281 |
The occurrence of tick-borne pathogens, in dogs in welfare organisations and townships of Cape TownAllan, Rosalind Elizabeth 02 1900 (has links)
In impoverished and resource limited communities such as townships, and welfare organizations, areas such as living and sleeping spaces are sometimes shared with animals, and occasionally humans. Dogs play an integral role in our lives and have become part of the family. Therefore, it is probable that ectoparasites, such as ticks, that feed on dogs also feed on other vertebrates, thereby, transmitting pathogens. The primary aim of this study was to screen for the presence of tick-borne pathogens in dogs from welfare organisations and townships in Cape Town, with special focus on Ehrlichia and Babesia spp. The reason for this choice of subject is due to the fact that very few tick-borne infection studies have focused on resource limited communities. Furthermore, welfare organisations have continuously attracted awareness due to the amount of unrestricted work performed by veterinarians in communities with limited resources. Consequently, the topic was borne. A total of 126 blood samples and 509 ticks (adults and nymphs) were collected directly from dogs from four welfare organisations and two townships in Cape Town. Samples were collected from April to July 2014. The four welfare organisations where samples were collected included the Animal Anti Cruelty League welfare organisations in Epping and Bellville, the Lucky Lucy Foundation in Joostenberg Vlakte and The Emma Animal Rescue Society (TEARS), located in the Sunnydale area. Samples were also collected from the Asanda village and Nomzamo, two townships located just outside the Cape Town suburb, the Strand. DNA was extracted from blood and ectoparasites and screened for the presence of Ehrlichia, Anaplasma, Theileria and Babesia species infections using touchdown PCR and RLB hybridization assays. Genus and species-specific probes were used during hybridization in order to identify specific parasite infections in the blood samples and the tick samples pooled according to geographical origin and species. Forty six (36.5%) of the blood samples tested positive for tick-borne pathogen DNA. Of the positive blood samples, 17 (13.5%) were infected with Ehrlichia canis; 16 (12.7%) with Babesia rossi and four (3.2%) samples were infected with Babesia vogeli. Incidental infections were also detected, these included Ehrlichia ruminantium (n=6, [4.7%]), Theileria taurotragi (n=2, [1.6%]) and Anaplasma sp. Omatjenne (n=1, [0.8%]) infections. DNA detected from 10 samples (7.94%) hybridized only to the Ehrlichia/Anaplasma genus-specific probes and four samples (3.17%) hybridized only to the Theileria/Babesia genus-specific probes. None of these 14 samples hybridized to any of the species-specific probes. Collected Rhipicephalus sanguineus (n=457) and Haemaphysalis elliptica (n=52) ticks were grouped into 15 pools, representing both tick species according to specific collection locations. Since only two H. elliptica from Asanda and one R. sanguineus from TEARS were collected, these ticks were mixed in pools of the dominant species as they were too few for DNA extraction. Ticks were collected from the Nomzamo Township (R. sanguineus n=400), Asanda village (H. elliptica n=2; R. sanguineus n=42), TEARS (H. elliptica n=21; R. sanguineus n=1), and the Animal Anti Cruelty League in both Epping (R. sanguineus n=14), and Bellville (H. elliptica n=29), in Cape Town. Analysis by the RLB assay showed that 11 (73.3%) of the 15 tick pools representing both tick species were positive for at least one parasite species. All positive samples hybridized with the Ehrlichia/Anaplasma genus-specific probe. Three (20%) tick pools containing both tick species tested positive for Ehrlichia canis infection, two (13.3%) tested positive for Babesia rossi and Babesia vogeli DNA was identified in one (6.6%) tick pool. The Theileria/Babesia genus-specific probe hybridised in three (20%) tick pools. These three pools were comprised of both R. sanguineus and H. elliptica tick species. These tick pools also tested positive for a specific Babesia tick-borne pathogen. Tick-borne pathogen DNA could not be detected in four (26.6%) tick pools. The fore-mentioned tick-borne pathogen DNA detected in the dog blood samples, and the ectoparasites collected from the same dogs during this study, suggests that dogs play a large role in the endemicity of these pathogens / Environmental Sciences / M. Sc. (Life Science)
|
282 |
Sialotranscriptomics of the brown ear ticks, Rhipicephalus appendiculatus Neumann, 1901 and R. Zambeziensis Walker, Norval and Corwin, 1981, vectors of Corridor diseaseDe Castro, Minique Hilda 11 1900 (has links)
