111 |
Synthèse et caractérisation de matériaux à base de SnTe pour la conversion d’énergie par effets thermoélectriques / Synthesis and characterization of SnTe-based materials for energy conversion by thermoelectric effectsIbrahim, Dorra 27 September 2018 (has links)
Les alliages de tellurure de plomb (PbTe) sont reconnus depuis longtemps comme d’excellents matériaux thermoélectriques avec un ZT de l’ordre de 1,0 pour des applications en génération d’électricité à hautes températures où le tellurure de bismuth (Bi2Te3) ne peut plus être utilisé. Cependant, la présence de plomb rend problématique une commercialisation à grande échelle de dispositifs thermoélectriques contenant ce composé. Le tellurure d’étain (SnTe), étudié il y a plus de 40 ans comme un analogue à PbTe, présente des performances thermoélectriques médiocres du fait de la présence d’une concentration élevée en lacunes de Sn. Toutefois, la dernière décennie a vu une recrudescence importante des recherches sur ce composé visant à améliorer ses performances thermoélectriques à hautes températures. Le composé SnTe présente des déviations par rapport à la stœchiométrie idéale (lacunes d’étain) quelles que soient la méthode de synthèse utilisée. Dans ce travail, nous dévoilons l’influence de la déviation par rapport à la stœchiométrie idéale (composition chimique) et des conditions de synthèse (avec trempe, sans trempe, recuit de saturation et melt-spinning) sur les propriétés de transport électrique et thermique de ces matériaux. Pour ce faire, des techniques de synthèse par métallurgie de poudres ont été mises en œuvre. Les matériaux résultants ont été ensuite caractérisés finement aussi bien d’un point de vue structural que physico-chimique. Ainsi, une étude détaillée de leur structure cristalline a été menée en combinant des mesures de diffraction des rayons X sur poudre et des analyses de microscopie électronique à balayage et à transmission à haute résolution. Des mesures de propriétés électriques et thermiques ont été menés à basses températures (5 – 300 K) pour identifier les mécanismes microscopiques qui gouvernent le transport et à hautes températures (300 – 800 K) afin de déterminer le domaine d’application optimal. Ces mesures ont confirmé le potentiel de ces composés pour des applications en génération d’électricité à températures moyennes. De nombreuses possibilités de substitutions sur le site de l’étain ou/et du tellure ont été entreprises afin de tenter d’optimiser davantage les performances thermoélectriques de ces composés. Des éléments en substitution ont été choisi pour augmenter le pouvoir thermoélectrique à travers la diminution de la concentration en trous ou par ingénierie de la structure de bande et/ou diminuer la conductivité thermique de réseau via la formation de solutions solides ou de précipités dans la matrice. Le choix de ces éléments a notamment été guidé par des calculs de structure de bande électronique. Les résultats expérimentaux ont été modélisé par un modèle à deux bandes non dégénérées afin de dévoiler les principaux facteurs qui gouvernent le transport. La conductivité thermique de réseau a été analysée en utilisant le modèle de Callaway afin d’étudier les mécanismes de diffusion des phonons à basses températures et de mieux appréhender l’influence des lacunes sur le transport thermique / Lead telluride (PbTe) alloys are among the most efficient thermoelectric materials with a ZT of 1.0 for electricity generation applications in the mid to high temperature region where bismuth telluride (Bi2Te3) can no longer be used. Despite their excellent environmental stability, the perceived toxicity of lead chalcogenides can frustrate its development and large-scale application. Tin telluride (SnTe), studied more than 40 years ago as a analogue of PbTe shows poor thermoelectric performances because of its lower Seebeck coefficient. The latter is due to heavy intrinsic doping arising from spontaneous Sn vacancies. However, recent studies unambiguously show that SnTe has a strong potential of being a promising thermoelectric at high temperatures. In fact, regardless of the synthesis method used, SnTe compound is in deviation from the ideal stoichiometry (Sn vacancies). In this work, we unveil the influence of this deviation (chemical composition) and of the synthesis conditions (with quenching, without quenching, annealing and melt-spinning) on the electrical and thermal transport properties of these materials. Hence, for the synthesis of these materials different powder metallurgy techniques were implemented. The resulting materials were then finely characterized by structural and physico-chemical point of view. Thus, a detailed study of their crystalline structure was carried on by combining X-ray powder diffraction, scanning and transmission electron microscopy analyzes. The electrical and thermal properties measurements were effectuated at low temperatures (5 - 300 K) to identify the microscopic mechanisms that govern transport and at high temperatures (300 - 800 K) to determine the optimal domain of application. These measurements have confirmed the strong potential of these compounds