• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 19
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 38
  • 38
  • 15
  • 13
  • 11
  • 9
  • 9
  • 9
  • 7
  • 7
  • 7
  • 6
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Contributions to ergodic theory and topological dynamics : cube structures and automorphisms / Contributions à la théorie ergodique et à la dynamique topologique : structures de cubes et automorphismes

Donoso, Sebastian Andres 28 May 2015 (has links)
Cette thèse est consacrée à l'étude des différents problèmes liés aux structures des cubes , en théorie ergodique et en dynamique topologique. Elle est composée de six chapitres. La présentation générale nous permet de présenter certains résultats généraux en théorie ergodique et dynamique topologique. Ces résultats, qui sont associés d'une certaine façon aux structures des cubes, sont la motivation principale de cette thèse. Nous commençons par les structures de cube introduites en théorie ergodique par Host et Kra (2005) pour prouver la convergence dans $L^2 $ de moyennes ergodiques multiples. Ensuite, nous présentons la notion correspondante en dynamique topologique. Cette théorie, développée par Host, Kra et Maass (2010), offre des outils pour comprendre la structure topologique des systèmes dynamiques topologiques. En dernier lieu, nous présentons les principales implications et extensions dérivées de l'étude de ces structures. Ceci nous permet de motiver les nouveaux objets introduits dans la présente thèse, afin d'expliquer l'objet de notre contribution. Dans le Chapitre 1, nous nous attachons au contexte général en théorie ergodique et dynamique topologique, en mettant l'accent sur l'étude de certains facteurs spéciaux. Les Chapitres 2, 3, 4 et 5 nous permettent de développer les contributions de cette thèse. Chaque chapitre est consacré à un thème particulier et aux questions qui s'y rapportent, en théorie ergodique ou en dynamique topologique, et est associé à un article scientifique. Les structures de cube mentionnées plus haut sont toutes définies pour un espace muni d'une unique transformation. Dans le Chapitre 2, nous introduisons une nouvelle structure de cube liée à l'action de deux transformations S et T qui commutent sur un espace métrique compact X. Nous étudions les propriétés topologiques et dynamiques de cette structure et nous l'utilisons pour caractériser les systèmes qui sont des produits ou des facteurs de produits. Nous présentons également plusieurs applications, comme la construction des facteurs spéciaux. Le Chapitre 3 utilise la nouvelle structure de cube définie dans le Chapitre 2 dans une question de théorie ergodique mesurée. Nous montrons la convergence ponctuelle d'une moyenne cubique dans un système muni deux transformations qui commutent. Dans le Chapitre 4, nous étudions le semigroupe enveloppant d'une classe très importante des systèmes dynamiques, les nilsystèmes. Nous utilisons les structures des cubes pour montrer des liens entre propriétés algébriques du semigroupe enveloppant et les propriétés topologiques et dynamiques du système. En particulier, nous caractérisons les nilsystèmes d'ordre 2 par une propriété portant sur leur semigroupe enveloppant. Dans le Chapitre 5, nous étudions les groupes d'automorphismes des espaces symboliques unidimensionnels et bidimensionnels. Nous considérons en premier lieu des systèmes symboliques de faible complexité et utilisons des facteurs spéciaux, dont certains liés aux structures de cube, pour étudier le groupe de leurs automorphismes. Notre résultat principal indique que, pour un système minimal de complexité sous-linéaire, le groupe d'automorphismes est engendré par l'action du shift et un ensemble fini. Par ailleurs, en utilisant les facteurs associés aux structures de cube introduites dans le Chapitre 2, nous étudions le groupe d'automorphismes d'un système de pavages représentatif. La bibliographie, commune à l'ensemble de la thèse, se trouve en fin document / This thesis is devoted to the study of different problems in ergodic theory and topological dynamics related to og cube structures fg. It consists of six chapters. In the General Presentation we review some general results in ergodic theory and topological dynamics associated in some way to cubes structures which motivates this thesis. We start by the cube structures introduced in ergodic theory by Host and Kra (2005) to prove the convergence in $L^2$ of multiple ergodic averages. Then we present its extension to topological dynamics developed by Host, Kra and Maass (2010), which gives tools to understand the topological structure of topological dynamical systems. Finally we present the main implications and extensions derived of studying these structures, we motivate the new objects introduced in the thesis and sketch out our contributions. In Chapter 1 we give a general background in ergodic theory and topological dynamics given emphasis to the treatment of special factors. % We give basic definitions and describe special factors associated to a From Chapter 2 to Chapter 5 we develop the contributions of this thesis. Each one is devoted to a different topic and related questions, both in ergodic theory and topological dynamics. Each one is associated to a scientific article. In Chapter 2 we introduce a novel cube structure to study the actions of two commuting transformations $S$ and $T$ on a compact metric space $X$. In the same chapter we study the topological and dynamical properties of such structure and we use it to characterize products systems and their factors. We also provide some applications, like the construction of special factors. In the same topic, in Chapter 3 we use the new cube structure to prove the pointwise convergence of a cubic average in a system with two commuting transformations. In Chapter 4, we study the enveloping semigroup of a very important class of dynamical systems, the nilsystems. We use cube structures to show connexions between algebraic properties of the enveloping semigroup and the geometry and dynamics of the system. In particular, we characterize nilsystems of order 2 by its enveloping semigroup. In Chapter 5 we study automorphism groups of one-dimensional and two-dimensional symbolic spaces. First, we consider low complexity symbolic systems and use special factors, some related to the introduced cube structures, to study the group of automorphisms. Our main result states that for minimal systems with sublinear complexity such groups are spanned by the shift action and a finite set. Also, using factors associated to the cube structures introduced in Chapter 2 we study the automorphism group of a representative tiling system. The bibliography is defer to the end of this document
22

