Spelling suggestions: "subject:"burface plasmon polaritons"" "subject:"1surface plasmon polaritons""
21 |
Analytical and Numerical Models of Multilayered Photonic DevicesNing, Ding 12 May 2008 (has links)
No description available.
|
22 |
Optical and Terahertz Energy Concentration on the Nanoscale in PlasmonicsRusina, Anastasia 01 December 2009 (has links)
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength R λ 300 μm 0 0 ≈ ≈ to the unprecedented final size of R = 100 − 250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These properties of spoof plasmons are of great interest for THz technology.
|
23 |
Optical and Terahertz Energy Concentration on the Nanoscale in PlasmonicsRusina, Anastasia 20 October 2009 (has links)
We introduce an approach to implement full coherent control on nanometer length scales. It is based on spatiotemporal modulation of the surface plasmon polariton (SPP) fields at the thick edge of a nanowedge. The SPP wavepackets propagating toward the sharp edge of this nanowedge are compressed and adiabatically concentrated at a nanofocus, forming an ultrashort pulse of local fields. The profile of the focused waveform as a function of time and one spatial dimension is completely coherently controlled. We establish the principal limits for the nanoconcentration of the terahertz (THz) radiation in metal/dielectric waveguides and determine their optimum shapes required for this nanoconcentration. We predict that the adiabatic compression of THz radiation from the initial spot size of vacuum wavelength ~300 μm to the unprecedented final size of 100-250 nm can be achieved, while the THz radiation intensity is increased by a factor of 10 to 250. This THz energy nanoconcentration will not only improve the spatial resolution and increase the signal/noise ratio for THz imaging and spectroscopy, but in combination with the recently developed sources of powerful THz pulses, will allow the observation of nonlinear THz effects and a variety of nonlinear spectroscopies (such as two-dimensional spectroscopy), which are highly informative. This should find a wide spectrum of applications in science, engineering, biomedical research and environmental monitoring. We also develop a theory of the spoof plasmons propagating at the interface between a dielectric and a real conductor. The deviation from a perfect conductor is introduced through a finite skin depth. The possibilities of guiding and focusing of spoof plasmons are considered. Geometrical parameters of the structure are found which provide a good guiding of such modes. Moreover, the limit on the concentration by means of planar spoof plasmons in case of non-ideal metal is established. These properties of spoof plasmons are of great interest for THz technology.
|
24 |
Dynamic plasmonic metasurfaces in the visible spectrumBartholomew, Richard John January 2018 (has links)
As visual display technologies move closer to producing true three dimensional displays, pixel technologies need to be ever smaller and more functional to keep pushing the boundaries. Plasmonic metasurfaces have been shown to control the phase, amplitude and/or polarisation of incoming electromagnetic radiation. Nano-fabrication advancements have resulted in the fabrication of the building blocks of such metasurfaces at nano-scale dimensions, allowing the surfaces to interact with visible light, opening up applications in visual displays. As pixel sizes shrink, smaller colour filters will be required. The excitation of plasmonic resonances in metallic nano-structure arrays have resulted in colour filters an order of magnitude smaller than what is currently commercially available. As colour filters, plasmonic metasurfaces offer numerous advantages over pigment-based colour filters used in modern commercial liquid crystal (LC) displays, including environmental, size and longevity factors. Furthermore, exploiting the wavelength and polarisation dependant scattering of nano-structures, optical components, including lenses, waveplates and holograms containing sub-wavelength pixels have been demonstrated in the visible wavelength spectrum. The metasurfaces are able to mould optical wavefronts into arbitrary shapes with sub-wavelength resolution by introducing spatial variations in the optical response of the light scatterers. The applications demonstrated so far are, on the whole, static devices, that is to say their optical properties may not be altered post fabrication. To realise the full potential of plasmonic metasurfaces to visual applications the devices must be made active. By activating structural colour surfaces, not only may pixel densities potentially