• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 21
  • 12
  • 6
  • 4
  • 4
  • 3
  • 2
  • 1
  • Tagged with
  • 63
  • 16
  • 15
  • 14
  • 12
  • 11
  • 11
  • 11
  • 10
  • 9
  • 8
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Étude ultrastructurale et développementale du récepteur EphA4 dans l’hippocampe du rat

Tremblay, Marie-Eve 03 1900 (has links)
Afin de mieux comprendre l’évolution des fonctions du récepteur EphA4 pendant le développement du système nerveux central (SNC), nous avons étudié sa localisation cellulaire et subcellulaire dans l’hippocampe du rat, d’abord chez l’adulte, puis pendant le développement postnatal, ainsi que ses rôles potentiels dans la genèse, la migration ou la maturation des cellules granulaires dans l’hippocampe adulte. Pour ce faire, nous avons utilisé la méthode d’immunocytochimie en microscopie photonique, électronique et confocale. En microscopie photonique, une forte immunoréactivité (peroxydase/DAB) pour EphA4 est observée aux jours 1 et 7 suivant la naissance (P1 et P7) dans les couches de corps cellulaires, avec un marquage notamment associé à la surface des corps cellulaires des cellules granulaires et pyramidales, ainsi que dans les couches de neuropile du gyrus dentelé et des secteurs CA3 et CA1. L’intensité du marquage diminue progressivement dans les couches de corps cellulaires, entre P7 et P14, pour devenir faible à P21 et chez l’adulte, tandis qu’elle persiste dans les couches de neuropile, sauf celles qui reçoivent des afférences du cortex entorhinal. En microscopie électronique, après marquage à la peroxydase/DAB, EphA4 décore toute la surface des cellules pyramidales et granulaires, du corps cellulaire jusqu’aux extrémités distales, entre P1 et P14, pour devenir confiné aux extrémités synaptiques, c’est-à-dire les terminaisons axonales et les épines dendritiques, à P21 et chez l’adulte. À la membrane plasmique des astrocytes, EphA4 est redistribué comme dans les neurones, marquant le corps cellulaire et ses prolongements proximaux à distaux, à P1 et P7, pour devenir restreint aux prolongements périsynaptiques distaux, à partir de P14. D’autre part, des axones en cours de myélinisation présentent souvent une forte immunoréactivité punctiforme à leur membrane plasmique, à P14 et P21. En outre, dans les neurones et les astrocytes, le réticulum endoplasmique, l’appareil de Golgi et les vésicules de transport, organelles impliquées dans la synthèse, la modification posttraductionnelle et le transport des protéines glycosylées, sont aussi marqués, et plus intensément chez les jeunes animaux. Enfin, EphA4 est aussi localisé dans le corps cellulaire et les dendrites des cellules granulaires générées chez l’adulte, au stade de maturation où elles expriment la doublecortine (DCX). De plus, des souris adultes knockouts pour EphA4 présentent des cellules granulaires DCX-positives ectopiques, c’est-à-dire positionnées en dehors de la zone sous-granulaire, ce qui suggère un rôle d’EphA4 dans la régulation de leur migration. Ces travaux révèlent ainsi une redistribution d’EphA4 dans les cellules neuronales et gliales en maturation, suivant les sites cellulaires où un remodelage morphologique s’effectue : les corps cellulaires lorsqu’ils s’organisent en couches, les prolongements dendritiques et axonaux pendant leur croissance, guidage et maturation, puis les épines dendritiques, les terminaisons axonales et les prolongements astrocytaires distaux