Spelling suggestions: "subject:"aynthetic lethality"" "subject:"aynthetic lethalithy""
11 |
Identifying Targetable Liabilities in Ewing SarcomaVallurupalli, Mounica 07 July 2014 (has links)
Background: Despite multi-modality therapy, the majority of patients with metastatic or recurrent Ewing sarcoma (ES), the second most common pediatric bone malignancy, will die of their disease. ES tumors express aberrantly activated ETS transcription factors through translocations that fuse the EWS gene to ETS family genes FLI1 or ERG. The aberrant activation of ETS transcription factors promotes malignant transformation and proliferation. While, FLI1 or ERG cannot be readily targeted, there is an opportunity to deploy functional genomics screens, to develop novel therapeutic approaches by identifying targetable liabilities in EWS/FLI1 dependent tumors.
Materials and Methods: We performed a near whole-genome pooled shRNA screen in a panel of five EWS/FLI1 dependent Ewing sarcoma cell lines and one EWS/ERG cell line to identify essential genes. Essential genes were defined as those genes whose loss resulted in reduced viability selectively in ES cells compared to non-Ewing cancer cell lines. Essential hits were subsequently validated with genomic knockdown and chemical inhibition in vitro, followed by validation of the on-target effect of chemical inhibition. Next, we determined the in vivo effects of small-molecule inhibition on survival and tumor growth in NOD scid gamma (NSG) mice with established subcutaneous ES xenografts.
Results: Top hits in our screen that could be readily targeted by small-molecule inhibitors, and thus have potential for rapid clinical validation, were selected for further investigation. These hits included IKBKE, CCND1 and CDK4. IKBKΕ, a non-canonical IKK with an oncogenic role in breast cancer, was one of the top kinase hits in the screen. IKBKΕ shares significant homology to TBK1, another non-canonical IKK that is essential in k-RAS dependent lung cancer. We validated IKBKE through small-molecule inhibition of IKBKE/TBK1 and shRNA based knockdown. Ewing sarcoma cell lines are sensitive to low micromolar concentrations of two IKBKE/TBK1 inhibitors (CYT387 and MRT67307). Additionally, in a panel of ES cell lines, knockdown of IKBKE resulted in decreased growth and impaired colony formation. These observations, paired with impairment of NF-κB nuclear localization following CYT387 treatment suggests that non-canonical IKK mediated signaling may be essential in Ewing sarcoma. We further validated these results through inhibition of IKBKE/TBK1 in in vivo xenograft models treated with 100 mg/kg/day of CYT387. Treatment over the course of twenty-nine days resulted in a significant increase in survival (p-value = 0.0231) and a significant decrease (p-value = 0.036) in tumor size after fifteen days of treatment.
CDK4 and CCND1 are highly expressed in Ewing sarcoma as compared to other tumor types. shRNA mediated knockdown of CDK4 and CCND1 resulted in impaired viability and anchorage independent growth. Furthermore, treatment of Ewing sarcoma cell lines with a highly selective CDK4/6 inhibitor, LEE011, resulted in decreased viability (IC50 range of 0.26-18.06 μM), potent G1 arrest in six of eight EWS/FLI1 containing Ewing sarcoma lines tested and apoptosis in a panel of four highly sensitive lines. Administration of 75 mg/kg/day and 250 mg/kg/day of LEE011 in NSG mice with Ewing xenografts resulted in significant impairment of tumor growth, (p-value <0.001 for both treatment arms), as compared to vehicle control.
Conclusions: These studies suggest a role for the targeting of IKBKE and CDK 4/6 in Ewing sarcoma, findings with immediate clinical relevance for patients with this malignancy, because small-molecule inhibitors of these proteins have already entered clinical trial for other disease indications.