be increased simply by removing the need for separate red, green and blue filters, but a new class of high definition ultra-thin display devices may be accessible, whilst the dynamic manipulation of the wavelength and polarisation properties of nano-scattering elements would open up the possibilities to create sub-wavelength holographic pixels. This thesis investigates ways to activate static metasurfaces for colour, flat optic, and holographic applications. First, methods of dynamic control of the structural colour of plasmonic nano-hole arrays are investigated. By combining nano-hole arrays with liquid crystals, transmissive electrically tunable LC-nanohole pixels operating across the visible spectrum with un-polarised input light are experimentally demonstrated. An output analyser in combination with a nematic LC layer enables pixel colour to be electronically controlled through an applied voltage across the device, where LC re-orientation leads to tunable mixing of the relative contributions from the plasmonic colour input. Furthermore, exploiting the strong surface anchoring effects between an aluminium surface and LC molecules a twisted nematic LC cell, using a metallic grating as a combined colour filter, electrode and alignment layer, was shown to act a variable amplitude colour filter. The colour of these pixels was improved greatly utilising a grating-insulator-grating structure unique to this work. Second, a new process for fabricating aluminium nano-rod structures embedded in an elastomeric medium, with high spatial accuracy, is presented. The process is used to create nano-rod plasmonic resonator arrays whose optical properties may be altered by mechanical deformation. The pattern transfer process is further utilised to create dynamic optical elements, including nano-rod arrays for colour filters, tunable focal length Fresnel zone plates and photon sieves, and stretchable holograms with dynamic replay fields.
|
25 |
Buzení a detekce plazmonových polaritonů / Excitation and Detection of Plasmon PolaritonsŠustr, Libor January 2008 (has links)
The diploma thesis is aimed to excitation and detection of surface plasmon polaritons by visible light. First of all, we will briefly remind some basic principles like waves, electromagnetic wave, light on the interface and optical properties of metals. By using these principles we show presence of surface plasmon polaritons states. After the explanation of their properties there will be clearly visible reasons for aplications of the special excitationand detection methods. We will describe especially the prism coupling, periodic grating coupling and SNOM. Two last sections deal with computer simulations and experiments related to these methods. This means we can exemplify some knowledge presented in previous chapters. Results of simulations are compared with the experiment where we study the excitations of surface plasmon polaritons by periodic grating on aluminium surface.
|
26 |
Electrical excitation of surface plasmon polaritons by inelastic tunneling electrons with resonant nanoantennas / Excitation électrique de plasmons polaritons de surface par effet tunnel inélastique avec des nanoantennes résonnantesZhang, Cheng 24 May 2019 (has links)
Les plasmons polaritons de surface (SPPs) jouent un rôle central en nanophotonique, parce que ce sont des modes optiques qui peuvent être confinés dans l’espace à l’échelle de 10 nm et dans le temps à l’échelle de 10 fs. L’excitation électrique des plasmons polaritons de surface par effet tunnel inélastique peut être ultrarapide et localisée, ce qui permet de développer une nanosource pour la nanophotonique intégrée en profitant pleinement du potentiel des polaritons plasmon de surface. Pourtant, ce processus est très inefficace avec un rendement de conversion typique de 10-7~10-5 plasmon par électron.Dans ce manuscrit de thèse, nous présentons une étude théorique et expérimentale qui vise à augmenter l’émission de plasmons de surface par effet tunnel inélastique avec une nano-antenne résonante. Nous avons développé un modèle théorique pour décrire l’émission de lumière à partir d’une jonction à effet tunnel en utilisant le théorème de fluctuation-dissipation. Nous proposons deux stratégies pour augmenter le rendement de conversion électron-plasmon. Nous introduisons un mode d’antenne résonnante confiné à l’échelle du nanomètre afin de renforcer le couplage entre le courant et le champ. En outre, nous introduisons l’hybridation d’un mode plasmonique metal/isolant/metal confiné et d’un mode d’antenne. Nous prédisons théoriquement que 30% de l’énergie émise par un dipôle est sous forme de SPP pour une