associés aux synapses excitatrices, jusque chez l’adulte, où la formation de nouvelles synapses et le renforcement des connexions synaptiques existantes sont exercés. Ces localisations pourraient ainsi correspondre à différents rôles d’EphA4, par lesquels il contribuerait à la régulation des capacités plastiques du SNC, selon le stade développemental, la région, l’état de santé, ou l’expérience comportementale de l’animal. / To gain more insight into the various functions of EphA4 receptor during the development of the central nervous system (CNS), we have characterized its cellular and subcellular localization in the rat hippocampus, first in the adult, and second during the postnatal development. We have also examined its potential roles in the genesis, migration, or maturation of the granule cells in the adult hippocampus. For that purpose, we have used immunocytochemistry in light, electron, and confocal microscopy. At the light microsocpic level, a strong EphA4 immunoreactivity (peroxidase/DAB) is observed at postnatal days 1 and 7 (P1 and P7) in the cell body layers, with a labeling notably associated with the surface of pyramidal and granule cell bodies, as well as in the neuropil layers of CA3, CA1, and dentate gyrus regions. The intensity of the labeling diminishes progressively in the cell body layers, between P7 and P14, to become weak at P21 and in the adult, while it persists in the neuropil layers, except in those receiving inputs from the entorhinal cortex. At the electron microscopic level, after peroxidase/DAB labeling, EphA4 covers the entire surface of pyramidal and granule cells, from the cell body to the distal extremities, between P1 and P14, but becomes restricted to the synaptic extremities, i.e. the axon terminals and dendritic spines, at P21 and in the adult. At the plasma membrane of astrocytes, EphA4 is redistributed as in neurons, from the cell body and proximal to distal processes, at P1 and P7, to the distal perisynaptic processes, at P14 and older ages. In addition, axons in the process of myelination present strong punctiform immunoreactivity at their plasma membrane, at P14 and P21. Moreover, in neurons and astrocytes, the endoplamic reticulum, Golgi apparatus, and transport vesicles, organelles involved in the synthesis, post-translational modifications, and transport of glycosylated proteins, are also labeled, and also more intensely in younger animals. Lastly, EphA4 is located in the cell body and dendrites of adult-generated granule cells, at the stage of maturation where they express doublecortin (DCX). In addition, EphA4 adult knockout mice display DCX-positive granule cells in an ectopic position, outside of the subgranular zone, suggesting a role for EphA4 in the regulation of their migration. This work thus reveals a redistribution of EphA4 in neuronal and glial cells, in the cellular sites where cellular motility occurs during their maturation: the cell bodies when they position and organize themselves into layers, the dendritic and axonal processes during their growth, guidance, and maturation, and the dendritic spines, axon terminals, and distal astrocytic processes when synapses are formed or strengthened. These locations could thus reflect different roles for EphA4, similarly associated with the regulation of plasticity in the CNS, according to the stage of development, the region, the CNS integrity, or the behavioural experience of an animal.
52