|
12 |
Tailoring Oncolytic Viruses for the Treatment of Pancreatic CancerWedge, Marie-Ève 16 April 2020 (has links)
Pancreatic cancer (PC) is a highly aggressive disease with unmet therapeutic needs. Recent advances in the use of oncolytic viruses (OVs) as cancer therapeutic agents bring new hope to fight the notorious disease that is PC. Although OVs have shown promising results in certain cancers, some tumors remain resistant to OV therapy due to their inherent residual antiviral mechanisms. We hypothesized that the use of OV-encoded artificial microRNAs (amiRNAs) could help target the cellular antiviral components associated with the observed OV resistance and could also sensitize neighboring tumor cells to OV therapy and small molecule inhibitors through the secretion of amiRNA-containing extracellular vesicles (EVs) from infected cells. To find such amiRNAs, a viral surrogate library encoding ~16,000 unique amiRNAs was passaged in pancreatic cancer cell lines to enrich for sequences that could enhance OV replication. An amiRNA that improves PC cell killing when expressed from an OV was identified. Target identification of this amiRNA (amiR-4) revealed ARID1A as a key player in resistance to OV therapy in pancreatic cancers. This target is of particular interest, since its downregulation acts in a synthetic lethal fashion with inhibition of the EZH2 methyltransferase. Combining VSV51-amiR-4 with a small molecule inhibitor of EZH2 enhances PC cell death. Moreover, amiR-4 is packaged in cancer cell-secreted EVs which can reach neighboring naïve cells to sensitize them to EZH2 inhibition-mediated cell death and to spread the OV-mediated tumor killing effect throughout the tumor. This data translates into tumor debulking and survival in animal models of highly aggressive PC. This work not only broadens our knowledge on the resistance of select tumors to oncolytic virotherapy and the EV-mediated bystander killing effect in OV-infected tumors, but it also establishes OVs as a novel tool to produce anti-cancer therapeutic EVs in situ to improve therapeutic gain. Ultimately, our work provides new hope for a cure to the grim disease that is PC.
|
13 |
Cytoskeletal Architecture and Cell Motility Remain Unperturbed in Mouse Embryonic Fibroblasts from <i>Plk3</i> Knockout Mice.Michel, Daniel R. January 2015 (has links)
No description available.
|
14 |
Combination therapy with WEE1 inhibition and trifluridine/tipiracil against esophageal squamous cell carcinoma / 食道扁平上皮癌に対するWEE1阻害剤とトリフルリジン/チピラシル合剤の併用療法の開発Nguyen Vu Hoang Trang 23 May 2024 (has links)
京都大学 / 新制・課程博士 / 博士(医学) / 甲第25487号 / 医博第5087号 / 新制||医||1073(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 小濱 和貴, 教授 妹尾 浩, 教授 寺田 智祐 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
|
15 |
DDX1 co-amplification confers collateral vulnerabilities in neuroblastomaBei, Yi 02 August 2024 (has links)
Das Neuroblastom ist eines der häufigsten Tumoren im Kindesalter. Bei Hochrisko-Neuroblastomen weisen etwa 25 % der Patienten eine MYCN-Amplifikation auf. Die Behandlung dieser Patienten bleibt eine Herausforderung. Bei genauerer Betrachtung der amplifizierten Regionen umfasst diese große genomische Bereiche, die nicht nur MYCN, sondern auch Passagiergene und genregulatorische Elemente enthalten. Um MYCN-amplifizierte Neuroblastome zu behandeln, versuchten wir festzustellen, ob Co-Amplifikationen von Passagiergenen kollaterale therapeutische Vulnerabilitäten darstellen könnten. Durch die Analyse von Kopienzahl-Daten von 238 MYCN-amplifizierten Patienten identifizierten wir das DEAD-Box-Helicase-1 (DDX1)-Gen als ein Gen, welches häufig mit MYCN auf dem gleichen genomischen Fragment amplifiziert ist. Die Analyse eines CRISPR-Cas9-Funktionsverlust- Screens aus der Cancer Dependency Map, welche über 700 humanen Krebszelllinien beinhalten, zeigt, dass das Überleben von MYCN-amplifizierten Krebszellen mit DDX1-Co-Amplifikation von der gesteigerten Aktivität des mammalian target of rapamycin complex 1 (mTORC1) abhängt. Interaktionsproteomik identifizierte Dihydrolipoyl-S-Succinyltransferase (DLST), ein Bestandteil des Tricarboxylsäure (TCA)-Zyklusenzyms α-Ketoglutarat-Dehydrogenase (α-KGDH)-Komplexes, als Interaktionspartner von DDX1 in Mitochondrien. Lebendzell- Stoffwechselanalysen legten nahe, dass diese Interaktion die TCA-Aktivität beeinträchtigen und zu einer Anhäufung von α-Ketoglutarat (α-KG) führen kann, indem sie dessen Umwandlung in Succinyl-CoA stört. Die Anhäufung von α-KG verursacht metabolischen Stress und löst