Text in English / Corridor disease is an economically important tick-borne disease of cattle in southern Africa. The disease is caused by Theileria parva and transmitted by the vectors, Rhipicephalus appendiculatus and R. zambeziensis. There is currently no vaccine to protect cattle against T. parva that is permitted in South Africa. To develop recombinant anti-tick vaccines against Corridor disease, comprehensive databases of genes expressed in the tick’s salivary glands are required. Therefore, in Chapters 2 and 3, mRNA from the salivary glands of R. appendiculatus and R. zambeziensis was sequenced and assembled using next generation sequencing technologies. Respectively, 12 761 and 13 584 non-redundant protein sequences were predicted from the sialotranscriptomes of R. appendiculatus and R. zambeziensis and uploaded to public sequence domains. This greatly expanded the number of sequences available for the two vectors, which will be invaluable resources for the selection of vaccine candidates in future. Further, in Chapter 3, differential gene expression analysis in R. zambeziensis revealed dynamic expression of secretory protein transcripts during feeding, suggestive of stringent transcriptional regulation of these proteins. Knowledge of these intricate expression profiles will further assist vaccine development in future. In Chapter 4, comparative sialotranscriptomic analyses were performed between R. appendiculatus and R. zambeziensis. The ticks have previously shown varying vector competence for T. parva and this chapter presents the search for correlates of this variance. Phylogenetic analyses were performed using these and other publically available tick transcriptomes, which indicated that R. appendiculatus and R. zambeziensis are closely related but distinct species. However, significant expression differences were observed between the two ticks, specifically of genes involved in tick immunity or pathogen transmission, signifying
potential bioinformatic signatures of vector competence. Furthermore, nearly four thousand putative long non-coding RNAs (lncRNAs) were predicted in each of the two ticks. A large number of these showed differential expression and suggested a potential transcriptional regulatory function of lncRNA in tick blood feeding. LncRNAs are completely unexplored in ticks. Finally, in Chapter 5, concluding remarks are given on the potential impact the R. appendiculatus and R. zambeziensis sialotranscriptomes may have on future vaccine developments and some future research endeavours are discussed. / Life and Consumer Sciences / Ph. D. (Life Sciences)
|
283 |
Época de colheita, irrigação, fitoquímica e atividades carrapaticida e fungicida do óleo essencial de genótipos de Lippia gracilis SchauerCruz, Elizangela Mércia de Oliveira 15 March 2013 (has links)
The aim of this study was to determine the influence of harvesting time and water stress on the chemical composition of the essential oil and to test the activities against ticks and fungus of the essential oil of L. gracilis. For the analysis of harvest season the plant material was collected from seven genotypes of L. gracilis at the Research Farm "Campus Rural da UFS", in the rainy and dry seasons. The experiment testing water stress was conducted in the dry season. The extraction of essential oils was performed in the Laboratory of Phytotechnology of the UFS through hydrodistillation. Chemical analysis of the essential oil performed using GC-MS in the Laboratory of Chromatography of the UFS. For the activity tests against ticks package larvae and immersion of engorged tick Rhipicephalus microplus in different concentrations of essential oil, thymol or carvacrol. To test of fungicidal activity, the essential oil at different concentrations was added to PDA medium. Each plate was inoculated with mycelia culture of Thielaviopis paradoxa. The essential oil of L. gracilis presented two distinct chemotypes, one genotype LGRA-106 presenting as major compound thymol and the other genotypes presenting carvacrol as major compound. The leaves provided essential oil with an average grade of 1.55% in the rainy season and 2.09% in the dry season. In the rainy season there was no significant difference in both the yield and the content. The chemical composition of essential oils L. gracilis showed high levels of terpenes, 92% in the rainy season and 96% in the dry season. In the experiment with irrigation the values of content and yield of all genotypes were smaller when compared without irrigation. In general, the species L. gracilis, for the presence of water in the soil, provides stability in the chemical composition of the essential oil regardless of season, since plants subjected to irrigation, even in the dry season, the essential oil produced in quantity and quality similar to the rainy season. The essential oil of L. gracilis exhibits high activity against ticks, proven by lethal concentrations of genotypes LGRA-201 (1.31 mg.mL-1) and LGRA-106 (4.66 mg.mL-1), demonstrating efficiency in the control of this parasite. The tests showed that the concentrations 0.45; 0.91 and 2.75 mg.mL-1 of all genotypes of L. gracilis completely inhibited the development of the pathogen T. paradoxa, corresponding to a percentage of mycelium growth inhibition of 100%. The concentration of 0.18 mg.mL-1 of essential oil was sufficient to significantly reduce the number of spores of T. paradoxa. The minimal fungicidal concentration T. paradoxa was found between concentrations from 0.80 to 0.98 mg.mL-1 for the essential oils and 0.26 mg.mL-1 for carvacrol and 0.35 mg.mL-1 to thymol. / O presente trabalho teve como objetivo determinar a influencia da época de colheita e do estresse hídrico na composição química do óleo essencial e testar a atividade carrapaticida e fungicida do óleo essencial