Rôle du récepteur aux cannabinoïdes CB2 sur la synaptogenèse

Fleury, Pascal 08 1900 (has links)
Lors de cette étude, nous avons d’abord localisé les récepteurs CB1 et CB2 sur les structures neuronales. Nous avons montré que les récepteurs CB1 et CB2 sont présents sur les dendrites et les axones et les filopodes. Dans le même ordre d’idée, nous avons localisé le récepteur DCC sur les structures neuronales. Celui-ci est aussi présent sur les dendrites, les axones et les filopodes. Ces résultats suggèrent que le récepteur DCC serait impliqué non seulement dans le processus de synaptogenèse médié par le récepteur CB1, comme cela a été montré dans le laboratoire du professeur Bouchard, mais aussi dans celui, éventuellement, médié par le récepteur CB2. Nous avons ensuite évalué l’effet des ligands du récepteur CB2. Nous n’avons détecté aucun effet clair des agonistes inverses (AM630 et JTE907) et des agonistes (JWH015 et JWH133) quant à la médiation du processus de synaptogenèse en terme de variation de la densité des filopodes et des points de contacts synaptiques. Nous avons obtenu des résultats variables. Ceux-ci furent non reproductibles. Nous avons obtenu des résultats différents des résultats originaux lorsque nous avons requantifié visuellement les mêmes photos à deux reprises Nous avons développé une méthode informatisée de quantification qui nous a permis d’obtenir des résultats reproductibles. Cependant, nous n’avons toujours pas détecté d’effets sur la synaptogenèse médiés par le récepteur CB2. Ces résultats préliminaires ne nous permettent ni d’infirmer, ni de confirmer d’éventuels effets sur la synaptogenèse médiés par le récepteur CB2. Une étude exhaustive serait nécessaire pour le déterminer. / During this study we first localised the receptors CB1 and CB2 on neuronal structures. We have shown that those receptors expressed on dendrites and filopodia. Likewise and based on Bouchard’s previous laboratory results showing an implication of the netrin-1 receptor, Deleted in Colorectal Cancer (DCC), on the synaptogenesis process mediated by the receptor CB1 we localized the receptor DCC on neuronal structures. We have shown that the receptor DCC is expressed on dendrites, axons and filopodia. These results suggest an implication of the receptor DDC in a synaptogenesis process that would be mediated by the receptor CB2. We then evaluated the effects triggered by the receptor CB2’s ligands on the synaptogenesis process. We found no evidences of any effects on synaptogenesis mediated by the receptor CB2 inverse agonists (AM630 and JTE907) and agonists (JWH015 and JWH133) in term of filopodia density and synaptic contacts density variations. We witnessed highly variable results that were irreproducible. Visual quantifications of filopodia and synaptic contacts density were variable as we quantified two times the same set of photos. We have therefore developed a computer based quantification method by which we were able to obtained reproducible results. Nevertheless we found no evidence of any implication of the receptor CB2 on the synaptogenesis process. These preliminary results do not allow us neither to rule out nor to confirm eventual CB2 receptor effects on synaptogenesis. An exhaustive study is required to access possible CB2 receptors effect on synaptogenesis.
53