Zelltod aus, der durch eine gesteigerte mTORC1-Aktivität in Krebszellen kompensiert wird. Folglich führte die Störung der mTORC1-Funktion zu Zelltod, insbesondere in Zellen mit hoher DDX1-Kopienzahl. So kann die strukturell verknüpfte Co-Amplifikation eines Passagiergens (DDX1) und eines Onkogens (MYCN) auf dem gleichen Amplicon zu kollateralen Vulnerabilitäten bei Neuroblastomen führen. / Neuroblastoma is one of the most common childhood tumors. In high-risk neuroblastoma, around 25% of patients harbor MYCN amplification. Treating neuroblastoma patients with MYCN amplification remains challenging. Taking a closer look at MYCN-amplified regions, DNA amplification encompasses large genomic regions harboring not only MYCN but also containing passenger genes and gene regulatory elements. To treat MYCN-amplified neuroblastoma, we sought to determine whether passenger co-amplifications can create collateral therapeutic vulnerabilities. By analyzing copy number data from 238 MYCN-amplified patients, we identified the DEAD-Box Helicase 1 (DDX1) gene to be frequently co-amplified with MYCN on the same genomic fragment. Analysis of CRISPR-Cas9 loss-of-function screens from the Cancer Dependency Map across over 700 human cancer cell lines revealed that the survival of MYCN-amplified cancer cells with DDX1 co-amplification depends on the enhanced activity of the mammalian target of rapamycin complex 1 (mTORC1). Interaction proteomics identified dihydrolipoamide S-succinyltransferase (DLST), a component of the tricarboxylic acid (TCA) cycle enzyme α-ketoglutarate dehydrogenase (α-KGDH) complex, as an interaction partner of DDX1 in mitochondria. Live-cell metabolomics suggested that this interaction can impair TCA activity and lead to the accumulation of α-ketoglutarate (α-KG) by interfering with its conversion to succinyl-CoA. Accumulation of α-KG, in turn, caused metabolic stress and triggered cell death, which was compensated for by enhanced mTORC1 activity in cancer cells. Consequently, disruption of mTORC1 function resulted in cell death, specifically in cells with an aberrantly high copy number of DDX1. Thus, structurally linked co-amplification of a passenger gene (DDX1) and an oncogene (MYCN) on the same amplicon can result in collateral vulnerabilities in neuroblastoma.
|
16 |
Mise en évidence d’intéractions létales par criblage phénotypique dans le contexte de la résistance aux thérapies du cancer colorectal / Demonstration of lethal interactions by phenotypic screening in the context of resistance to colorectal cancer therapiesCombès, Eve 27 November 2017 (has links)
Aujourd’hui, les traitements du cancer colorectal métastatique ont évolué grâce à la combinaison de chimiothérapies conventionnelles à base de 5-FU, oxaliplatine et/ou Irinotécan et de thérapies ciblées dirigées contre le récepteur de l’EGF ou le VEGF. Malgré un taux de survie amélioré par la combinaison de ces drogues, la résistance innée et acquise aux traitements est une cause fréquente d'échec thérapeutique.Dans le but de découvrir de nouvelles cibles thérapeutiques nous avons effectué plusieurs criblages phénotypiques en utilisant des modèles cellulaires de résistance acquises aux chimiothérapies (oxaliplatine et irinotécan) générés au laboratoire ainsi que la lignée HCT116 qui présente une résistance innée aux thérapies anti-EGFR (cétuximab, panitumumab, Erlotinib). Le but final de ce projet étant de révéler des gènes, dont l’inhibition permet de rétablir la sensibilité à l’un de ces traitements, affichant ainsi une interaction létale avec le médicament.Une fois les kinases potentiellement impliquées dans la résistance aux thérapies du CCR identifiées, une inhibition spécifique par shRNA et/ou un inhibiteur spécifique a été effectuée afin de confirmer les potentielles cibles thérapeutiques et/ou biomarqueurs de réponse aux traitements. La cible la plus prometteuse, identifiée comme un déterminant de la résistance à l’oxaliplatine est la protéine ATR (Ataxia-telangiectasia mutated and rad3 related). Une protéine jouant un rôle clé dans la réparation de l'ADN et qui est activée en réponse à la présence d'ADN simple brin persistant (ssDNA) ou de stress réplicatif, pouvant être généré par certaines thérapies anticancéreuses.L’inhibition ATR via son inhibiteur pharmacologique VE-822 (VX-970) combinée à l’oxaliplatine a alors été étudiée par l’utilisation de tests cytotoxiques complétés par une étude d’additivité. Ainsi, nous avons démontré que l’inhibition d’ATR combinée avec l’oxaliplatine