• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 13
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 46
  • 46
  • 46
  • 18
  • 13
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Crystallization and Melting Studies of Poly(ε-caprolactone) and Poly(ethylene oxide) using Flash™ Differential Scanning Calorimetry and Preparation and Characterization of Poly(δ-valerolactone) Fractions

Vincent, Matthew Ryan 03 July 2019 (has links)
The isothermal crystallization and melting temperatures of poly(ε-caprolactone) were correlated using fast differential scanning calorimetry. The melting kinetics was found to be independent of isothermal crystallization temperature and time. The conventional Hoffman-Weeks method could not be used to determine the equilibrium melting temperature because the observed melting temperatures were greater than the crystallization temperatures by a constant, so the Gibbs-Thomson method was used instead, yielding an equilibrium melting temperature of 103.4 ± 2.3°C. A modification was proposed to the non-linear Hoffman-Weeks equation that included a non-linear undercooling dependence for the kinetic fold surface free energy upon crystallization and permitted accurate modeling of the observed melting behavior. The isothermal crystallization rates of four narrow molecular weight poly(ethylene oxide) fractions were characterized using fast differential scanning calorimetry for crystallization temperatures spanning 100°C range with the lower limit approaching the glass transition. A transition from homogeneous to heterogeneous primary nucleation was observed at −5°C. The kinetic analysis suggested that the crystal growth geometry depends strongly on temperature, where rod-like structures begin to appear near the glass transition temperature, highly branched solid sheaves grow throughout the homogeneous primary nucleation temperature range, and spherulites grow in the heterogenous primary nucleation range. Poly(δ-valerolactone) was synthesized using microwave-assisted techniques. Narrow molecular weight fractions were obtained using successive precipitation fractionation. Preliminary isothermal crystallization studies suggest that conventional thermal analysis methods are not adequate to measure the melting temperatures accurately due to reorganization during heating. / Doctor of Philosophy / Plastics may be classified into two general categories: those which form ordered domains upon solidification, i.e. undergo crystallization, and those which remain disordered upon solidification, i.e. form glasses. This work is focused on studying the crystallization and melting processes in two linear polymers, poly(ε-caprolactone) and poly(ethylene oxide), using new experimental technology. In the case of poly(ε-caprolactone), the experimental data could not be rationalized by existing theories, and we have proposed modifications to these theories that explained the results. In the case of poly(ethylene oxide), the application of new experimental technology resulted in previously unreported data that indicated novel behavior at very low crystallization temperatures. In the last portion of this work, poly(δ-valerolactone) was made using a novel approach. Conventional experimental approaches to measuring the crystallization and melting behavior were shown to be inadequate.
42

Antimikrobielle Beschichtung kieferorthopädischer Ligaturenringe mit Silber und Bismut / Antimicrobial coating of orthodontic elastomeric ligatures with silver and bismuth

Griesmüller, Carolin 07 May 2019 (has links)
No description available.
43

Surface Free Energy Evaluation, Plasma Surface Modification And Biocompatibility Studies Of Pmma

Ozcan, Canturk 01 August 2006 (has links) (PDF)
PMMA is a widely used biomaterial especially in the fields of orthopedia, orthodontia and ophthalmology. When biocompatibility is considered, modification of the biomaterials&amp / #8217 / surface may be needed to optimize interactions of the biomaterial with the biological environment. After the surface modifications one of the most important changes that occur is the change in the surface free energy (SFE). SFE is an important but an obscure property of the material and evaluation methods with different assumptions exist in the literature. In this study, SFE of pristine and oxygen plasma modified PMMA films were calculated by means of numerous theoretical approaches (Zisman, Saito, Fowkes, Berthelot, Geometric and Harmonic Mean and Acid-Base) using numerous liquids and the results were compared to each other to elucidate the differences of methods. Dispersive, polar, acidic and basic components of the SFE were calculated by the use of different liquid couples and triplets with the application of Geometric and Harmonic mean methods and Acid-Base approach. The effect of SFE and the components of SFE on the cell attachment efficiencies were examined by using fibroblast cells. It was observed that with the treatment of oxygen plasma, cell attachment capability and hydrophilicity of PMMA surfaces were altered depending on the applied power and duration of the plasma.
44