Localisation régionale et subcellulaire du récepteur EphA7 dans l'hippocampe et le cervelet du rat adulte

Amegandjin, Clara A. 01 1900 (has links)
EphA7 est un membre de la famille des récepteurs à tyrosine kinase, Eph, qui assume plusieurs rôles durant le développement du système nerveux central. Par ailleurs, il continue d’être fortement exprimé dans le cerveau adulte, notamment dans les régions reconnues pour leur grande plasticité synaptique, telles que l’hippocampe et le cervelet. Par hybridation in situ, nous avons cartographié la distribution de l’ARNm d’EphA7 dans le cerveau de rats et souris adultes. Les couches pyramidales du CA1 et CA3 et granulaire du gyrus dentelé de la formation de l’hippocampe ont montré le plus fort marquage. Un niveau d’ARNm d’EphA7 plus modéré a été observé dans l’habenula, le striatum, l’amygdale, le cervelet et le cortex cingulaire, piriforme et entorhinal. Quant à la protéine détectée par immunohistochimie, elle était fortement exprimée dans le neuropile de l’hippocampe et la couche des cellules de Purkinje du cervelet. En microscopie électronique, dans toutes les couches de l’hippocampe et du cervelet examinées, des épines dendritiques, des dendrites, des axones non-myélinisés, des terminaisons axonales et quelquefois des prolongements astrocytaires constituaient les éléments immunopositifs. Comme on pouvait déjà le voir en microscopie photonique, les corps cellulaires des cellules pyramidales et granulaires de l’hippocampe ainsi que des cellules de Purkinje du cervelet montraient aussi du marquage, surtout intracellulaire. L’analyse quantitative a révélé la localisation préférentielle d’EphA7 dans des dendrites et épines dendritiques. La majorité des épines marquées formaient des synapses asymétriques (excitatrices) avec des terminaisons axonales non marquées. La double localisation préférentielle d’EphA7 dans les dendrites ainsi que les densités post-synaptiques des épines dendritiques est compatible avec l’hypothèse d’un rôle d’EphA7 dans le maintien ou la fonction de certaines synapses du SNC adulte. / EphA7 is a member of the Eph receptor tyrosine kinase family. It plays multiple roles during central nervous system development. In adult brain, EphA7 is still strongly expressed in certain regions, notably regions known to undergo active synaptic plasticity, such as the hippocampus and cerebellum. To examine the regional and cellular localization of EphA7 in adult brain, we used in situ hybridization as well as immunohistochemistry for light and electron microscopy. By in situ hybridization, the strongest signal was in hippocampus, notably the main cell layers of CA1, CA3 and dentate gyrus, and in cerebellar cortical Purkinje cells. However, moderate mRNA levels were found in habenula, striatum, amygdala, cingular, piriform and entorhinal cortex and in the cerebellar cortex. After immunoperoxydase labeling, EphA7 appeared enriched in the neuropil layers of CA1, CA3 and DG as well as in Purkinje cell somata of the cerebellar cortex. In all examined layers of hippocampus and cerebellum, dendritic spines, dendrites, unmyelinated axons, axon terminals and some astrocytic leaflets were immunopositive for EphA7. Neuronal cell bodies of pyramidal, granular and Purkinje cells also showed some immunoreactivity, which was mainly intracellular. EphA7-labeled dendritic spines and dendrites represented the most frequently labeled components. The vast majority of labeled dendritic spines established asymmetric synapses with unlabeled axon terminals and thus displayed features of excitatory synapses. The dual preferential localization of EphA7 in dendrites and in the post-synaptic densities of dendritic spines provides morphologic evidence in support of the hypothesis that EphA7 plays a key role in adult CNS synaptic maintenance or function.
54