entraine une forte synergie dans la lignée HCT116-R1 à la fois en 2D et en 3D. Cet effet est également retrouvé dans d’autres lignées clonales résistantes à l’oxaliplatine (HCT116-R2, SW48-R1) ainsi que dans les lignées cellulaires à l’origine de ces dernières (HCT116, SW48). Nous avons également montré que l'effet synergique de l’oxaliplatine et du VE-822 dans la lignée HCT116-R1 s'accompagne d'une augmentation de la présence d’ADN simple brins suivie de nombreuses cassures double brins de l’ADN, d'un arrêt de la prolifération et d'une induction de l'apoptose. L'apparition de ces dommages à l'ADN est également corrélée avec l'activation de la voie ATM, de p53 et l'inhibition de l'activité CDK2. De plus, in vitro le double traitement provoque une induction des signaux moléculaires à l’origine de la mort immunogène équivalente ou bien supérieure aux traitements par l’oxaliplatine seul. Enfin, l'association d'oxaliplatine + VE-822 est également efficace in vivo, sur des souris immunodéprimées xénogreffées avec les cellules HCT116-R1 ainsi que sur des souris immunologiquement compétentes, avec un effet synergique plus élevé indiquant que la mort immunitaire (ICD) fait partie du mécanisme de cette combinaison de médicaments. En conclusion, toutes ces données confirment l’intérêt du criblage phénotypique dans la découverte de nouvelles cibles thérapeutiques en démontrant pour la première fois le rôle fonctionnel de l'ATR dans la sensibilité à l’oxaliplatine. / Today, treatments for metastatic colorectal cancer have evolved through the combination of conventional chemotherapy 5-FU, oxaliplatin and / or Irinotecan and targeted therapies directed against the EGF receptor or VEGF. Despite an improved survival rate through the combination of these drugs, innate and acquired resistance to treatment is a common cause of therapeutic failure.In order to discover new therapeutic targets we carried out several phenotypic screenings using cellular resistance models acquired to chemotherapies (oxaliplatin and irinotecan) generated in the laboratory as well as the HCT116 line which exhibits an innate resistance to anti-EGFR therapies (cetuximab , panitumumab, Erlotinib). The ultimate goal of this project is to reveal genes, whose inhibition restores sensitivity to one of these treatments, thus displaying a lethal interaction with the drug.Once the kinases potentially involved in resistance to CCR therapies identified, specific inhibition by shRNA and / or a specific inhibitor was performed to confirm the potential therapeutic targets and / or biomarkers for response to treatments. The most promising target, identified as a determinant of resistance to oxaliplatin is the ATR protein (Ataxia-telangiectasia mutated and rad3 related). A protein that plays a key role in DNA repair and is activated in response to the presence of persistent single stranded DNA (ssDNA) or replicative stress, which can be generated by certain anti-cancer therapies.The inhibition of ATR via its pharmacological inhibitor VE-822 (VX-970) combined with oxaliplatin was then studied by the use of cytotoxic tests supplemented by an additivity study. Thus, we demonstrated that the inhibition of ATR combined with oxaliplatin leads to a strong synergy in the HCT116-R1 cell line in both 2D and 3D. This effect is also found in other oxaliplatin resistant clonal lines (HCT116-R2, SW48-R) as well as in the cell lines originating from them (HCT116, SW48).We have also shown that the synergistic effect of oxaliplatin and VE-822 in the HCT116-R1 line is accompanied by an increase in the presence of single-stranded DNA followed by numerous double-stranded DNA breaks, stopping proliferation and inducing apoptosis. The occurrence of this damage to DNA is also correlated with activation of the ATM pathway, p53 and inhibition of CDK2 activity. Moreover, in vitro the double treatment causes an induction of the molecular signals triggering the immunogenic cell death equivalent or superior to the treatments by oxaliplatin alone.Finally, the combination of oxaliplatin + VE-822 is also effective in vivo in immunodeficient mice xenografted with HCT116-R1 cells as well as in immunologically competent mice with a higher synergistic effect indicating that immune death (ICD ) is part of the mechanism of this combination of drugs.In conclusion, all these data confirm the interest of phenotypic screening in the discovery of new therapeutic targets by demonstrating for the first time the functional role of ATR in sensitivity to oxaliplatin.