Estudo topológico de órbitas periódicas no circuito experimental de Chua / Topological studies of periodic orbits in the experimental Chua's circuit

Maranhão, Dariel Mazzoni 19 May 2006 (has links)
Estudamos o comportamento dinâmico de séries temporais experimentais obtidas de um circuito de Chua quando dois parâmetros de controle, $Delta R_1$ e $Delta R_2$, são variados.Investigamos os comportamentos caótico e periódico, analisando as séries temporais ao redor e no interior de duas janelas periódicas presentes no espaço de parâmetros $(Delta R_1,Delta R_2)$ do circuito. Na vizinhança da janela de período três, analisamos como a dinâmica simbólica se altera quando construída em diferentes seções de Poincaré de um mesmo atrator, e investigamos a dimensão dos mapas de retorno, uni ou bidimensional, para diferentes atratores caóticos presentes nessa região do espaço de parâmetros. Ainda nessa vizinhança, empregamos técnicas de caracterização topológica para confirmar a existência de fibras caóticas, que são curvas de codimensão um no espaço de parâmetros onde as propriedades caóticas dos atratores são preservadas.Ao redor da janela de período quatro, investigamos a transição entre os três comportamentos caóticos para os quais construímos os respectivos moldes topológicos. Propusemos também um molde topológico para o regime caótico após a crise por fusão ocorrer no circuito. Finalizando, investigamos as bifurcações e a estrutura topológica das órbitas periódicas que formam as janelas de período três e de período quatro, construindo um espaço de parâmetros topológico, baseado em um mapa bi-modal, para descrever as duas janela periódicas. / We have studied the dynamical behavior of experimental time series obtained from a Chua's circuit by variation of two parameter control, $Delta R_1$ and $Delta R_2$. We investigated the chaotic and periodic behaviors of the circuit, analyzing temporal series around and inside of two periodic windows in the two-parameter space $(Delta R_1,Delta R_2)$. In the period-three window neighborhood, we analyzed how the symbolic dynamics changes when it is built by different Poincaré sections of an attractor, and we studied the dimension of return map, one- or two-dimensional, for many chaotic attractors in this region of the parameter space. In this neighborhood, we also applied topological techniques to confirm the existence of chaotic fibers: codimension one curves where the chaotic properties of the attractors remain unchanged in the two-parameter space.Around the period-four window, we investigated, by template analysis, the transition between three chaotic attractors found in the Chua's circuit. We proposed a template for chaotic regime of the circuit after merge-crisis. Finally, we investigated the bifurcations and topological structure of periodic orbits in period-three and period-four windows and also proposed a topological parameter space, based in a bimodal map model, that describe these two periodic windows.
23

Ergodic and Combinatorial Proofs of van der Waerden's Theorem

Rothlisberger, Matthew Samuel 01 January 2010 (has links)
Followed two different proofs of van der Waerden's theorem. Found that the two proofs yield important information about arithmetic progressions and the theorem. van der Waerden's theorem explains the occurrence of arithmetic progressions which can be used to explain such things as the Bible Code.
24