Régulation de l’activité et de la connectivité synaptique par les cellules gliales au cours du développement de la jonction neuromusculaire de mammifères

Darabid, Houssam 12 1900 (has links)
Le système nerveux est composé de milliards de connexions synaptiques qui forment des réseaux complexes à la base de la communication dans le cerveau. Dès lors, contrôler la localisation, le type et le nombre des synapses est un défi considérable au cours du développement du système nerveux. Étonnamment, la production de connexions synaptiques est démesurée de façon à ce que beaucoup plus de synapses soient formées au cours du développement que ce qui est maintenu chez l’adulte. Ces connexions surnuméraires sont en compétition pour l’innervation d’une même cellule cible ce qui mène au maintien de certaines terminaisons nerveuses et à l’élimination de d’autres. Ces processus de compétition et d’élimination sont grandement façonnés par l’activité du système nerveux et l’expérience sensorielle de manière à ce que les terminaisons qui montrent la meilleure activité sont favorisées alors que les synapses mal adaptées sont éliminées. Jusqu’à récemment, les mécanismes et les types cellulaires responsables de l’élimination synaptique étaient inconnus. Les études de la dernière décennie montrent que les cellules gliales jouent un rôle clé dans l’élimination de synapses. Cependant, il demeure inconnu si les cellules gliales peuvent décoder les niveaux d’activité des terminaisons en compétition, ce qui est un déterminant majeur de l’issue de la compétition synaptique. De plus, il n’est pas connu si les cellules gliales sont capables de réguler l’activité synaptique des terminaisons, ce qui pourrait influencer l’issue de l’élimination synaptique. Ceci est d’un intérêt particulier puisqu’il est connu que les cellules gliales interagissent activement avec les neurones, détectent et modulent leur activité dans plusieurs régions du système nerveux mature. Par conséquent, l'objectif de cette thèse était d'étudier la capacité des cellules gliales à interagir avec les terminaisons nerveuses en compétition pour l'innervation d’une même cellule cible. Nous avons donc analysé la capacité des cellules gliales à décoder l’activité des terminaisons, à réguler leur activité synaptique et à influencer le processus de l’élimination synaptique au cours du développement du système nerveux. Pour cette fin, nous avons profité de la jonction neuromusculaire, un modèle simple et le bien caractérisé, et nous avons combiné l’imagerie Ca2+ des cellules gliales, un rapporteur fiable de leur activité avec des enregistrements synaptiques de jonctions neuromusculaires poly-innervées de souriceaux. Dans la première étude, nous montrons que les cellules gliales détectent et décodent l'efficacité synaptique des terminaisons nerveuses en compétition. L’activité des cellules gliales reflète la force synaptique de chaque terminaison nerveuse et l'état de la compétition synaptique. Ce décodage est médié par des récepteurs purinergiques gliaux fonctionnellement distincts et les propriétés intrinsèques des cellules gliales. Nos résultats indiquent que les cellules gliales décodent la compétition synaptique et, par conséquent, sont favorablement positionnées pour influencer son issue. Dans la seconde étude, nous montrons que les cellules gliales régulent différemment la plasticité synaptique de terminaisons en compétition. De manière dépendante du Ca2+, les cellules gliales induisent une potentialisation persistante de l’activité de la terminaison forte alors qu’elles n’ont que peu d’effets sur la terminaison faible. Bloquer l'activité gliale altère la plasticité des terminaisons in situ et se traduit par un retard de l'élimination des synapses in vivo. Ainsi, nous décrivons un nouveau mécanisme par lequel les cellules gliales, non seulement renforcent activement la terminaison forte, mais influencent aussi la compétition et l'élimination. Dans l'ensemble, ces études sont les premières à démontrer que les cellules gliales sont activement impliquées dans la modulation de l'activité synaptique des terminaisons en compétition ainsi que dans la régulation de l'élimination synaptique et la connectivité neuronale. / The nervous system is composed of billions of synaptic connections forming complex networks that define the basis of neuronal communication in the brain. The control of the localization, type and number of synapses is a considerable challenge during development of the nervous system. Surprisingly, there is an excessive production of synaptic connections so that many more synapses are formed during developmental stages than what is maintained in the adult. A process of competition and elimination then occurs during which connections are in competition for the innervation of the same target cell. These processes of competition and elimination are greatly shaped by activity and sensory experience. Nerve terminals that show the best activity are favoured, while weak and poorly adapted synapses are eliminated. Until recently, the mechanisms and the cell types responsible for the elimination of supernumerary connections were unknown. Studies from the last decade identified glial cells as major players in synapse elimination. However, it remains unknown whether glial cells are able to decode the levels of synaptic activity of competing terminals, which is a major determinant of the outcome of synaptic competition. Moreover, it is unknown whether glial cells are able to regulate synaptic activity, which could influence the outcome of synapse elimination. This is especially relevant because it is known that glial cells actively interact with neurons, detect and modulate their activity in many regions of the nervous system. Therefore, the goal of this thesis was to study the ability of glial cells to interact with terminals competing for the innervation of the same target cell. We tested the ability of glial cells to decode the activity nerve terminals, regulate their synaptic activity and influence the process of synapse elimination during development of the nervous system. For this purpose, we took advantage of the neuromuscular junction, a simple and well-characterized model, and used simultaneous Ca2+-imaging of glial cells, a reliable reporter of their activity and synaptic recordings of dually-innervated neuromuscular junctions from newborn mice. In the first study, we report that single glial cells detect and decode the synaptic efficacy of competing nerve terminals. Activity of single glial cells reflects the synaptic strength of each competing nerve terminal and the state of synaptic competition. This deciphering is mediated by functionally segregated purinergic receptors and intrinsic properties of glial cells. Our results indicate that glial cells decode ongoing synaptic competition and, hence, are poised to influence its outcome. In the second study, we show that glial cells differentially regulate the synaptic plasticity of competing terminals. In a Ca2+-dependent manner, glial cells induce a long lasting synaptic potentiation of strong but not weak terminals. Preventing glial activity alters the plasticity of terminals in situ and delays synapse elimination in vivo. Thus, we describe a novel mechanism by which glial cells, not only actively reinforce the strong input but regulate synapse competition and elimination. As a whole, these studies are the first to demonstrate that glial cells are actively involved in the modulation of synaptic activity of competing terminals as well as in the regulation of synapse elimination and neuronal connectivity.
55