|
17 |
Molecular Characterization of Pediatric Brainstem Gliomas (DIPG) and Identification of New Therapeutic Targets / Caractérisation moléculaire des gliomes malins pédiatriques du tronc cérébral (DIPG) et identification de nouvelles stratégies thérapeutiquesSilva Evangelista, Cláudia 01 October 2018 (has links)
Les DIPG représentent les tumeurs cérébrales pédiatriques les plus sévères. Aucun progrès dans leur prise en charge n’a été accompli au cours des 50 dernières années et la radiothérapie ne demeure que transitoirement efficace. Récemment, une mutation somatique de l’histone H3 (K27M) spécifique des DIPG a été trouvée chez environ 95% des patients. Elle est aujourd’hui considérée comme l'événement oncogénique initiateur de ces tumeurs. Deux sous-groupes majeurs de patients présentant des programmes oncogéniques et une réponse à la radiothérapie distincts peuvent être définis en fonction du gène dans lequel l’altération survient, codant les variantes protéiques H3.1 ou H3.3. Nous avons réalisé deux cribles de létalité synthétique par ARN interférence ciblant le kinome humain afin d'identifier d’une part les gènes nécessaires à la survie des DIPG et d’autre part les gènes dont l’inhibition sensibilise ces tumeurs à la radiothérapie. Le double objectif de ce projet était de mieux comprendre la biologie sous-jacente à l’oncogenèse des DIPG et de découvrir de nouvelles cibles thérapeutiques.Nous avons mis en évidence 41 gènes requis pour la survie des DIPG sans effet délétère majeur sur des cellules contrôles normales. Parmi eux, nous avons identifié VRK3 codant une serine thréonine kinase dont les fonctions restent peu décrites à ce jour et qui n'avait jamais été associée préalablement à l'oncogenèse de DIPG. Nous avons pu confirmer par la suite que son inhibition conduit à un arrêt total de la prolifération des cellules de DIPG associé à d’importants changements morphologiques, plus particulièrement dans les tumeurs mutées pour H3.3-K27M. VRK3 constitue par conséquent une nouvelle cible thérapeutique prometteuse dans cette pathologie à l’issue fatale pour la totalité des patients.En parallèle, un crible de survie similaire a été réalisé en conjonction avec l’irradiation des cellules. Très peu d’ARN interférents ont permis de sensibiliser les cellules H3.3-K27M à la radiothérapie contrairement aux cellules H3.1-K27M. Ce travail nous a permis de mettre en évidence une différence significative de radiosensibilité des modèles vitro de DMG en fonction du sous-groupe de tumeurs considéré, H3.1- ou H3.3-K27M muté, conformément à la survie des patients observée suite à la radiothérapie. Ces résultats inédits laissent entrevoir des perspectives d’amélioration du traitement de référence des patients atteints de DIPG actuellement identique quelle que soit leur génotype. / DIPG is one of the most severe paediatric brain tumours. No progress has been made in their management over the past 50 years and radiotherapy remains only transiently effective. Recently, a specific somatic mutation in the histone H3 (K27M) has been found in approximately 95% of DIPG patients and can be considered as the oncogenic driver of these tumours. Two major subgroup of patients with distinct oncogenic program and response to radiotherapy can be defined according to the gene in which the alteration occurs, encoding the H3.1 or H3.3 protein variants. We performed two synthetic lethality screens by RNA interference targeting the human kinome in order to identify the genes responsible for DIPG cell survival, as well as those sensitizing tumour cells to radiotherapy after inhibition. The dual purpose of this project was to better understand the biology underlying oncogenesis of DIPGs and to discover new therapeutic targets.We identified 41 genes required for DIPG cell survival with no major deleterious effect on normal control cells. Among them, we identified VRK3, a serine threonine kinase never involved in DIPG oncogenesis with functions remaining poorly described to date. We have shown that its inhibition leads to a complete arrest of DIPG cell proliferation and is additionally associated with important morphological changes, more particularly in H3.3-K27M mutated tumours. VRK3 is therefore a promising new therapeutic target for all patients in this fatal pathology.In parallel, a similar survival screen was performed in conjunction to cell radiation and very few interfering RNAs enhance H3.3-K27M cell radiosensitivity, in contrast to H3.1-K27M cells. These data highlighted a significant difference in radiosensitivity of the DMG in vitro models in H3.1- versus H3.3-K27M mutated tumours, in a concordant way with patient survival following radiotherapy. These unprecedented results suggest new opportunities for improving the current treatment of DIPG patients regardless of their genotype.
|
18 |
Synthetic lethality and functional study of DNA repair defects in ERCC1-deficient non-small-cell lung cancer / Etude de la déficience en ERCC1 dans le cancer bronchique non-à-petites cellules et recherche de léthalité synthétiquePostel-Vinay, Sophie 16 December 2013 (has links)