longueur d’onde de travail de 800nm et une épaisseur d’isolant de 1 nm.Nous avons développé les processus de fabrication pour réaliser les antennes à effet tunnel en utilisant la configuration Al/AlOx/Au. L’antenne fabriquée présente une fonctionnalité robuste concernant les propriétés électriques et optiques. Nous montrons l’antenne permet de contrôler le spectre d’émission SPP, la polarisation d’émission SPP et renforcer l’efficacité des émissions de SPP de plus de 3 ordres de grandeur. La puissance totale émise sous forme de SPP est de l’ordre de 10 pW, quatre ordres de grandeur de plus que la puissance typique émise par une pointe de microscope à effet tunnel. / Surface plasmon polaritons (SPPs) plays a central role in nanophotonics because they are optical modes that can be confined in space at the 10 nm scale and in time at the 10 fs scale. Electrical excitation of surface plasmon polaritons by inelastic tunneling electrons has the potential to be fast and localized so that it offers the opportunity to develop a nanosource for on-chip nanophotonics taking advantage of the full potential of surface plasmons polaritons. However, inelastic tunneling is rather inefficient with a typical electron-to-plasmon conversion efficiency of 10-7~10-5. In this thesis manuscript, we present a study for enhancing surface plasmon emission by inelastic tunneling electrons with a resonant nanoantenna. It consists of theoretical and experimental investigations. First, we have developed a theoretical model to describe the light emission from a tunnel junction based on the fluctuation-dissipation theorem. Second, we have theoretically demonstrated two strategies to improve the antenna SPP efficiency thus aiming to enhance electron-to-plasmon conversion efficiency. We introduce a resonant antenna mode with a sub-nanometer gap in order to enhance the coupling between the inelastic current and the the mode. Furthermore, we introduce the hybridization in a nanopatch antenna between a gap mode and an antenna mode to launch SPPs: we theoretically predict that 30% of the power emitted by a dipole is converted into SPP (working wavelength at 800nm) with a 1nm gap thickness. Third, we have developed the fabrication procedures to realize antenna tunnel junctions based on the Al/AlOx/Au configuration. The fabricated antenna junction shows a robust functionality both regarding electrical and optical properties. The antenna junction is demonstrated to control the SPP emission spectrum, the SPP emission polarization and enhance the SPP emission efficiency by over 3 orders of magnitude. The total SPP power emitted is in the range of 10 pW, four orders of magnitude larger than the typical fW power emitted by a scanning tunneling tip junction.
|
27 |
Hybridization of Surface Plasmon Polaritons and Molecular ExcitationsMemmi, Hala 23 June 2023 (has links)
Starke Kopplung von Molekülen mit einem räumlich begrenzten Lichtfeld führt zur Bildung neuer polaritonischer Eigenzustände des Systems, die sowohl molekulare als auch photonische Eigenschaften erhalten und somit ein großes Potenzial für Anwendungen in der Chemie und Optoelektronik besitzen.
In dieser Arbeit wird die Kopplung zwischen Oberflächenplasmonen Polaritonen (SPPs), die als das räumlich begrenzte Lichtfeld agieren, und molekularen Anregungen wie Schwingungen und polaronischen Resonanzen untersucht.
Das starke Kopplungsregime zwischen einer Molekülschwingung und einem SPP wird zum ersten Mal im mittleren Infrarot unter Verwendung der Carbonylschwingung von Poly(vinylmethylketon) Polymer und Silber als Ausbreitungsmedium von SPPs demonstriert. Die neu gebildeten Hybridmoden werden durch Experimente und numerische Modellierung untersucht, wobei Messungen der abgeschwächten Totalreflexion und der thermischen Emission sowie Berechnungen mittels der Transfermatrix und der linearen Dispersionstheorie verwendet werden. Ein Anticrossing in der Dispersion der Polariton-Zweige mit einer Energieaufspaltung bis zu 15 meV, was die Hauptsignatur des starken Kopplungsregimes ist, wird beobachtet.
Die starke Kopplung mit Zinkgalliumoxid, einem hochdotierten Halbleiter als Alternative zu Edelmetallen, wird auch untersucht. Experimentelle und simulierte Reflektometrie-Spektren sowie Dispersionsrelationen werden diskutiert, um Rückschlüsse auf die Eigenschaften des Systems zu ziehen. Außerdem wird ein Ansatz zur Verbesserung der Leitfähigkeit organischer Halbleiterpolymere durch starke Kopplung ihrer polaronischen Zustände an SPPs vorgestellt und Leitfähigkeitsmessungen durchgeführt. Ziel ist es, die Delokalisierung der Hybridzustände auszunutzen, um die Leitfähigkeit zu verändern.