Neuroligin: Charakterisierung eines neuronalen Transmembranproteins / Neuroligin: Characterization of a neuronal transmembrane protein

Neeb, Antje Jennifer 06 November 2003 (has links)
No description available.
56

Étude ultrastructurale et développementale du récepteur EphA4 dans l’hippocampe du rat

Tremblay, Marie-Eve 03 1900 (has links)
Afin de mieux comprendre l’évolution des fonctions du récepteur EphA4 pendant le développement du système nerveux central (SNC), nous avons étudié sa localisation cellulaire et subcellulaire dans l’hippocampe du rat, d’abord chez l’adulte, puis pendant le développement postnatal, ainsi que ses rôles potentiels dans la genèse, la migration ou la maturation des cellules granulaires dans l’hippocampe adulte. Pour ce faire, nous avons utilisé la méthode d’immunocytochimie en microscopie photonique, électronique et confocale. En microscopie photonique, une forte immunoréactivité (peroxydase/DAB) pour EphA4 est observée aux jours 1 et 7 suivant la naissance (P1 et P7) dans les couches de corps cellulaires, avec un marquage notamment associé à la surface des corps cellulaires des cellules granulaires et pyramidales, ainsi que dans les couches de neuropile du gyrus dentelé et des secteurs CA3 et CA1. L’intensité du marquage diminue progressivement dans les couches de corps cellulaires, entre P7 et P14, pour devenir faible à P21 et chez l’adulte, tandis qu’elle persiste dans les couches de neuropile, sauf celles qui reçoivent des afférences du cortex entorhinal. En microscopie électronique, après marquage à la peroxydase/DAB, EphA4 décore toute la surface des cellules pyramidales et granulaires, du corps cellulaire jusqu’aux extrémités distales, entre P1 et P14, pour devenir confiné aux extrémités synaptiques, c’est-à-dire les terminaisons axonales et les épines dendritiques, à P21 et chez l’adulte. À la membrane plasmique des astrocytes, EphA4 est redistribué comme dans les neurones, marquant le corps cellulaire et ses prolongements proximaux à distaux, à P1 et P7, pour devenir restreint aux prolongements périsynaptiques distaux, à partir de P14. D’autre part, des axones en cours de myélinisation présentent souvent une forte immunoréactivité punctiforme à leur membrane plasmique, à P14 et P21. En outre, dans les neurones et les astrocytes, le réticulum endoplasmique, l’appareil de Golgi et les vésicules de transport, organelles impliquées dans la synthèse, la modification posttraductionnelle et le transport des protéines glycosylées, sont aussi marqués, et plus intensément chez les jeunes animaux. Enfin, EphA4 est aussi localisé dans le corps cellulaire et les dendrites des cellules granulaires générées chez l’adulte, au stade de maturation où elles expriment la doublecortine (DCX). De plus, des souris adultes knockouts pour EphA4 présentent des cellules granulaires DCX-positives ectopiques, c’est-à-dire positionnées en dehors de la zone sous-granulaire, ce qui suggère un rôle d’EphA4 dans la régulation de leur migration. Ces travaux révèlent ainsi une redistribution d’EphA4 dans les cellules neuronales et gliales en maturation, suivant les sites cellulaires où un remodelage morphologique s’effectue : les corps cellulaires lorsqu’ils s’organisent en couches, les prolongements dendritiques et axonaux pendant leur croissance, guidage et maturation, puis les épines dendritiques, les terminaisons axonales et les prolongements astrocytaires distaux associés aux synapses excitatrices, jusque chez l’adulte, où la formation de nouvelles synapses et le renforcement des connexions synaptiques existantes sont exercés. Ces localisations pourraient ainsi correspondre à différents rôles d’EphA4, par lesquels il contribuerait à la régulation des capacités plastiques du SNC, selon le stade développemental, la région, l’état de santé, ou l’expérience comportementale de l’animal. / To gain more insight into the various functions of EphA4 receptor during the development of the central nervous system (CNS), we have characterized its cellular and subcellular localization in the rat hippocampus, first in the adult, and second during the postnatal development. We have also examined its potential roles in the genesis, migration, or maturation of the granule cells in the adult hippocampus. For that purpose, we have used immunocytochemistry in light, electron, and confocal microscopy. At the light microsocpic level, a strong EphA4 immunoreactivity (peroxidase/DAB) is observed at postnatal days 1 and 7 (P1 and P7) in the cell body layers, with a labeling notably associated with the surface of pyramidal and granule cell bodies, as well as in the neuropil layers of CA3, CA1, and dentate gyrus regions. The intensity of the labeling diminishes progressively in the cell body layers, between P7 and P14, to become weak at P21 and in the adult, while it persists in the neuropil layers, except in those receiving inputs from the entorhinal cortex. At the electron microscopic level, after peroxidase/DAB labeling, EphA4 covers the entire surface of pyramidal and granule cells, from the cell body to the distal extremities, between P1 and P14, but becomes restricted to the synaptic extremities, i.e. the axon terminals and dendritic spines, at P21 and in the adult. At the plasma membrane of astrocytes, EphA4 is redistributed as in neurons, from the cell body and proximal to distal processes, at P1 and P7, to the distal perisynaptic processes, at P14 and older ages. In addition, axons in the process of myelination present strong punctiform immunoreactivity at their plasma membrane, at P14 and P21. Moreover, in neurons and astrocytes, the endoplamic reticulum, Golgi apparatus, and transport vesicles, organelles involved in the synthesis, post-translational modifications, and transport of glycosylated proteins, are also labeled, and also more intensely in younger animals. Lastly, EphA4 is located in the cell body and dendrites of adult-generated granule cells, at the stage of maturation where they express doublecortin (DCX). In addition, EphA4 adult knockout mice display DCX-positive granule cells in an ectopic position, outside of the subgranular zone, suggesting a role for EphA4 in the regulation of their migration. This work thus reveals a redistribution of EphA4 in neuronal and glial cells, in the cellular sites where cellular motility occurs during their maturation: the cell bodies when they position and organize themselves into layers, the dendritic and axonal processes during their growth, guidance, and maturation, and the dendritic spines, axon terminals, and distal astrocytic processes when synapses are formed or strengthened. These locations could thus reflect different roles for EphA4, similarly associated with the regulation of plasticity in the CNS, according to the stage of development, the region, the CNS integrity, or the behavioural experience of an animal.
57