Excision Repair Cross-Complementation group 1 (ERCC1) est une enzyme de réparation de l’ADN fréquemment déficiente dans le cancer bronchique non-à-petites cellules. Bien qu’une expression faible d’ERCC1 soit prédictive de réponse aux sels de platine, l’efficacité des chimiothérapies à base de platine est limitée par leur toxicité et l’apparition de résistance, justifiant la nécessité de stratégies thérapeutiques alternatives. Par ailleurs, l’absence de test compagnon diagnostic permettant d’évaluer la fonctionnalité d’ERCC1 dans la pratique clinique empêche actuellement toute thérapie personnalisée basée sur le statut ERCC1.Afin d’identifier de nouvelles stratégies thérapeutiques pour les tumeurs ERCC1-déficientes en exploitant le concept de létalité synthétique, des screens à haut-débit , utilisant des composés pharmaceutiques ou par ARN interférence, ont été réalisés dans un modèle isogénique de CBNPC déficient en ERCC1. Cette approche a permis d’identifier plusieurs inhibiteurs de poly(ADP-ribose) polymerase 1 et 2 (PARP1/2), tels l’opalarib (AZD2281), le niraparib (MK-24827) et BMN 673 comme sélectifs pour les cellules ERCC1-déficientes. Les mécanismes sous-tendant cette sensibilité sélective ont été étudiés, et les résultats suivants ont été mis en évidence : (i) les cellules ERCC1-déficientes présentent un blocage prolongé en phase G2/M après exposition à l’olaparib ; (ii) l’isoforme 202 d’ERCC1, dont le rôle a été récemment mis en évidence dans la résistance aux sels de platine, module également la sensibilité aux inhibiteurs de PARP ; (iii) la déficience en ERCC1 est épistatique avec les défauts de recombinaison homologue (RH), malgré une capacité normale des cellules ERCC1-déficientes à former des foyers RAD51 ; ceci suggère qu’ERCC1 pourrait intervenir dans la réparation d’une lésion de l’ADN induite par l’inhibiteur de PARP1/2 en amont de l’invasion du brin d’ADN lors de la RH ; (iv) l’inhibition de l’expression de PARP1 par ARN interférence permet de restaurer la résistance aux inhibiteurs de PARP1/2, dans les cellules ERCC1-déficientes uniquement. Ces résultats suggèrent que les inhibiteurs de PARP1/2 pourraient représenter une nouvelle stratégie thérapeutique chez les patients dont la tumeur est déficiente en ERCC1 et un essai clinique va être mis en place pour évaluer cette hypothèse.Afin d’explorer la présence de biomarqueurs de la fonctionnalité d’ERCC1, quatre approches ont été entreprises en parallèle dans le modèle isogénique de CBNPC déficient en ERCC1: (i) irradiation aux UV, afin d’évaluer la voie NER (Nucleotide Excision Repair); (ii) séquençage d’exome, dans le but de rechercher une signature génomique (ADN) ; (iii) analyse du transcriptome cellulaire, pour identifier des modifications d’expression d’ARN ; et (iv) SILAC (Stable Isotope Labeling by Amino acids in Cell culture) afin de comparer le protéome des cellules ERCC1-déficientes et ERCC1-proficientes. Ces approches ont permis d’identifier une potentielle signature génomique, ainsi que de biomarqueurs d’activité – guanine deaminase (GDA) et nicotinamide phosphoribosyltransferase (NAMPT). De plus amples validations et investigations mécanistiques de ces observations préliminaires sont actuellement requises. / Excision Repair Cross-Complementation group 1 (ERCC1) is a DNA repair enzyme that is frequently deficient in non-small cell lung cancer (NSCLC). Although low ERCC1 expression correlates with platinum sensitivity, the clinical effectiveness of platinum therapy is limited - mainly by toxicities and occurrence of resistance - highlighting the need for alternative treatment strategies. In addition, the lack of a reliable assay evaluating ERCC1 functionality in the clinical setting currently precludes personalising therapy based on ERCC1 status. To discover new synthetic lethality-based therapeutic strategies for ERCC1-defective tumours, high-throughput drug and siRNA screens in an isogenic NSCLC model of ERCC1 deficiency were performed. This approach identified multiple clinical poly(ADP-ribose) polymerase 1 and 2 (PARP1/2) inhibitors such as olaparib (AZD-2281), niraparib (MK-4827) and BMN 673 as being selective for ERCC1 deficiency. The mechanism underlying ERCC1-selective effects was dissected by studying molecular biomarkers of tumour cell response, and revealed that: (i) ERCC1-deficient cells displayed a significant delay in double-strand break repair associated with a profound and prolonged G2/M arrest following PARP1/2 inhibitor treatment; (ii) ERCC1 isoform 202, which has recently been shown to mediate platinum sensitivity, also modulated PARP1/2 sensitivity; (iii) ERCC1-deficiency was epistatic with homologous recombination deficiency, although ERCC1-deficient cells did not display a defect in RAD51 foci formation. This suggests that ERCC1 might be required to process PARP1/2 inhibitor induced DNA lesions prior to DNA strand invasion; and (iv) PARP1 silencing restored PARP1/2 inhibitor resistance in ERCC1-deficient cells but had no effect in ERCC1-proficient cells, supporting the hypothesis that PARP1 might be required for the ERCC1 selectivity of PARP1/2 inhibitors. This study indicated that PARP1/2 inhibitors as a monotherapy could represent a novel therapeutic strategy for NSCLC patients with ERCC1-deficient tumours, and a clinical protocol is being written to evaluate this hypothesis.To investigate whether a surrogate biomarker of ERCC1 functionality could be developed, four parallel approaches were undertaken in the ERCC1-isogenic NSCLC model: (i) UV irradiation, to evaluate the Nucleotide Excision Repair (NER) pathway; (ii) whole exome sequencing, to look for an ERCC1-associated genomic scar at the DNA level; (iii) transcriptomic analysis, to investigate changes at the RNA expression level; and (iv) SILAC (Stable Isotope Labeling by Amino acids in Cell culture) analysis, to compare proteomic profiles between ERCC1-proficient and ERCC1-deficient cells. These approaches allowed the identification of putative genomic signature and potential metabolic surrogate biomarkers - guanine deaminase (GDA) and nicotinamide phosphoribosyltransferase (NAMPT). Further validation and mechanistic investigations of these latter preliminary observations are warranted.