for electricity generation applications at high temperatures. Numerous substitution possibilities at the tin and / or tellurium site have been undertaken in an attempt to further optimize the thermoelectric performance of these compounds. Substitute elements were chosen to increase the thermoelectric power through the decrease in the hole concentration or by engineering the band structure and / or decrease the lattice thermal conductivity via the formation of solid solutions or precipitates in the matrix. The choice of these elements was guided by electronic band structure calculations (DOS). The experimental results were modeled by a non-degenerate two-band model to reveal the main factors that govern the electronic transport. The lattice thermal conductivity was analyzed using the Callaway model to study the phonon scattering mechanisms at low temperatures and to better understand the influence of Sn vacancies on the thermal transport
|
112 |
Élaboration et étude des propriétés thermoélectriques du disiliciure de chrome sous forme de monocristal, de couche mince et de nanofil / Development and study of the thermoelectric properties of chromium disilicide single crystal, thin film and nanowireMoll, Adrien 15 November 2018 (has links)
La thermoélectricité est un phénomène physique permettant la conversion directe de l’énergie thermique en énergie électrique, ou inversement. Cependant l’augmentation du rendement des modules thermoélectriques passe par un défi de taille : optimiser les propriétés électroniques du matériau pour obtenir un coefficient Seebeck élevé et une résistivité électrique faible, tout en minimisant la conductivité thermique. Une des voies d'optimisation consiste à réduire la dimensionnalité des matériaux afin de diminuer la contribution des phonons dans le transport thermique. Les matériaux siliciures sont prometteurs en raison de leur faible toxicité et coût. Parmi eux, le disiliciure de chrome, CrSi2, possède des propriétés de transport électronique intéressantes, mais ses performances sont limitées par une conductivité thermique trop élevée. L’objectif de cette thèse est d’étudier les propriétés thermoélectriques de ce composé sous différentes formes, monocristal, couche mince et nanofil. Dans ce but, le disiliciure de chrome a été élaboré sous formes de monocristal par la méthode Bridgman, de couche mince par pulvérisation cathodique, et de nanofil par dépôt chimique en phase vapeur. Ces différentes techniques d'élaboration ont été associées à des techniques de caractérisation spécifiques à chacune de ces formes afin d'étudier la relation entre les propriétés physiques et la microstructure du matériau. En couplant des modèles théoriques aux mesures thermoélectriques, les mécanismes de transport électronique et thermique ont été mis en évidence. L’étude de dynamique du réseau a été complétée par la première mesure de diffusion inélastique des neutrons sur monocristal et sur poudre nanométrique de CrSi2. Dans le cas des couches minces, l'effet de l'état de cristallinité et de l'épaisseur a été étudié. Enfin, dans le cas des nanofils, un microdispositif de mesure des propriétés thermoélectriques sur nanofil isolé a été conçu. L’ensemble des résultats présentés ouvre des perspectives intéressantes pour aborder l’amélioration des propriétés thermoélectriques de CrSi2. / Thermoelectricity is a physical effect related to the direct conversion between thermal and electrical energy. To improve the thermoelectric efficiency, the electronic properties of the materials must be optimized to get a large Seebeck coefficient and a low electrical resistivity while lowering the thermal conductivity. One of the optimization ways is to reduce the dimensionality of the materials to decrease the phonon contribution to the thermal conductivity. Silicides are promising materials because of their low toxicity and cost. Among them, chromium disilicide, CrSi2, shows interesting electronic transport properties, but a too high thermal conductivity, limiting its performance. The objective of this thesis is to study the thermoelectric properties of this compound with various forms, single crystal, thin film and nanowire.For this purpose, the chromium disilicide was elaborated in the forms of single crystal by the Bridgman method, thin film by sputtering, and nanowires by chemical vapor deposition. These elaboration routes have been associated with characterization techniques specific to each form in order to study the relationship between the physical properties and the microstructure of the material. By coupling theoretical models with thermoelectric measurements, the mechanisms of electronic and thermal transports have been determined. The vibrational study was completed by the first inelastic neutron scattering measurement on CrSi2 single crystal and nano-powder. In the case of thin films, the effect of the crystallinity state and the thickness has been studied. Finally, in the case of nanowires, a micro-device has been designed to measure the properties of a single nanowire. The presented results open interesting perspectives to improve the thermoelectric properties of CrSi2.