Rôle du récepteur aux cannabinoïdes CB2 sur la synaptogenèse

Fleury, Pascal 08 1900 (has links)
Lors de cette étude, nous avons d’abord localisé les récepteurs CB1 et CB2 sur les structures neuronales. Nous avons montré que les récepteurs CB1 et CB2 sont présents sur les dendrites et les axones et les filopodes. Dans le même ordre d’idée, nous avons localisé le récepteur DCC sur les structures neuronales. Celui-ci est aussi présent sur les dendrites, les axones et les filopodes. Ces résultats suggèrent que le récepteur DCC serait impliqué non seulement dans le processus de synaptogenèse médié par le récepteur CB1, comme cela a été montré dans le laboratoire du professeur Bouchard, mais aussi dans celui, éventuellement, médié par le récepteur CB2. Nous avons ensuite évalué l’effet des ligands du récepteur CB2. Nous n’avons détecté aucun effet clair des agonistes inverses (AM630 et JTE907) et des agonistes (JWH015 et JWH133) quant à la médiation du processus de synaptogenèse en terme de variation de la densité des filopodes et des points de contacts synaptiques. Nous avons obtenu des résultats variables. Ceux-ci furent non reproductibles. Nous avons obtenu des résultats différents des résultats originaux lorsque nous avons requantifié visuellement les mêmes photos à deux reprises Nous avons développé une méthode informatisée de quantification qui nous a permis d’obtenir des résultats reproductibles. Cependant, nous n’avons toujours pas détecté d’effets sur la synaptogenèse médiés par le récepteur CB2. Ces résultats préliminaires ne nous permettent ni d’infirmer, ni de confirmer d’éventuels effets sur la synaptogenèse médiés par le récepteur CB2. Une étude exhaustive serait nécessaire pour le déterminer. / During this study we first localised the receptors CB1 and CB2 on neuronal structures. We have shown that those receptors expressed on dendrites and filopodia. Likewise and based on Bouchard’s previous laboratory results showing an implication of the netrin-1 receptor, Deleted in Colorectal Cancer (DCC), on the synaptogenesis process mediated by the receptor CB1 we localized the receptor DCC on neuronal structures. We have shown that the receptor DCC is expressed on dendrites, axons and filopodia. These results suggest an implication of the receptor DDC in a synaptogenesis process that would be mediated by the receptor CB2. We then evaluated the effects triggered by the receptor CB2’s ligands on the synaptogenesis process. We found no evidences of any effects on synaptogenesis mediated by the receptor CB2 inverse agonists (AM630 and JTE907) and agonists (JWH015 and JWH133) in term of filopodia density and synaptic contacts density variations. We witnessed highly variable results that were irreproducible. Visual quantifications of filopodia and synaptic contacts density were variable as we quantified two times the same set of photos. We have therefore developed a computer based quantification method by which we were able to obtained reproducible results. Nevertheless we found no evidence of any implication of the receptor CB2 on the synaptogenesis process. These preliminary results do not allow us neither to rule out nor to confirm eventual CB2 receptor effects on synaptogenesis. An exhaustive study is required to access possible CB2 receptors effect on synaptogenesis.
58

Première évaluation de l’intégralité des propriétés synaptiques des terminaisons en compétition lors du développement de la jonction neuromusculaire

St-Pierre-See, Alexandre 04 1900 (has links)
No description available.
59

La formation de synapses par les neurones périphériques sur des surfaces synthétiques

Ma, Xiya 08 1900 (has links)
No description available.
60

Molecular Mechanisms of Serotonergic Signaling: Role in Neuronal Outgrowth and Receptor Oligomerization / Molekulare Mechanismen des serotonergen Systems: Rolle bei neuronalem Wachstum und Rezeptoroligomerisierung

Kobe, Fritz 30 April 2010 (has links)
No description available.

Page generated in 0.0392 seconds