Fundamental investigation to improve the quality of cold mix asphalt

Khan, Abdullah January 2016 (has links)
Cold mix asphalt (CMA) emulsion technology could become an attractive option for the road industry as it offers lower startup and equipment installation costs, energy consumption and environmental impact than traditional alternatives. The adhesion between bitumen and aggregates is influenced by diverse parameters, such as changes in surface free energies of the binder and aggregates or the presence of moisture or dust on the surface of aggregates, mixing temperatures, surface textures (including open porosity), nature of the minerals present and their surface chemical composition, as well as additives in the binder phase. The performance of cold asphalt mixtures is strongly influenced by the wetting of bitumen on surfaces of the aggregates, which is governed by breaking and coalescence processes in bitumen emulsions. Better understanding of these processes is required. Thus, in the work this thesis is based upon, the surface free energies of both minerals/aggregates and binders were characterized using two approaches, based on contact angles and vapor sorption methods. The precise specific surface areas of four kinds of aggregates and seven minerals were determined using an approach based on BET (Brunauer, Emmett and Teller) theory, by measuring the physical adsorption of selected gas vapors on their surfaces and calculating the amount of adsorbed vapors corresponding to monolayer occupancy on the surfaces. Interfacial bond strengths between bitumen and aggregates were calculated based on measured surface free energy components of minerals/aggregates and binders, in both dry and wet conditions. In addition, a new experimental method has been developed to study bitumen coalescence by monitoring the shape relaxation of bitumen droplets in an emulsion environment. Using this method, the coalescence of spherical droplets of different bitumen grades has been correlated with neck growth, densification and changes in surface area during the coalescence process. The test protocol was designed to study the coalescence process in varied environmental conditions provided by a climate-controlled chamber. Presented results show that temperature and other variables influence kinetics of the relaxation process. They also show that the developed test procedure is repeatable and suitable for studying larger-scale coalescence processes. However, possible differences in measured parametric relationships between the bitumen emulsion scale and larger scales require further investigation. There are several different research directions that can be explored for the continuation of the research presented in this thesis. For instance, the rationale of the developed method for analyzing coalescence processes in bitumen emulsions rests on the assumption that the results are applicable to large-scale processes, which requires validation. A linear relationship between the scales is not essential, but it is important to be able to determine the scaling function. Even more importantly, qualitative effects of the investigated parameters require further confirmation. To overcome the laboratory limitations and assist in the determination of appropriate scaling functions further research could focus on the development of a three-dimensional multiphase model to study coalescence processes in more detail, including effects of surfactants, pH and other additives such as mineral fillers and salts. Additionally, better understanding of the breaking process and water-push out could help significantly to optimize CMA mix design. Different methods, both numerical and experimental could be explored for this. / Cold mix asphalt (CMA) eller kall asfaltbetong med hjälp av emulsionsteknik kan vara ett attraktivt alternativ för vägbyggnadsindustrin då det möjliggör lägre uppstart- och investeringskostnader, lägre energiförbrukning och mindre miljöpåverkan än traditionella alternativ. Adhesionen mellan bindemedel och stenpartiklarna påverkas av ett flertal parametrar, så som förändring i fri ytenergi hos både bindemedel och partiklar i närvaro av fukt eller damm på stenytorna, blandningstemperatur, yttextur (inklusive ytporositet), mineralegenskaper och ytornas kemiska sammansättning lika väl som tillsatsmedel i bindemedlen. Beteendet hos kall asfaltbetong är starkt påverkad av vätningsegenskaperna hos bindemedlet när det kommer i kontakt med stenmaterialet och detta i sin tur är beroende på bitumenemulsionens brytegenskaper och förmåga att blandas. Bättre förståelse av dessa processer är av största vikt. I detta arbete är avhandlingen baserad på fri ytenergi hos både mineraler/aggregat och bindemedel, baserat på kontaktvinkel och på ångabsorptionsmetoder. Den exakta specifika ytan hos fyra typer av aggregat och sju mineraler undersöktes med en metod baserad på BET (Brunauer, Emmett och Teller):s teorier genom att mäta den fysiska adsorptionen av utvalda gaser på ytorna och beräkna mängden adsorberad ånga som korresponderade mot ytlagret. Styrkan hos kontaktytornas bindning mellan bindemedlet och stenaggregaten beräknades baserat på mätningar av den fria ytenergin hos bägge ingående komponenterna, dels i torrhet dels i våta omgivningar. Som tillägg har en ny experimentell metod utvecklats för att studera bitumens blandbarhet genom att studera bitumendroppars relaxation i en emulsionsmiljö. Genom att använda denna metod har korelationen mellan sväriska droppar av bitumen undersökts mot förändringen i ytans area under blandningsprocessen. Testprotokollet utformades för att studera blandningsprocessen i varierande miljöer i en klimatkammare. Presenterade resultat visar att temperatur och andra variabler påverkar de kinetiska förhållandena vid relaxationsprocessen. De visar även att den utvecklade testmetoden är repeterbar och passar för studier av storskaliga blandningsprocesser. Det bör dock påpekas att vidare studier krävs för att påvisa skillnaderna mellan bitumenemulsionsskalan och större skalor. Framtida forskning kommer att koncentreras på utveckling av tredimensionella multifas­modeller för att studera blandningsförlopp på en mer detaljerad nivå, inkluderande effekter på ytaktiva ämnen, pH-värden och andra additativ så som mineralfiller och salt. Som tillägg kommer nyttan av nya karaktäriseringsmetoder att utvärderas, så som lågvikelspridning av neutroner eller kombinationer av röntgen, neutronradiologi och datortomografi, för att studera brytmekanismer hos bitumenemulsioner vid kontakt med mineraler och aggregat. / <p>QC 20160901</p>
45