|
113 |
Instabilités de surface de Fermi avec et sans transitions magnétiques : étude de URhGe, UPd2AI3, UCoGe et CeIrIn5 / Fermi surface instabilities with and without magnetic transitionsGourgout, Adrien 06 January 2017 (has links)
Dans cette thèse, j'ai étudié l'évolution de la surface de Fermi sous l'influence d'un champ magnétique dans des systèmes massifs facilement polarisables à basse température. La première partie est dévouée aux cas du supraconducteur ferromagnétique UCoGe et du supraconducteur paramagnétique CeIrIn5, où la surface de Fermi peut être modifiée sans transition magnétique. Dans UCoGe, plusieurs anomalies successives ont été détectées dans l'effet Seebeck, la résistivité et l'effet Hall, sans transition nette dans l'aimantation. L'observation d'oscillations quantiques montre que ces anomalies sont reliées à des changements de topologie de la surface de Fermi, aussi appelés transitions de Lifshitz. Dans CeIrIn5, une anomalie est détectée dans l'effet Seebeck à HM = 28 T et les oscillations quantiques observées en magnétométrie torque montrent qu'une transition de Lifshitz à lieu à ce champ.Dans la deuxième partie, j'ai étudié comment varie la surface de Fermi à travers une transition magnétique du premier ordre induite par le champ magnétique dans le supraconducteur ferromagnétique URhGe avec le champ selon l'axe de difficile aimantation b et le supraconducteur antiferromagnétique UPd2Al3 avec le champ dans le plan basal. Dans URhGe, l'effet Seebeck permet d'observer un changement de la surface de Fermi à la transition de réorientation des spins à HR = 11.75 T et avec la résistivité confirme le caractère premier ordre de la transition en plus de fournir la localisation dans le diagramme de phase du point tricritique. Dans UPd2Al3, une nouvelle branche de la surface de Fermi est observée dans les oscillations quantiques de de Haas-van Alphen dans l'état antiferromagnétique et l'effet Seebeck montre que la surface de Fermi change à la transition métamagnétique à HM = 18 T. En outre, quatre nouvelles branches sont observées dans la phase polarisée au delà de HM et qui ne peuvent être associées à celles calculées dans les états paramagnétique et antiferromagnétique. / In this thesis, we have studied the evolution of the Fermi surface under the influence of a magnetic field in bulk materials that can be easily polarized at low temperature. The first part was devoted to the cases of the ferromagnetic superconductor UCoGe with a magnetic field applied along the easy magnetization c-axis and the paramagnetic superconductor CeIrIn5 with the field along the c-axis. In UCoGe, several successive anomalies were detected in resistivity, Hall effect and thermoelectric power, without any thermodynamic transition being detected in magnetization. The direct observation of quantum oscillations showed that these anomalies are related to topological changes of the Fermi surface, also known as Lifshitz transitions. In CeIrIn5, the thermoelectric power detected an anomaly at HM = 28 T and the quantum oscillations observed in torque magnetometry showed that a Lifshitz transition occurs at this field.In the second part of this thesis, we studied the evolution of the Fermi surface through first order magnetic transitions induced by magnetic field. In the ferromagnetic superconductor URhGe with the field applied along the hard magnetization b-axis and the antiferromagnetic superconductor UPd2Al3 with the field in the basal plane. In URhGe, the thermoelectric power allowed to observe a change in the Fermi surface at the spin reorientation transition at HR = 11.75 T defining the ferromagnetic state and along with resistivity confirmed the first order character of the transition as well as give a location of the tricritical point. In UPd2Al3, a new branch was observed in de Haas-van Alphen experiment in the antiferromagnetic phase and the thermoelectric power showed that the Fermi surface is reconstructed at the metamagnetic transition at HM = 18 T where the antiferromagnetic state is suppressed and could suggest that the Fermi surface changes before this transition. Additionally, four new branches were observed in the polarized paramagnetic phase, above HM, that cannot be associated with calculated branches in the paramagnetic of antiferromagnetic states.
|
114 |
Design of new Heusler-type thermoelectric materials : application to Fe₂VAl / Développement de nouveaux matériaux thermoélectriques de type Heusler : application à Fe₂VAlBandaru, Subrahmanyam 24 November 2017 (has links)
La demande d'une énergie durable et verte est très importante pour les gouvernements et les populations. De par l'augmentation rapide de la population humaine et l'industrialisation à l'échelle mondiale, c’est devenu un enjeu majeur. Une alternative à l’utilisation des combustibles fossiles qui peut être envisagée est l’utilisation, lorsque c’est possible, de dispositifs thermoélectriques. Ces derniers peuvent convertir la chaleur perdue, provenant de diverses sources, en énergie électrique. Cependant, les dispositifs thermoélectriques actuels sont limités en raison de leur faible efficacité, de la nature toxique des matériaux utilisés et de leurs coûts élevés. Le défi actuel dans ce domaine de recherche est de concevoir des matériaux hautement efficaces, respectueux de l'environnement et disponibles à des prix moins élevés. Parmi les matériaux thermoélectriques prometteurs pour la génération d'énergie, le composé Fe2VAl (matériau de la famille des composés Heusler), semble prometteur car il se comporte comme un semi-conducteur sur une large gamme de température et ce jusqu'à 1173 K. Néanmoins, la capacité thermoélectrique de ce composé est compromise par sa conductivité thermique élevée. L'objectif de cette thèse était de trouver de nouvelles stratégies afin d’améliorer