Die präsentierten Ergebnisse bieten neue Einblicke in den Nutzen der Eigenschaften der Licht-Materie-Hybridisierung, um ihr volles Potenzial für verschiedene Bereiche und Anwendungen zu erforschen. / Strong coupling of molecules with a confined light field results in the formation of new polaritonic eigenstates of the system called polaritons that inherit both molecular and photonic characteristics and thus holds strong potential for applications in chemistry and optoelectronics.
In this work, coupling between propagating surface plasmon polaritons (SPPs), as confined light field, and molecular excitations, such as vibrational resonances and polaronic features, is investigated.
The strong coupling regime between a molecular vibration and a propagating SPP is demonstrated for the first time in the mid-infrared spectral range using the carbonyl stretch vibration of Poly(vinyl methyl ketone) polymer and silver as metallic medium for SPPs propagation. The newly formed hybrid modes are investigated through experiments and numerical modelling, employing attenuated-total-reflection and thermal emission measurements as well as transfer-matrix and linear dispersion theory calculations. An anticrossing behavior in the dispersion of the polariton branches with an energy splitting up to 15meV, which is a key signature of the strong coupling regime, is observed.
Strong coupling involving zinc gallium oxide, which is a highly doped semiconductor, as an alternative to noble metals is also investigated. Experimental and simulated reflectometry spectra as well as the dispersion relations are discussed so as to draw conclusions about the properties of the system. Furthermore, an approach to enhance the conductivity of organic semiconductor polymers by strongly coupling their polaronic states to SPPs is presented and four-point probe measurements are conducted. The goal is to exploit the delocalization of the hybrid states to alter the conductivity of the organic semiconductor.
The results presented in this thesis provide new insights into the profit from the properties of light-matter hybridization in order to explore its full potential for several areas and applications.
|
28 |
Coherence and Coupling of Cavity Photons and Tamm Plasmons in Metal-Organic MicrocavitiesBrückner, Robert 31 May 2013 (has links)
The subject of this thesis is the investigation of organic microcavities with implemented unstructured and laterally structured metal layers. The optical properties are studied by means of various spectroscopic techniques and are compared to conventional metal-free devices. It is shown that the large expected absorption caused by the embedded metal is reduced compared to the case of a free-standing metal layer of the same thickness. As a consequence of the interaction of the photonic cavity mode with the metallic structures, two new coupled modes emerge which are called Tamm plasmons. The strength of this coupling and the resulting spectral difference of these modes are defined by the thickness of both the metal layer and the adjacent dielectric layers. These control parameters enable the optimization of the structural design. Accordingly, coherent emission from Tamm plasmons is realized at room temperature. An analytical approach is developed accounting for the experimentally observed polarization splitting of detuned resonances.
Next, laterally structured metal layers embedded into organic microcavities are considered. The structuring leads to a confinement of the photonic density of states evident from a clear discretization in energy of the corresponding modes. Applying a photolithographic technique to structure the metal layer into a pattern of regularly placed stripes leads to additional effects due to the resulting periodicity. By exciting this hybrid structure above a certain threshold, periodic arrays of localized cavity modes and metal-based Tamm plasmons are generated. These Bloch-like excited states are capable of phase coupling across the grating. Additionally, surface plasmon polaritons (SPPs) are excited propagating at the interface of the silver and the adjacent dielectric layers. Thanks to the periodicity of the metallic stripes, SPPs are subject to efficient Bragg scattering into the light cone in air. Modes up to order number 30 are detectable as quasi-linear periodic lines in the dispersion pattern. A Fourier analysis reveals an in- or out-of-phase coupling of the modes and a spread of the coherence over macroscopic distances of more than 40 µm. This strategy of embedding metal patterns into an organic microcavity yields a viable route towards electrically contacted organic solid-state lasers. / In dieser Arbeit werden erstmals dünne, unstrukturierte sowie lateral strukturierte metallische Schichten in organische Mikroresonatoren eingebettet und anschließend die optischen Eigenschaften mittels spektroskopischer Verfahren untersucht. Es zeigt sich, dass die erwarteten hohen optischen Verluste durch die Absorption des elektrischen Feldes im Metall deutlich reduziert sind, verglichen mit dem Fall einer freistehenden, nicht eingebetteten Metallschicht gleicher Dicke. Als Folge der Wechselwirkung der photonischen Kavitätsmode mit dem Metall spaltet diese in zwei miteinander gekoppelte Moden auf. Diese neuartigen Moden werden als Tamm-Plasmonen bezeichnet. Die Kopplung sowie die spektrale Differenz beider Moden ist zum einen durch die optischen Eigenschaften und die Dicke der eingebetteten Metallschicht definiert, zum anderen durch die optische Dicke der angrenzenden dielektrischen Schichten. Dadurch ist eine Optimierung des Systems im Hinblick auf Absorption und Emissionswellenlänge der Bauteile möglich, so dass selbst bei Raumtemperatur kohärente Emission eines Tamm-Zustands erzielt werden kann. Eine erarbeitete analytische Rechnung bestätigt und erklärt die experimentell gemessene, polarisationsabhängige Aufspaltung der auftretenden resonanten Moden.