Surface Free Energy Characterization of Powders

Yildirim, Ismail 07 May 2001 (has links)
Microcalorimetric measurements and contact angle measurements were conducted to study the surface chemistry of powdered minerals. The contact angle measurements were conducted on both flat and powdered talc samples, and the results were used to determine the surface free energy components using Van Oss-Chaudhury-Good (OCG) equation. It was found that the surface hydrophobicity of talc increases with decreasing particle size. At the same time, both the Lifshitz-van der Waals (gSLW) and the Lewis acid-base (gSAB) components (and, hence, the total surface free energy (gS)) decrease with decreasing particle size. The increase in the surface hydrophobicity and the decrease in surface free energy (gS) can be attributed to preferential breakage of the mineral along the basal plane, resulting in the exposure of more basal plane surfaces to the aqueous phase. Heats of immersion measurements were conducted using a flow microcalorimeter on a number of powdered talc samples. The results were then used to calculate the contact angles using a rigorous thermodynamic relation. The measured heat of immersion values in water and calculated contact angles showed that the surface hydrophobicity of talc samples increase with decreasing particle size, which agrees with the direct contact angle measurements. A relationship between advancing water contact angle qa, and the heat of immersion (-DHi) and surface free energies was established. It was found that the value of -DHi decrease as qa increases. The microcalorimetric and direct contact angle measurements showed that acid-base interactions play a crucial role in the interaction between talc and liquid. Using the Van Oss-Chaudhury-Good's surface free energy components model, various talc powders were characterized in terms of their acidic and basic properties. It was found that the magnitude of the Lewis electron donor, gS-, and the Lewis electron acceptor, gS+, components of surface free energy is directly related to the particle size. The gS- of talc surface increased with decreasing particle size, while the gS+ slightly decreased. It was also found that the Lewis electron-donor component on talc surface is much higher than the Lewis electron-acceptor component, suggesting that the basal surface of talc is basic. The heats of adsorption of butanol on various talc samples from n-heptane solution were also determined using a flow microcalorimeter. The heats of adsorption values were used to estimate % hydrophilicity and hydrophobicity and the areal ratios of the various talc samples. In addition, contact angle and heat of butanol adsorption measurements were conducted on a run-of-mine talc sample that has been ground to two different particle size fractions, i.e., d50=12.5 mm and d50=3.0 mm, respectively. The results were used to estimate the surface free energy components at the basal and edge surfaces of talc. It was found that the total surface free energy (gS) at the basal plane surface of talc is much lower than the total surface free energy at the edge surface. The results suggest also that the basal surface of talc is monopolar basic, while the edge surface is monopolar acidic. The results explain why the basicity of talc surface increases with decreasing particle size as shown in the contact angle and microcalorimetric measurements. Furthermore, the effects of the surface free energies of solids during separation from each other by flotation and selective flocculation were studied. In the present work, a kaolin clay sample from east Georgia was used for the beneficiation tests. First, the crude kaolin was subjected to flotation and selective flocculation experiments to remove discoloring impurities (i.e., anatase (TiO2) and iron oxides) and produce high-brightness clay with GE brightness higher than 90%. The results showed that a clay product with +90% brightness could be obtained with recoveries (or yields) higher than 80% using selective flocculation technique. It was also found that a proper control of surface hydrophobicity of anatase is crucially important for a successful flotation and selective flocculation process. Heats of immersion, heats of adsorption and contact angle measurements were conducted on pure anatase surface to determine the changes in the surface free energies as a function of the surfactant dosage (e.g. hydroxamate) used for the surface treatment. The results showed that the magnitude of the contact angle and, hence, the surface free energy and its components on anatase surface varies significantly with the amount of surfactant used for the surface treatment. / Ph. D.
46

Vergleich dielektrisch behinderter Entladungen bezüglich der physikalischen Eigenschaften und der Wirkung auf Holz und Holzwerkstoffe / Comparison of dielectric barrier discharges regarding their physical properties and the influence on wood and wooden materials

Peters, Frauke 22 October 2018 (has links)
No description available.

Page generated in 0.3399 seconds