l'efficacité thermoélectrique de Fe2VAll'aide de calculs ab initio et d'études expérimentales. Les calculs basés sur les premiers principes ont été effectués en utilisant le code informatique VASP (Vienna Ab-initio Simulation Package) basé sur la théorie de la fonctionnelle densité (DFT) avec comme but d’étudier la structure électronique du composé Fe2VAl. L'énergie de formation des défauts intrinsèques tels que les lacunes, les anti-sites et les défauts interstitiels, a été déterminée. Nous avons montré que la formation des défauts de type anti-sites est la plus probable. À l'aide du code BoltzTraP, basé sur la théorie du transport de Boltzmann dans l’approximation du temps de relaxation constant, les propriétés de transport électronique de Fe2VAl pur et contenant les défauts les plus favorables ont été calculées. La présence des différents défauts au sein du réseau n’entraine pas d'amélioration notable du coefficient de Seebeck. La conductivité thermique de réseau de Fe2VAl, à la fois sous forme pure et en présence des défauts d’anti-site les plus stables (AlV) a été analysée en utilisant les codes ShengBTE et almaBTE récemment développés. Uneamélioration significative du facteur de mérite (appelé ZT) est alors trouvée en présence de défauts de type anti-sites. Des composés Fe2VAl nanostructurés ont été synthétisés en parallèle par mécanosynthèse, autrement appelé broyage hauteénergie. Les éléments constitutifs sont broyés en ajoutant différentes proportions de chlorure de sodium afin d'obtenir des échantillons poreux, NaCl servant d’agent structurant. Les poudres sont ensuite lavées soigneusement pour éliminer les traces de NaCl et consolidées à l'aide de la technique de frittage flash SPS. L’utilisation de cette nouvelle voie pour structurer et introduire de la porosité dans les échantillons afin de diminuer la conductivité thermique est assez concluante. Nous obtenons une porosité d'environ 15 à 20% en présence de NaCl (contre environ 5% sans sel). L'efficacité thermoélectrique estremarquablement augmentée pour ces échantillons poreux. Néanmoins, les échantillons broyés contenant 15% de porosité présentent des valeurs de ZT plus élevées que les échantillons à plus forte porosité. Ainsi, il est crucial de contrôler et d’optimiser la porosité pour obtenir une plus grande efficacité thermoélectrique. Notre étude montre ainsi clairement que la performance thermoélectrique peut être améliorée en modifiant la stœchiométrie et la morphologie des échantillons.Mots clés : Fe2VAl, matériaux, composés Heusler, thermoélectricité, calculs ab initio, enthalpie de formation, défauts, mécanosynthèse, porosité. / The requirement of a sustainable and green energy is increasing with the rapid rise in human population and industrialization. The traditional way of utilizing fossil fuels can be replaced by thermoelectric devices which can convert thewasted heat from various sources into electrical energy. However, the present day thermoelectric devices are limited due to their low efficiency, toxic nature and high costs. The current challenge in this field is to design highly efficient thermoelectric materials which are environment friendly and available at a reasonable price. Among promising thermoelectric materials forpower generation, the Heusler-type Fe2VAl attained a great attention due to its semiconducting nature over a wide temperature range up to 1173 K. Nonetheless, the thermoelectric use of this compound is jeopardized by its high thermalconductivity. The aim of this thesis was to find new strategies in enhancing the thermoelectric efficiency of Fe2VAl with the aid of ab initio calculations and experimental studies. First principles calculations have been performed using the computer code VASP (Vienna ab-initio Simulation Package) based on the Density Functional Theory (DFT) to study the electronic structure of the full Heusler compound Fe2VAl. The formation energy of the intrinsic point defects such as vacancies, antisites and interstitials is analyzed and antisite defects are found to be the most probable defects. With the aid of the BoltzTraP code based on the Boltzmann transport theory within the constant relaxation time approach, the electronic transport properties of Fe2VAl taking into account the effect of the most favorable defects have been calculated. The presenceof defects does not lead to a significant improvement of the Seebeck coefficient. The lattice thermal conductivities of Fe2VAl, both in pristine form and in presence of its most stable antisite defect (Al V) have been analyzed by ShengBTE and the recently developed code almaBTE. A significant enhancement of the figure of merit (also known as ZT) is found with the presence of antisite defects. Nanostructured Fe2VAl compounds have been synthesized in parallel by the ball milling technique. The constituent elements have been milled together with different contents of NaCl in order to obtain porous samples. The powders have been later washed thoroughly to remove the traces of NaCl. All the powders have been consolidated using Spark Plasma Sintering (SPS). This novel idea is quite successful in achieving a porosity of around 15–20% with NaCl whereas a porosity of ~5 % is found in the case of the samples without NaCl. The thermoelectric efficiency is enhanced remarkably in the porous samples. Nevertheless, the samples milled with 15 % porosity exhibit higher ZT valuesthan the samples with 20 % porosity. Thus, it is crucial to confine and control the porosity to obtain high thermoelectric efficiencies. Our study thus clearly shows that the thermoelectric performance can be enhanced by off-stoichiometry and the modification of the morphology of the samples.Key words: Fe2VAl, materials, Heusler compounds, thermoelectricity, ab initio calculations, formation enthalpy, defects, ball milling,porosity.