Orbit complexity and computable Markov partitions

Kenny, Robert January 2008 (has links)
Markov partitions provide a 'good' mechanism of symbolic dynamics for uniformly hyperbolic systems, forming the classical foundation for the thermodynamic formalism in this setting, and remaining useful in the modern theory. Usually, however, one takes Bowen's 1970's general construction for granted, or restricts to cases with simpler geometry (as on surfaces) or more algebraic structure. This thesis examines several questions on the algorithmic content of (topological) Markov partitions, starting with the pointwise, entropy-like, topological conjugacy invariant known as orbit complexity. The relation between orbit complexity de nitions of Brudno and Galatolo is examined in general compact spaces, and used in Theorem 2.0.9 to bound the decrease in some of these quantities under semiconjugacy. A corollary, and a pointwise analogue of facts about metric entropy, is that any Markov partition produces symbolic dynamics matching the original orbit complexity at each point. A Lebesgue-typical value for orbit complexity near a hyperbolic attractor is also established (with some use of Brin-Katok local entropy), and is technically distinct from typicality statements discussed by Galatolo, Bonanno and their co-authors. Both our results are proved adapting classical arguments of Bowen for entropy. Chapters 3 and onwards consider the axiomatisation and computable construction of Markov partitions. We propose a framework of 'abstract local product structures'
25

Estudo topológico de órbitas periódicas no circuito experimental de Chua / Topological studies of periodic orbits in the experimental Chua's circuit

Dariel Mazzoni Maranhão 19 May 2006 (has links)
Estudamos o comportamento dinâmico de séries temporais experimentais obtidas de um circuito de Chua quando dois parâmetros de controle, $Delta R_1$ e $Delta R_2$, são variados.Investigamos os comportamentos caótico e periódico, analisando as séries temporais ao redor e no interior de duas janelas periódicas presentes no espaço de parâmetros $(Delta R_1,Delta R_2)$ do circuito. Na vizinhança da janela de período três, analisamos como a dinâmica simbólica se altera quando construída em diferentes seções de Poincaré de um mesmo atrator, e investigamos a dimensão dos mapas de retorno, uni ou bidimensional, para diferentes atratores caóticos presentes nessa região do espaço de parâmetros. Ainda nessa vizinhança, empregamos técnicas de caracterização topológica para confirmar a existência de fibras caóticas, que são curvas de codimensão um no espaço de parâmetros onde as propriedades caóticas dos atratores são preservadas.Ao redor da janela de período quatro, investigamos a transição entre os três comportamentos caóticos para os quais construímos os respectivos moldes topológicos. Propusemos também um molde topológico para o regime caótico após a crise por fusão ocorrer no circuito. Finalizando, investigamos as bifurcações e a estrutura topológica das órbitas periódicas que formam as janelas de período três e de período quatro, construindo um espaço de parâmetros topológico, baseado em um mapa bi-modal, para descrever as duas janela periódicas. / We have studied the dynamical behavior of experimental time series obtained from a Chua's circuit by variation of two parameter control, $Delta R_1$ and $Delta R_2$. We investigated the chaotic and periodic behaviors of the circuit, analyzing temporal series around and inside of two periodic windows in the two-parameter space $(Delta R_1,Delta R_2)$. In the period-three window neighborhood, we analyzed how the symbolic dynamics changes when it is built by different Poincaré sections of an attractor, and we studied the dimension of return map, one- or two-dimensional, for many chaotic attractors in this region of the parameter space. In this neighborhood, we also applied topological techniques to confirm the existence of chaotic fibers: codimension one curves where the chaotic properties of the attractors remain unchanged in the two-parameter space.Around the period-four window, we investigated, by template analysis, the transition between three chaotic attractors found in the Chua's circuit. We proposed a template for chaotic regime of the circuit after merge-crisis. Finally, we investigated the bifurcations and topological structure of periodic orbits in period-three and period-four windows and also proposed a topological parameter space, based in a bimodal map model, that describe these two periodic windows.
26

Contributions to ergodic theory and topological dynamics : cube structures and automorphisms / Contributions à la théorie ergodique et à la dynamique topologique : structures de cubes et automorphismes