|
19 |
Validation of synthetic lethal hits of microtubule targeting agentsDi Lalla, Matthew 05 1900 (has links)
Les microtubules, composants clés du cytosquelette des cellules eucaryotes, sont des polymères de tubuline très dynamiques et impliqués dans une grande variété de processus cellulaires. Leur rôle essentiel dans le cycle cellulaire a fait d’eux une cible validée en thérapie anticancéreuse. Malgré l’efficacité clinique des agents ciblant les microtubules (ACM), les effets secondaires compliquent l’utilisation. Nous avons cherché à identifier des vulnérabilités génétiques qui peuvent être exploitées pour diminuer la dose requise tout en maintenant l'efficacité, et donc réduire les effets secondaires. En collaboration avec le laboratoire Tyers à l’IRIC, nous avons réalisé un criblage génétique basé sur la létalité synthétique avec des agents antiprolifératifs, dont les ACMs. Nous avons sélectionné les gènes dont l’extinction sensibilisait les cellules aux ACMs. J’ai confirmé que l’invalidation de chacun des gènes GNA13, SEPHS1, DLGAP5 et des gènes QRICH1, DLGAP5 sensibilisaient les cellules NALM6 au docétaxel et la vincristine respectivement. En revanche, aucune invalidation de ces gènes n'a augmenté la sensibilité au docétaxel dans les cellules U2OS.
En plus de son effet avec le docétaxel, le gène GNA13 s’est distingué être une cible particulièrement intéressante. En effet, la perte complète de GNA13 augmente considérablement la fréquence et la gravité d’erreurs de ségrégation des chromosomes dans les cellules U2OS. Cette augmentation n’a pas été rectifiée à la suite d’un traitement avec la molécule UMK57, connue pour réduire le taux d’erreurs de ségrégation des chromosomes. De manière intéressante, la perte complète de GNA13 augmente également la fréquence des erreurs de ségrégation des chromosomes dans les cellules RPE1, cellules non-cancéreuses et stables au niveau chromosomique. Cela suggère que la perte complète de GNA13 ne nécessite pas de transformation ni d'instabilité chromosomique, comme conditions préalables pour exacerber l'instabilité chromosomique.
L’ensemble de ces résultats ouvre une nouvelle voie de stratégies thérapeutiques anticancéreuses, à savoir, le traitement des cancers présentant une mutation des gènes QRICH1, DLGAP5, GNA13, et SEPHS1 avec de faibles doses d’ACMs. En particulier, GNA13 est fréquemment muté dans certains lymphomes. De plus, les résultats obtenus démontrent que la perte complète de GNA13 aggrave l’instabilité chromosomique et par conséquent, pourrait être impliquée dans la cancérogenèse. / Microtubules, key components of the eukaryotic cytoskeleton, are highly dynamic polymers of tubulin implicated in a wide variety of cellular processes. Their essential roles in the cell cycle have made them a valid target in cancer therapy. Despite the clinical efficacy of microtubule targeting agents (MTA), their use is hampered by side effects. We sought to identify genetic vulnerabilities that can be exploited to decrease the required dose while maintaining efficacy, and therefore reduce side effects. In collaboration with the Tyers laboratory at IRIC, we carried out a genetic screen based on synthetic lethality with antiproliferative agents, including MTAs. We have selected genes whose knockout sensitized cells to MTAs. I have confirmed that the knockout of GNA13, SEPHS1, DLGAP5, and QRICH1, DLGAP5, sensitize NALM6 cells to docetaxel and vincristine respectively. However, no knockout of these genes increased the sensitivity to docetaxel in U2OS cells.
In addition to its effect with docetaxel, GNA13 stood out as being a particularly exciting target. GNA13 knockout increased the frequency and severity of chromosome segregation errors in U2OS cells. This increase was not corrected following treatment with UMK57, a molecule known to reduce the rate of chromosome segregation errors. Interestingly, the GNA13 knockout also increased the frequency of chromosome segregation errors in non-cancerous and chromosomally stable RPE1 cells. This suggests that GNA13 does not require transformation nor chromosomal instability as prerequisites for exacerbating chromosomal instability.