|
115 |
Flexible Thermoelectric Generators and 2-D Graphene pH Sensors for Wireless Sensing in Hot Spring EcosystemJanuary 2018 (has links)
abstract: Energy harvesting from ambient is important to configuring Wireless Sensor Networks (WSN) for environmental data collecting. In this work, highly flexible thermoelectric generators (TEGs) have been studied and fabricated to supply power to the wireless sensor notes used for data collecting in hot spring environment. The fabricated flexible TEGs can be easily deployed on the uneven surface of heated rocks at the rim of hot springs. By employing the temperature gradient between the hot rock surface and the air, these TEGs can generate power to extend the battery lifetime of the sensor notes and therefore reduce multiple batteries changes where the environment is usually harsh in hot springs. Also, they show great promise for self-powered wireless sensor notes. Traditional thermoelectric material bismuth telluride (Bi2Te3) and advanced MEMS (Microelectromechanical systems) thin film techniques were used for the fabrication. Test results show that when a flexible TEG array with an area of 3.4cm2 was placed on the hot plate surface of 80°C in the air under room temperature, it had an open circuit voltage output of 17.6mV and a short circuit current output of 0.53mA. The generated power was approximately 7mW/m2.
On the other hand, high pressure, temperatures that can reach boiling, and the pH of different hot springs ranging from <2 to >9 make hot spring ecosystem a unique environment that is difficult to study. WSN allows many scientific studies in harsh environments that are not feasible with traditional instrumentation. However, wireless pH sensing for long time in situ data collection is still challenging for two reasons. First, the existing commercial-off-the-shelf pH meters are frequent calibration dependent; second, biofouling causes significant measurement error and drift. In this work, 2-dimentional graphene pH sensors were studied and calibration free graphene pH sensor prototypes were fabricated. Test result shows the resistance of the fabricated device changes linearly with the pH values (in the range of 3-11) in the surrounding liquid environment. Field tests show graphene layer greatly prevented the microbial fouling. Therefore, graphene pH sensors are promising candidates that can be effectively used for wireless pH sensing in exploration of hot spring ecosystems. / Dissertation/Thesis / Doctoral Dissertation Exploration Systems Design 2018
|
116 |
Estudo das propriedades estruturais, eletrônicas e termoelétricas de nanofios de PbSe E PbTe / Study of the structural, electronic and Thermoelectric properties of PbSe And PbTe NanowiresWrasse, Ernesto Osvaldo 29 April 2013 (has links)
Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / In this work we study simultaneously the structural, electronic and thermoelectric
properties of PbSe and PbTe nanowires, analyzing the quantum confinement effects, the
dependence with the planar stoichiometry and the spin-orbit interactions. We also study
these nanowires in the presence of intrinsic defects (vacancies and antisites) and doped
with group III (Al, Ga, In, and Tl) impurity. We use first principles calculations within
the formalism of the density functional theory (DFT). We observed that the nanowires are
more stable in the rock salt structure and aligned along the (001) direction. The electronic
properties of nanowires are in
uenced by three effects: the quantum confinement, spinorbit
interactions and the planar stoichiometry. The quantum confinement increases the
thermoelectric efficiency of the PbSe and PbTe nanowires when compared to the system in
the bulk phase, reaching an increase up to two orders in the magnitude, leading the PbSe
and PbTe nanowires with great potential to be used in thermoelectric devices. We studied
the in
uence of intrinsic defects and group III impurity doping in the main properties of
PbSe and PbTe, we show that these defects give rise to different electronic properties in the
nanowires as compared to the bulk one. Intrinsic defects and group III impurities, which
modify the electronic density of states (DOS) near to the top of the valence band or near to
the bottom of the conduction band increase the thermoelectric efficiency of the PbSe and PbTe nanowires. However, defects that introduce electronic levels in energy band gap are
shown to cause and degradation in the thermoelectric efficiency. The increase (decrease)
in thermoelectric efficiency is associated with a lower (higher) value of electronic part of
the thermal conductivity. In summary, we show that PbSe and PbTe nanowires are very
promising materials to be used in thermoelectric, electronic and optical devices. / Neste trabalho estudamos simultaneamente as propriedades estruturais, eletrônicas e termoelétricas de nanofios de PbSe e PbTe, analisando os efeitos do confinamento quântico,
a dependência com a estequiometria planar e a interação spin-órbita. Estudamos também estes nanofios na presença de defeitos intrínsecos (vacâncias e antissítios) e impurezas do
grupo III (Al, Ga, In e Tl). Utilizamos cálculos de primeiros pincípios dentro do formalismo da teoria do funcional da densidade (DFT). Observamos que os nanofios são mais estáveis na estrutura rock salt, e alinhados ao longo da direção (001). As propriedades eletrônicas desse nanofios são influenciadas por
três efeitos: o confinamento quântico, a interação spin-órbita, e a estequiometria planar. O confinamento quântico aumenta a eficiência termoelétrica do PbSe e PbTe em comparação ao observado para o bulk, chegando a um aumento de até duas ordens de grandeza, fazendo com que os nanofios de PbSe e PbTe tenham um grande potencial para serem utilizados em dispositivos termoelétricos. Estudamos a influência de defeitos intrínsecos e da dopagem de impurezas do grupo III nas principais propriedades do PbSe e PbTe, onde mostramos que essa influência é diferente no bulk e no nanofio. Defeitos intrínsecos e impurezas do grupo III que alteram a densidade de estados eletrônicos (DOS) nas proximidades do topo da banda de valência ou do fundo da banda de condução, observamos um aumento da ficiência termoelétrica dos nanofios de PbSe e PbTe. Porém aqueles que introduzem níveis no gap de energia fazem com que a eficiencia termoelétrica diminua. O aumento (diminuição) da eficiência termoelétrica está associado(a) ao menor (maior) valor da comdutividade térmica eletrônica. De maneira geral, mostramos que nanofios de PbSe e PbTe são materiais muito promissores para a aplicação em dispositivos termoelétricos, eletrônicos, óticos, etc.