Donoso, Sebastian Andres 28 May 2015 (has links)
Cette thèse est consacrée à l'étude des différents problèmes liés aux structures des cubes , en théorie ergodique et en dynamique topologique. Elle est composée de six chapitres. La présentation générale nous permet de présenter certains résultats généraux en théorie ergodique et dynamique topologique. Ces résultats, qui sont associés d'une certaine façon aux structures des cubes, sont la motivation principale de cette thèse. Nous commençons par les structures de cube introduites en théorie ergodique par Host et Kra (2005) pour prouver la convergence dans $L^2 $ de moyennes ergodiques multiples. Ensuite, nous présentons la notion correspondante en dynamique topologique. Cette théorie, développée par Host, Kra et Maass (2010), offre des outils pour comprendre la structure topologique des systèmes dynamiques topologiques. En dernier lieu, nous présentons les principales implications et extensions dérivées de l'étude de ces structures. Ceci nous permet de motiver les nouveaux objets introduits dans la présente thèse, afin d'expliquer l'objet de notre contribution. Dans le Chapitre 1, nous nous attachons au contexte général en théorie ergodique et dynamique topologique, en mettant l'accent sur l'étude de certains facteurs spéciaux. Les Chapitres 2, 3, 4 et 5 nous permettent de développer les contributions de cette thèse. Chaque chapitre est consacré à un thème particulier et aux questions qui s'y rapportent, en théorie ergodique ou en dynamique topologique, et est associé à un article scientifique. Les structures de cube mentionnées plus haut sont toutes définies pour un espace muni d'une unique transformation. Dans le Chapitre 2, nous introduisons une nouvelle structure de cube liée à l'action de deux transformations S et T qui commutent sur un espace métrique compact X. Nous étudions les propriétés topologiques et dynamiques de cette structure et nous l'utilisons pour caractériser les systèmes qui sont des produits ou des facteurs de produits. Nous présentons également plusieurs applications, comme la construction des facteurs spéciaux. Le Chapitre 3 utilise la nouvelle structure de cube définie dans le Chapitre 2 dans une question de théorie ergodique mesurée. Nous montrons la convergence ponctuelle d'une moyenne cubique dans un système muni deux transformations qui commutent. Dans le Chapitre 4, nous étudions le semigroupe enveloppant d'une classe très importante des systèmes dynamiques, les nilsystèmes. Nous utilisons les structures des cubes pour montrer des liens entre propriétés algébriques du semigroupe enveloppant et les propriétés topologiques et dynamiques du système. En particulier, nous caractérisons les nilsystèmes d'ordre 2 par une propriété portant sur leur semigroupe enveloppant. Dans le Chapitre 5, nous étudions les groupes d'automorphismes des espaces symboliques unidimensionnels et bidimensionnels. Nous considérons en premier lieu des systèmes symboliques de faible complexité et utilisons des facteurs spéciaux, dont certains liés aux structures de cube, pour étudier le groupe de leurs automorphismes. Notre résultat principal indique que, pour un système minimal de complexité sous-linéaire, le groupe d'automorphismes est engendré par l'action du shift et un ensemble fini. Par ailleurs, en utilisant les facteurs associés aux structures de cube introduites dans le Chapitre 2, nous étudions le groupe d'automorphismes d'un système de pavages représentatif. La bibliographie, commune à l'ensemble de la thèse, se trouve en fin document / This thesis is devoted to the study of different problems in ergodic theory and topological dynamics related to og cube structures fg. It consists of six chapters. In the General Presentation we review some general results in ergodic theory and topological dynamics associated in some way to cubes structures which motivates this thesis. We start by the cube structures introduced in ergodic theory by Host and Kra (2005) to prove the convergence in $L^2$ of multiple ergodic averages. Then we present its extension to topological dynamics developed by Host, Kra and Maass (2010), which gives tools to understand the topological structure of topological dynamical systems. Finally we present the main implications and extensions derived of studying these structures, we motivate the new objects introduced in the thesis and sketch out our contributions. In Chapter 1 we give a general background in ergodic theory and topological dynamics given emphasis to the treatment of special factors. % We give basic definitions and describe special factors associated to a From Chapter 2 to Chapter 5 we develop the contributions of this thesis. Each one is devoted to a different topic and related questions, both in ergodic theory and topological dynamics. Each one is associated to a scientific article. In Chapter 2 we introduce a novel cube structure to study the actions of two commuting transformations $S$ and $T$ on a compact metric space $X$. In the same chapter we study the topological and dynamical properties of such structure and we use it to characterize products systems and their factors. We also provide some applications, like the construction of special factors. In the same topic, in Chapter 3 we use the new cube structure to prove the pointwise convergence of a cubic average in a system with two commuting transformations. In Chapter 4, we study the enveloping semigroup of a very important class of dynamical systems, the nilsystems. We use cube structures to show connexions between algebraic properties of the enveloping semigroup and the geometry and dynamics of the system. In particular, we characterize nilsystems of order 2 by its enveloping semigroup. In Chapter 5 we study automorphism groups of one-dimensional and two-dimensional symbolic spaces. First, we consider low complexity symbolic systems and use special factors, some related to the introduced cube structures, to study the group of automorphisms. Our main result states that for minimal systems with sublinear complexity such groups are spanned by the shift action and a finite set. Also, using factors associated to the cube structures introduced in Chapter 2 we study the automorphism group of a representative tiling system. The bibliography is defer to the end of this document
27