Im zweiten Teil der Arbeit sind organische Mikroresonatoren, deren eingebettete Metallschicht in lateraler Richtung auf verschiedene Weisen strukturiert sind, Gegenstand der Untersuchungen. Als Folge dieser Strukturierung kommt es zur lateralen Beschränkung der photonischen Zustandsdichte, was durch eine Diskretisierung der Energiespektren der resultierenden optischen Moden experimentell nachweisbar ist. Werden periodische Metallstreifen mittels Photolithographie erzeugt, so kommt es neben einer weiteren Beeinflussung der Zustandsdichte auch zu Effekten, die durch diese Periodizität bedingt sind. Entsprechend reproduziert sich die Kavitätsmode mehrfach im Impulsraum. Oberflächenplasmonen, die auf der Grenzfläche zwischen dem Metall und den dielektrischen Schichten propagieren, werden auf Grund der Periodizität bis in den experimentell zugänglichen Lichtkegel gestreut. Dabei werden Plasmonenresonanzen bis hin zur 30. Ordnung gemessen. Im letzten Experiment werden derart periodisch strukturierte Metall-Organik-Mikroresonatoren auf ihre Lasertätigkeit hin untersucht. Eine lokal begrenzte optische Anregung mittels eines gepulsten Lasers führt zur Ausbildung verschiedener Bloch-ähnlicher Moden, deren Kohärenz sich lateral bis zu 40 µm ausbreitet. Eine Fourieranalyse zeigt eindeutige und feste Phasenbeziehungen zwischen angrenzenden Maxima der Moden. Zusammenfassend ergeben sich interessante metall-organische Systeme, die minimale Absorption und niedrige Laserschwellen aufweisen und die prinzipielle Eignung zur elektrischen Kontaktierung besitzen.
|
29 |
Light-matter Interactions Of Plasmonic NanostructuresReed, Jennifer 01 January 2013 (has links)
Light interaction with matter has long been an area of interest throughout history, spanning many fields of study. In recent decades, the investigation of light-matter interactions with nanostructures has become an intense area of research in the field of photonics. Metallic nanostructures, in particular, are of interest due to the interesting properties that arise when interacting with light. The properties are a result of the excitation of surface plasmons which are the collective oscillation of the conduction electrons in the metal. Since the conduction electrons can be thought of as harmonic oscillators, they are quantized in a similar fashion. Just as a photon is a quantum of oscillations of an electromagnetic field, the plasmon is a quantum of electron oscillations of a metal. There are three types of plasmons: 1. Bulk plasmons, also called volume plasmons, are longitudinal density fluctuations which propagate through a bulk metal with an eigenfrequency of �� called the plasma frequency. 2. Localized surface plasmons are non-propagating excitations of the conduction electrons of a metallic nanoparticle coupled to an electromagnetic field. 3. Surface plasmon polaritons are evanescent, dispersive propagating electromagnetic waves formed by a coupled state between a photon and the excitation of the surface plasmons. They propagate along the surface of a metal-dielectric interface with a broad spectrum of eigenfrequencies from � = 0 to � = ��⁄√2. iv Plasmonics is a subfield of photonics which focuses on the study of surface plasmons and the optical properties that result from light interacting with metal films and nanostructures on the deep subwavelength scale. In this thesis, plasmonic nanostructures are investigated for optical waveguides and other nanophotonic applications through computational simulations primarily base on electrodynamic theory. The theory was formulated by several key figures and established by James Clerk Maxwell after he published a set of relations which describe all classical electromagnetic phenomena, known as Maxwell’s equations. Using methods based on Maxwell’s equations, the optical properties of metallic nanostructures utilizing surface plasmons is explored. In Chapter 3, light propagation of bright and dark modes of a partially and fully illuminated silver nanorod is investigated for waveguide applications. Then, the origin of the Fano