|
117 |
Caracterização de célula termoelétrica para geração de energia elétrica / Characterization of a thermoelectrical cell to electrical power generationAlmeida, Carlos Henrique Alencar 24 July 2015 (has links)
Submitted by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-11-05T15:02:58Z
No. of bitstreams: 1
arquivototal.pdf: 2263650 bytes, checksum: 4d60464c07f78fb9c03a13252617e730 (MD5) / Made available in DSpace on 2015-11-05T15:02:58Z (GMT). No. of bitstreams: 1
arquivototal.pdf: 2263650 bytes, checksum: 4d60464c07f78fb9c03a13252617e730 (MD5)
Previous issue date: 2015-07-24 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / This work to characterize a thermoelectric device as a electrical power generator. For this propose, a thermoelectric cell was submit to different temperature profiles on his faces. The application of heat on the device was made through a feeded back controled structure with cascade Peltier cells, temperature sensors and current circuit drivers. The execution and the monitoring of this was made by an interface of acquisition and data control connected to the computer and managed by a software dedicated to this application. With this experiments was observed the electrical voltage response from the thermoelectric device in relation to temperatures applied to his faces. Also was inserted a resistive charge for behavior analysis of the electrical power provided by the device. Among the obtained results, stand out the variation of the Seebeck coefficient when the average of work’s temperature changes. The power provided by the thermoelectric device setted as generator comes to 95 mW when submitted to a temperature difference ((ΔT) in 40 ºC. The power and current curves are showed in relation to the voltage generated by the device. / Este trabalho caracteriza um dispositivo termoelétrico como gerador de energia elétrica. Para tal propósito, uma célula termoelétrica foi submetida a diferentes perfis de temperatura em suas faces.A aplicação de calor no dispositivo foi feita através de uma estrutura de controle retroalimentada composta por células de Peltier em cascata,sensores de temperatura e circuitos condicionadores de corrente. A execução e o monitoramento do sistema foram feitos através de uma interface de aquisição e controle de dados, conectada a um computador e gerenciada por um software dedicado a aplicação. Com estes experimentos foi observada a resposta da tensão elétrica do dispositivo termoelétrico em relação às temperaturas aplicadas em suas faces. Também foi inserida uma carga resistiva para analise do comportamento da potência elétrica fornecida pelo dispositivo. Dentre os resultados obtidos, destaca-se a variação do coeficiente de Seebeck quando é variada a temperatura média de trabalho. A potência fornecida pelo dispositivo termoelétrico configurado como gerador chega a 95 mW quando submetido a uma diferença de temperatura (ΔT) de 40 ºC.A curva de potência e corrente elétrica são apresentadas em relação à tensão gerada pelo dispositivo.
