e tamb?m encontrando um vetor de pesos, medindo a import?ncia de cada m?quina
na classifica??o final. Por fim, a classifica??o final ? dada por uma combina??o linear das respostas de cada m?quina ponderadas pelos pesos. Foram utilizados v?rios problemas
de classifica??o, tidos como benchmarks, para avaliar o desempenho do algoritmo e
comparamos os resultados obtidos com outros classificadores
|
380 |
Alinhamento do modelo de forma ativa com máquinas de vetores de suporte aplicado na deteção de veículosAragão, Maria Géssica dos Santos 13 May 2016 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / Many applications of digital image processing uses object detection techniques. Detecting
an object is usually related to locate the area around it, while shape detection is
related to nd, precisely, the set of points that constitutes its shape. When the problem
involves detecting shapes that have predictable changes, deformable models show to be
an e ective solution. The approach developed in this work refers to the vehicle shape
detection in frontal position by methods which are divided into two levels, the rst level
is composed by a cascade of support vector machines and the second one is a deformable
model. The use of deformable models favors the detection of vehicle shape same when
its image is occluded by objects such as trees / Muitas aplicações de processamento de imagens digitais utilizam técnicas de detecção de objetos. Detectar um objeto normalmente está relacionado a localizar a área em torno do mesmo, já a deteção da forma está relacionada a localizar precisamente em uma imagem um conjunto de pontos que constituem sua forma. Quando o problema envolve a detecção de formas que apresentam variações previsíveis, os modelos deformáveis se apresentam como uma alternativa eficaz. A abordagem desenvolvida neste trabalho se refere à detecção da forma de veículos em posição frontal através de métodos que se dividem em dois níveis, o primeiro nível é composto por uma cascata de máquinas de vetores de suporte e oo segundo é um modelo deformável. O uso de modelos deformáveis favorece a deteção de formas de veículos mesmo quando sua imagem está ocluída por objetos, tais como árvores.
|
Page generated in 0.0967 seconds