[en] ERGODICITY AND ROBUST TRANSITIVITY ON THE REAL LINE / [pt] TRANSITIVIDADE ROBUSTA E ERGODICIDADE DE APLICAÇÕES NA RETA

MIGUEL ADRIANO KOILLER SCHNOOR 08 April 2008 (has links)
[pt] Em meados do século XIX, G. Boole mostrou que a transformação x -> x − 1/x, definida em R − {0}, preserva a medida de Lebesgue (Ble). Mais de um século depois, R. Adler e B.Weiss mostraram que essa aplicação, chamada de transformação de Boole, é, de fato, ergódica com respeito à medida de Lebesgue (Adl). Nesse trabalho, apresentaremos o conceito de sistemas alternantes, definido recentemente por S. Muñoz (Mun), que consiste numa grande classe de aplicações na reta que generaliza a transformação de Boole e que torna possível uma análise abrangente de propriedades como transitividade robusta e ergodicidade. Para mostrar que, sob certas condições, sistemas alternantes são ergódicos com relação à medida de Lebesgue, mostraremos, usando o Teorema do Folclore, que a transformação induzida do sistema alternante é ergódica. / [en] In the middle of the 19th century, G. Boole proved that the transformation x -> x − 1/x, defined on R − {0}, is a Lebesgue measure preserving transformation (Ble). Over one hundred years later, R. Adler and B.Weiss proved that this map, called Boole`s map, is, in fact, ergodic with respect to the Lebesgue measure (Adl). In this work, we present the notion of alternating systems, recently introduced by S. Mu`noz (Mun), which is a large class of functions on the real line that generalizes the Boole`s map and allows us to make a wide analysis on certain properties such as robust transitivity and ergodicity. In order to show that, under certain conditions, alternating systems are ergodic with respect to the Lebesgue measure, we show, using the Folklore Theorem, that the induced transformation of an alternating system is ergodic.
28

Coupling analysis of transient cardiovascular dynamics

Müller, Andreas 09 March 2016 (has links)
Die Untersuchung kausaler Zusammenhänge in komplexen dynamischen Systemen spielt in der Wissenschaft eine immer wichtigere Rolle. Ziel dieses aktuellen, interdisziplinären Forschungsbereiches ist ein grundlegendes, tiefes Verständnis der vorherrschenden Prozesse und deren Wechselwirkungen in solchen Systemen. Die Untersuchung von Zeitreihen mithilfe moderner Kopplungsanalysemethoden liefert dabei Möglichkeiten zur Modellierung der betreffenden Systeme und somit bessere Vorhersagemethoden und fortgeschrittene Interpretationsmöglichkeiten der Ergebnisse. In der vorliegenden Arbeit werden zunächst einige existierende Kopplungsmaße mit ihren jeweiligen Anwendungsgebieten vorgestellt. Eine Gemeinsamkeit dieser Maße liegt in der Voraussetzung stationärer Zeitreihen, um die Anwendbarkeit zu gewährleisten. Daher wird im Verlauf der Dissertation eine Möglichkeit zur Erweiterung solcher Maße vorgestellt, die eine Kopplungsanalyse mit einer sehr hohen Zeitauflösung und somit auch die Untersuchung nichtstationärer, transienter Ereignisse ermöglicht. Die Erweiterung basiert auf der Verwendung von Ensembles von Messreihen und der Schätzung der jeweiligen Maße über das Ensemble anstatt über die Zeit. Dies ermöglicht eine Zeitauflösung bei der Analyse in der Größenordnung der Abtastrate des ursprünglichen Signals, die nur von der Art der verwendeten Kopplungsmaße abhängt. Der Ensemble-Ansatz wird auf verschiedene Kopplungsmaße angewandt. Zunächst werden die Methoden ausführlich an verschiedenen theoretischen Modellen und unter verschiedenen Bedingungen getestet. Anschließend erfolgt eine zeitaufgelöste Kopplungsanalyse kardiovaskulärer Zeitreihen, die während transienter Ereignisse aufgenommen wurden. Die Ergebnisse dieser Analyse bestätigen zum einen aktuelle Studienresultate, liefern aber auch neue Erkenntnisse, die es in Zukunft ermöglichen können, Modelle des Herz-Kreislauf-Systems zu erweitern und zu verbessern. / The analysis of causal relationships in complex dynamic systems plays a more and more important role in various scientific fields. The aim of this current, interdisciplinary field of research is a fundamental, deep understanding of predominant processes and their interactions in such systems. The study of time series using modern coupling analysis tools allows the modelling of the respective systems and thus better prediction methods and advanced interpretation possibilities for the results. In this work, initially some existing coupling measures and their fields of application are introduced. One trait these measures have in common is the requirement of stationary time series to ensure their applicability. Therefore, in the course of this thesis a possibility to extend these measures is presented, which allows a coupling analysis with a high temporal resolution and thus also the analysis of transient, nonstationary events. The extension is based on the use of ensembles of time series and the calculation of the respective measures across these ensembles instead of across time. This allows for a temporal resolution of the same order of magnitude as the sampling rate in the original signal. The resolution only depends on the kind of coupling analysis method employed. The ensemble extension is applied to different coupling measures. To begin with, the regarded tools are tested on various theoretical models and under different conditions. This is followed by a coupling analysis of cardiovascular time series recorded during transient events. The results on the one hand confirm topical study outcomes and on the other hand deliver new insights, which will allow to extend and improve cardiovascular system models in the future.
29