|
118 |
Despacho integrado da geração termeletrica e da produção e transporte de gas natural com metodo de Newton / Integrated dispatch of thermoelectric generation and production and transport of natural gas with Newton's methodSantos, Elma Pereira, 1982- 13 August 2018 (has links)
Orientador: Takaaki Ohishi / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia Eletrica e de Computação / Made available in DSpace on 2018-08-13T16:15:59Z (GMT). No. of bitstreams: 1
Santos_ElmaPereira_M.pdf: 11960161 bytes, checksum: 3f762b2c22ed74c7ea44114aeba37c71 (MD5)
Previous issue date: 2009 / Resumo: O gás natural é um combustível fóssil que pode ser utilizado tanto na indústria como no comércio, residências e veículos. Uma aplicação importante do gás natural é como fonte primária para geração de energia elétrica em usinas termelétricas. Seu uso possibilita uma maior estabilidade ao Sistema Elétrico Brasileiro, pelo fato de depender menos do nível de água nos reservatórios para atendimento da demanda de energia elétrica. Como o gás natural possui uma estocagem complexa e onerosa, a quantidade de demanda de gás afeta diretamente as suas etapas de produção e transporte, já que toda a quantidade produzida e transportada deverá ser consumida. Desse modo, a operação do sistema de suprimento de gás natural é fortemente dependente das decisões de seus consumidores. As usinas termelétricas estão entre os maiores consumidores de gás, de forma que o despacho das usinas termelétricas afeta fortemente a operação do sistema de gás. Por outro lado, restrições no sistema de suprimento de gás também podem afetar a operação das usinas termelétricas. Esta forte dependência operativa entre estes dois sistemas requer uma operação coordenada para se obter uma operação mais eficiente e segura. Esta tese apresenta um modelo de despacho econômico aplicado a usinas termelétricas que usam gás natural como fonte primária, considerando os custos de produção, transporte de gás natural e de geração de energia elétrica. A modelagem matemática resulta em um problema misto não linear. Para resolução foi utilizada uma abordagem híbrida, que combina um modelo baseado em Programação Linear e um modelo não linear. O problema não linear é resolvido através do método de Newton. / Abstract: Natural gas is a fossil fuel that can be used in industry, trade, residence and vehicles, among others. An important application of natural gas is as a primary source for electricity generation in thermoelectric power plants. In the Brazilian Electric System this source increase the system stability, once it is less dependent of the water level in tanks to serve the demand for power. As natural gas storage it is more complex and expensive, the amount of gas directly affects the production and transportation stages, once the entire amount that is produced and transported must be consumed. Thus, the operation of the supply system of natural gas is strongly dependent on decisions of their consumers. The thermoelectric power plants are among the largest gas consumers, so the dispatch of thermoelectric plants affects strongly the gas system operation. On the other hand, restrictions in the gas supply system may also affect the operation of thermoelectric plants. This strong operative dependence between these two kinds of systems, requires a coordinated operation with the aim of obtaining a more efficient and safer operation. This thesis presents a model of economic dispatch applied to thermoelectric power plants that use natural gas as a primary energy source, considering the costs of production, transportation of the natural gas and electricity generation. The mathematical modeling results in a nonlinear mixed problem. For resolution was used a hybrid approach that combines a model based on Linear Programming and a nonlinear. The nonlinear problem is solved by the Newton's method. / Mestrado / Engenharia de Computação / Mestre em Engenharia Elétrica
|
119 |
Thermoelectric conversion in disordered nanowires / Conversion thermoélectrique dans les nanofils désordonnésBosisio, Riccardo 23 September 2014 (has links)
Cette thèse porte sur la conversion thermoélectrique de nanofils semi-conducteurs désordonnés en configuration de transistor à effet de champ.On considère d’abord le régime de transport élastique à basse température. En utilisant un modèle d'Anderson 1D, on dérive des expressions analytiques pour le coefficient Seebeck typique d’un nanofil en fonction de la tension de grille, et on montre que celui-ci augmente fortement en bord de bande. Ces résultats sont confirmés par un calcul numérique du Seebeck, basé sur un algorithme de fonctions de Green récursif.On considère ensuite le régime inélastique où les électrons, assistés par les phonons, sautent entre états localisés. En résolvant numériquement le réseau de résistances aléatoires de Miller-Abrahams, on montre que le coefficient Seebeck peut atteindre des valeurs très élevées au voisinage des bords de bande du nanofil. La théorie de percolation de Zvyagin étendue au cas unidimensionnel nous permet de décrire qualitativement nos résultats. Par ailleurs, les échanges de chaleur entre électrons et phonons en bord de bande entraînent la formation de points chauds et froids à la surface du substrat, qui pourraient être utilisés pour le refroidissement de circuits électroniques. Cet effet est étudié pour un ensemble de fils en parallèle. Le facteur de puissance et la figure de mérite de ces systèmes sont aussi estimés.Enfin, on étudie un système général à trois terminaux en réponse linéaire. On calcule les coefficients de transport locaux et non-locaux, et les figures de mérite généralisées, puis l'on discute à l'aide de deux exemples la possibilité d’améliorer la performance d’une machine thermique quantique générique. / This thesis is focused on thermoelectric conversion in disordered semiconductor nanowires in the field effect transistor configuration. We first consider a low temperature regime, when electronic transport is elastic. For a 1D Anderson model, we derive analytical expressions describing the typical thermopower of a single nanowire as a function of the applied gate voltage, and we show that it is largely enhanced at the nanowire band edges. Our results are confirmed by numerical simulations based on a Recursive Green Function calculation of the thermopower. We then consider the case of inelastic transport, achieved by phonon-assisted hopping among localized states (Variable Range Hopping). By solving numerically the Miller Abrahams random resistor network, we show that the thermopower can attain huge values when the nanowire band edges are probed. A percolation theory by Zvyagin extended to nanowires allows to qualitatively describe our results. Also, the mechanism of heat exchange between electrons and phonons at the band edges lead to the generation of hot and cold spots near the boundaries of a substrate. This effect, of interest for cooling issues in microelectronics, is showed for a set of parallel nanowires, a scalable and hence promising system for practical applications. The power factor and figure of merit of the device are also estimated.Finally, we characterize a general three-terminal system within the linear response (Onsager) formalism: we derive local and non-local transport coefficients, as well as generalized figures of merit. The possibility of improving the performance of a generic quantum machine is discussed with the help of two simple examples.