Overall, these results open up a new avenue of anticancer therapeutic strategies, namely, the treatment of cancers presenting mutations in QRICH1, DLGAP5, GNA13, and SEPHS1 with lower doses of MTAs. In particular, GNA13 is frequently mutated in certain lymphomas. In addition, the results obtained demonstrate that GNA13 knockout exacerbates chromosomal instability and, therefore, could be involved in carcinogenesis.
|
20 |
Identification de cibles thérapeutiques et caractérisation de nouvelles molécules ciblant des sous-types de leucémie myéloïde aiguë à mauvais pronostic cliniqueSakho, Fama 12 1900 (has links)
La leucémie myéloïde aiguë (LMA) est l’une des formes de cancer le plus génétiquement hétérogène avec un faible taux de survie globale sur 5 ans de 21 % 1. En effet, les traitements standards sont peu efficaces pour les patients plus âgés, ceux présentant des comorbidités, ceux en rechutes ou pour les cas résistants. Bien que notre compréhension génétique de la LMA ait progressé ces dernières années, les traitements ont peu évolué et le taux de survie reste toujours faible chez les patients.
À la suite d’un criblage de plus de 10 000 composés sur 56 échantillons primaires de LMA, nous avons regroupé des composés actifs contre la LMA à l’aide d’une nouvelle approche développée par notre groupe, nommée Compound Correlation Cluster (CCC) 2. L’hypothèse à l’origine de cette méthode de regroupement est que les composés d’un même CCC agissent sur les mêmes cibles moléculaires. Dans le présent mémoire, nous caractérisons une nouvelle petite molécule issue d’un de ces CCC, le BMS-249 du CCC88, un potentiel agent thérapeutique prometteur ciblant les sous-types de LMA à mauvais pronostic clinique. En effet, nous avons démontré que les spécimens de LMA TP53 mutés, à caryotype complexe, ou à risque défavorable, sont plus sensibles au BMS-249. Grâce à un criblage CRISPR/Cas9 sur l’ensemble du génome humain, nous avons déterminé que les gènes importants de la voie moléculaire du mévalonate et du cholestérol étaient impliqués dans son mécanisme d’action. Par des études de synergie et de quantification des lipides, nos résultats montrent que le BMS-249 impacte la voie métabolique du cholestérol dans des modèles de cellules leucémiques. De manière intéressante, des études récentes sur les statines ont montré que le métabolisme du cholestérol est une cible thérapeutique d’intérêt en LMA 3, et l’effet du BMS-249 sur cette voie démontre effectivement qu’elle est cruciale pour la survie des cellules cancéreuses. Dans l’avenir, de plus amples études sur la relation entre la structure et l’activité du BMS-249, à des fins d’optimisation et d’identification directe de la cible moléculaire, seront grandement pertinentes. Globalement, nos résultats ont démontré que l’approche par CCC permet de rapidement trouver des voies moléculaires importantes pouvant être ciblées pour le développement de nouveaux agents thérapeutiques contre la LMA. / Acute myeloid leukemia (AML) is one of the most genetically heterogeneous forms of cancer with a low 5-year overall survival rate of 21% (1). Indeed, standard treatments are not very effective for older patients, those with comorbidities, those in relapse or for drug resistant cases. Although our genetic understanding of AML has progressed in recent years, treatments have slowly evolved, and the survival rate remains low among patients. Following a screening of more than 10,000 compounds on 56 primary AML samples, we clustered compounds active against AML using a novel approach developed by our group, named Compound Correlation Cluster (CCC) (2). The assumption behind this clustering method is that compounds of the same CCC act on the same molecular targets. In this thesis, we characterize a new small molecule derived from one of these CCCs, the BMS-249 of CCC88, a potential promising therapeutic agent targeting AML subtypes with poor clinical outcomes. Indeed, we demonstrated that specimens of AML TP53 mutated, with a complex karyotype, or at unfavorable risk are more sensitive to BMS-249. Through a human genome-wide CRISPR/Cas9 screen, we determined that important genes of the mevalonate and cholesterol molecular pathway are involved in its mechanism of action. Through synergy and lipid quantification studies, our results show that BMS-249 impacts the cholesterol metabolic pathway in leukemic cell models. Interestingly, recent studies on statins have shown that cholesterol metabolism is a therapeutic target of interest in AML (3), and the effect of BMS- 249 on this pathway effectively demonstrates that it is crucial for cancer cell survival. In the future, further studies on the relationship between the structure and activity of BMS-249, for the purpose of optimization and direct identification of the molecular target, will be highly relevant. Overall, our results demonstrated that the CCC approach allows to quickly find molecular pathways that can be targeted for new therapeutic agents against AML.
|
Page generated in 0.0876 seconds