Volumetry of timed languages and applications / Volumétrie des langages temporisés et applications

Basset, Nicolas 05 December 2013 (has links)
Depuis le début des années 90, les automates temporisés et les langages temporisés ont été largement utilisés pour modéliser et vérifier les systèmes temps réels. Ces langages ont été aussi été largement étudiés d'un point de vue théorique. Plus récemment Asarin et Degorre ont introduit les notions de volume et d'entropie des langages temporisés pour quantifier la taille de ces langages et l'information que ses éléments contiennent. Dans cette thèse nous construisons de nouveaux développements à cette théorie (que nous appelons volumétrie des langages temporisés) et l'appliquons a plusieurs problèmes apparaissant dans divers domaine de recherche tel que la théorie de l'information, la vérification, la combinatoire énumérative. Entre autre nous (i) développons une théorie de la dynamique symbolique temporisée~; (ii) caractérisons une dichotomie entre automate temporisé se comportant bien ou mal~; (iii) définissons pour un automate temporisé donné, un processus stochastique d'entropie maximale le moins biaisé possible~; (iv) développons une version temporisé de la théorie des codes sur canal contraint (v) énumérons et générons aléatoirement des permutations dans une certaine classe / Since early 90s, timed automata and timed languages are extensively used for modelling and verification of real-time systems, and thoroughly explored from a theoretical standpoint. Recently Asarin and Degorre introduced the notions of volume and entropy of timed languages to quantify the size of these languages and the information content of their elements. In this thesis we build new developments of this theory (called by us volumetry of timed languages) and apply it to several problems occurring in various domains of theoretical computer science such as verification, enumerative combinatorics or information theory. Among other we (i) develop a theory of timed symbolic dynamics; (ii) characterize a dichotomy between bad behaving and well behaving timed automata; (iii) define a least biased stochastic process for a timed automaton; (iv) develop a timed theory of constrained channel coding; (v)count and generate randomly and uniformly permutations in certain classes
30

Chaotic Scattering in Rydberg Atoms, Trapping in Molecules

Paskauskas, Rytis 20 November 2007 (has links)
We investigate chaotic ionization of highly excited hydrogen atom in crossed electric and magnetic fields (Rydberg atom) and intra-molecular relaxation in planar carbonyl sulfide (OCS) molecule. The underlying theoretical framework of our studies is dynamical systems theory and periodic orbit theory. These theories offer formulae to compute expectation values of observables in chaotic systems with best accuracy available in given circumstances, however they require to have a good control and reliable numerical tools to compute unstable periodic orbits. We have developed such methods of computation and partitioning of the phase space of hydrogen atom in crossed at right angles electric and magnetic fields, represented by a two degree of freedom (dof) Hamiltonian system. We discuss extensions to a 3-dof setting by developing the methodology to compute unstable invariant tori, and applying it to the planar OCS, represented by a 3-dof Hamiltonian. We find such tori important in explaining anomalous relaxation rates in chemical reactions. Their potential application in Transition State Theory is discussed.

Page generated in 0.0362 seconds