|
120 |
Contribution à la modélisation et à la caractérisation de générateurs thermoélectriques / Contribution to the modeling and characterization of thermoelectric generatorsEl Oualid, Soufiane 03 October 2019 (has links)
L'internet des objets (Internet of Thing, IoT) suscite de plus en plus d'attention dans l'industrie électronique. L'IoT est un concept selon lequel les objets de tous les jours pourront communiquer ensemble via Internet. La plupart des objets connectés utilisent des batteries qu’il faut changer régulièrement ou recharger. Face à la forte croissance annoncée, la recherche de sources d’alimentation autonomes et alternatives s’appuyant sur des systèmes qui capturent l’énergie ambiante et la convertissent en électricité devient primordiale. Parmi les technologies de récupération d’énergie, la thermoélectricité présente des avantages certains liés à sa simplicité, sa fiabilité et son absence de pièces mobiles et de pollution par émission de gaz à effet de serre. L’ensemble de ces caractéristiques favorables place les convertisseurs thermoélectriques comme des candidats possibles pour fournir aux objets connectés de demain les faibles quantités d’énergie nécessaire à leur fonctionnement ou pour recharger les batteries. Mes travaux de thèse s’inscrivent dans ce contexte et se sont déroulés en partie dans le cadre du projet Européen EnSO (Energy for Smart Objects). Des études numériques menées avec le logiciel commercial Comsol Multiphysics ont été réalisées sur des micro-générateurs planaires innovants développés par la société Mahle, partenaire du projet. L’objectif de ces travaux était de comprendre l’influence de nombreux paramètres (géométrie, conditions aux limites en terme de température ou de flux, propriétés électrique et thermique des matériaux actifs) sur leurs performances thermoélectriques (puissance électrique et rendement). Nous avons montré, en particulier, le rôle critique des résistances de contact électriques et thermiques sur la puissance électrique de sortie. Un second volet, plus expérimental, a été consacré au développement de générateurs thermoélectriques miniatures à forte densité de puissance intégrant des matériaux avancés à base de skutterudites. Plusieurs brasures ont été testées lors de l’assemblage des modules thermoélectriques. La caractérisation des performances des modules (25-500°C) couplée aux calculs numériques ont permis de guider les recherches et d’optimiser les procédés de fabrication. Ce travail a abouti à l’obtention d’une densité de puissance record (3,3 W/cm2 pour une différence de température de 450 K) par rapport à l’état de l’art. / The Internet of Thing (IoT) is currently being intensively explored in the electronic industry. IoT is an extension of Internet connectivity into physical end everyday-life objects which will be able to communicate and interact with each other’s. Most of these connected objects are powered by batteries that need to be regularly switched or recharged. Faced with a strong announced growth of their number in coming years, the search for novel alternative, autonomous power supplies that convert surrounding available energy into electricity becomes essential. Among energy harvesting technologies, thermoelectricity is advantageous due to its simplicity, reliability, the absence of moving parts and greenhouse gas emissions. All these favorable characteristics make thermoelectric converters possible candidates for powering or recharging batteries of connected objects. In this context, my PhD work was done within the frame of the European project EnSO («Energy for Smart Objects»). Numerical studies with the software Comsol Multiphysics were performed on innovative planar micro-generators developed by the Mahle company, one of the partners of this project. The main objective of this work was to achieve a better understanding of the influence of numerous parameters (geometry, boundary conditions in terms of temperature and flux, electrical and thermal properties of the active materials) on their thermoelectric performances (output power and efficiency). In particular, we have underlined the critical role played by the electrical and thermal contact resistances on the output power. A second part of this study has been devoted to the experimental development of miniaturized thermoelectric generators capable of delivering high output power density through the integration of skutterudite materials. Several brazes have been tested during the assembly operations of the thermoelectric modules. The characterization of the module performances (25-500°C) combined with numerical calculations have been used as a guidance for optimizing the fabrication process. This work culminated in the successful fabrication of a thermoelectric module with a record-breaking power density of 3,3 W/cm2 achieved under a temperature difference of 450 K.
|
Page generated in 0.0242 seconds