resonance line shape in the scattering spectra of a silver nanorod is investigated. Next, in Chapter 4, the reflection and transmission of a multilayer silver film is simulated to observe the effects of varying the dielectric media between the layers on light propagation. Building on the multilayer film work, metal-insulator-metal waveguides are explored by perforating holes in the bottom layer of a two layer a silver film to investigate the limits of subwavelength light trapping, confinement, and propagation. Lastly, in Chapter 5, the effect of surface plasmons on the propagation direction of electromagnetic wave around a spherical silver nanoparticle which shows an effective negative index of refraction is examined. In addition, light manipulation using a film of silver prisms with an effective negative index of refraction is also investigated. The silver prisms demonstrate v polarization selective propagation for waveguide and optical filter applications. These studies provide insight into plasmonic mechanisms utilized to overcome the diffraction limit of light. Through better understanding of how to manipulating light with plasmonic nanostructures, further advancements in nanophotonic technologies for applications such as extremely subwavelength waveguides, sensitive optical detection, optical filters, polarizers, beam splitters, optical data storage devices, high speed data transmission, and integrated subwavelength photonic circuits can be achieved.
|
30 |
Giant Plasmonic Energy and Momentum Transfer on the NanoscaleDurach, Maxim 16 October 2009 (has links)
We have developed a general theory of the plasmonic enhancement of many-body phenomena resulting in a closed expression for the surface plasmon-dressed Coulomb interaction. It is shown that this interaction has a resonant nature. We have also demonstrated that renormalized interaction is a long-ranged interaction whose intensity is considerably increased compared to bare Coulomb interaction over the entire region near the plasmonic nanostructure. We illustrate this theory by re-deriving the mirror charge potential near a metal sphere as well as the quasistatic potential behind the so-called perfect lens at the surface plasmon (SP) frequency. The dressed interaction for an important example of a metal–dielectric nanoshell is also explicitly calculated and analyzed. The renormalization and plasmonic enhancement of the Coulomb interaction is a universal effect, which affects a wide range of many-body phenomena in the vicinity of metal nanostructures: chemical reactions, scattering between charge carriers, exciton formation, Auger recombination, carrier multiplication, etc. We have described the nanoplasmonic-enhanced Förster resonant energy transfer (FRET) between quantum dots near a metal nanoshell. It is shown that this process is very efficient near high-aspect-ratio nanoshells. We have also obtained a general expression for the force exerted by an electromagnetic field on an extended polarizable object. This expression is applicable to a wide range of situations important for nanotechnology. Most importantly, this result is of fundamental importance for processes involving interaction of nanoplasmonic fields with metal electrons. Using the obtained expression for the force, we have described a giant surface-plasmoninduced drag-effect rectification (SPIDER), which exists under conditions of the extreme nanoplasmonic confinement. Under realistic conditions in nanowires, this giant SPIDER generates rectified THz potential differences up to 10 V and extremely strong electric fields up to 10^5-10^6 V/cm. It can serve as a powerful nanoscale source of THz radiation. The giant SPIDER opens up a new field of ultraintense THz nanooptics with wide potential applications in nanotechnology and nanoscience, including microelectronics, nanoplasmonics, and biomedicine. Additionally, the SPIDER is an ultrafast effect whose bandwidth for nanometric wires is 20 THz, which allows for detection of femtosecond pulses on the nanoscale.
|
Page generated in 0.068 seconds