de L. gracilis. Para as análises de época de colheita o material vegetal foi colhido de sete genótipos de L. gracilis no Campus Rural da UFS , nas épocas chuvosa e seca. Já para o ensaio de estresse hídrico o experimento foi conduzido na época seca. A extração de óleos essenciais foi realizada no Laboratório de Fitotecnia da UFS, por meio de hidrodestilação. A análise química do óleo essencial foi realizada utilizando CG-EM, no Laboratório de Cromatografia da UFS. Para a atividade carrapaticida foram realizadas os testes de pacote de larvas e de imersão de fêmeas ingurgitadas do carrapato Rhipicephalus microplus em diversas concentrações de óleo essencial, timol ou carvacrol. Para o teste de atividade fungicida, o óleo essencial, em diferentes concentrações foi adicionado ao meio BDA. Cada placa foi inoculada com micélios da cultura monospórica de Thielaviopis paradoxa. O óleo essencial de L. gracilis apresentou dois quimiotipos distintos um com o genótipo LGRA-106 apresentando o composto timol como majoritário e os demais o carvacrol. As folhas forneceram óleos essenciais amarelados com teor médio de 1,55% na época chuvosa e 2,09% na seca. Na época chuvosa não houve diferença significativa tanto no rendimento como no teor. A composição química dos óleos essenciais de L. gracilis apresentou altos níveis de terpenos, 92% na época chuvosa e 96% na época seca. No ensaio com irrigação os valores de teor e rendimento de todos os genótipos são menores quando comparado com o ensaio sem irrigação. De maneira geral a espécie L. gracilis, quanto à presença de água no solo, apresenta estabilidade na composição química do óleo essencial independente da época do ano, uma vez que as plantas submetidas à irrigação, mesmo no verão, produziram óleo essencial em quantidade e qualidade semelhantes à época do inverno. O óleo essencial de L. gracilis apresenta alta atividade carrapaticida, comprovados pelas concentrações letais dos genótipos LGRA-201 (1,31 mg.mL-1) e LGRA-106 (4,66 mg.mL-1), demonstrando eficiência no controle desse parasita. Os ensaios demonstraram que as concentrações 0,45; 0,91 e 2,75mg.mL-1 de todos os genótipos de L. gracilis inibiram completamente o desenvolvimento do patógeno T. paradoxa, correspondendo a uma porcentagem de inibição do crescimento micelial de 100%. A concentração de 0,18mg.mL-1 de óleo essencial foi suficiente para reduzir significativamente o número de esporos de T. paradoxa. A concentração fungicida mínima de T. paradoxa foi encontrada entre as concentrações de 0,80 a 0,98mg.mL-1 para os óleos essenciais e 0,26mg.mL-1 para o carvacrol, e 0,35mg.mL-1 para o timol.
|
284 |
Época de colheita, irrigação, fitoquímica e atividades carrapaticida e fungicida do óleo essencial de genótipos de Lippia gracilis SchauerCruz, Elizangela Mércia de Oliveira 15 March 2013 (has links)
The aim of this study was to determine the influence of harvesting time and water stress on the chemical composition of the essential oil and to test the activities against ticks and fungus of the essential oil of L. gracilis. For the analysis of harvest season the plant material was collected from seven genotypes of L. gracilis at the Research Farm "Campus Rural da UFS", in the rainy and dry seasons. The experiment testing water stress was conducted in the dry season. The extraction of essential oils was performed in the Laboratory of Phytotechnology of the UFS through hydrodistillation. Chemical analysis of the essential oil performed using GC-MS in the Laboratory of Chromatography of the UFS. For the activity tests against ticks package larvae and immersion of engorged tick Rhipicephalus microplus in different concentrations of essential oil, thymol or carvacrol. To test of fungicidal activity, the essential oil at different concentrations was added to PDA medium. Each plate was inoculated with mycelia culture of Thielaviopis paradoxa. The essential oil of L. gracilis presented two distinct chemotypes, one genotype LGRA-106 presenting as major compound thymol and the other genotypes presenting carvacrol as major compound. The leaves provided essential oil with an average grade of 1.55% in the rainy season and 2.09% in the dry season. In the rainy season there was no significant difference in both the yield and the content. The chemical composition of essential oils L. gracilis showed high levels of terpenes, 92% in the rainy season and 96% in the dry season. In the experiment with irrigation the values of content and yield of all genotypes were smaller when compared without irrigation. In general, the species L. gracilis, for the presence of water in the soil, provides stability in the chemical composition of the essential oil regardless of season, since plants subjected to irrigation, even in the dry season, the essential oil produced in quantity and quality similar to the rainy season. The essential oil of L. gracilis exhibits high activity against ticks, proven by lethal concentrations of genotypes LGRA-201 (1.31 mg.mL-1) and LGRA-106 (4.66 mg.mL-1), demonstrating efficiency in the control of this parasite. The tests showed that the concentrations 0.45; 0.91 and 2.75 mg.mL-1 of all genotypes of L. gracilis completely inhibited the development of the pathogen T. paradoxa, corresponding to a percentage of mycelium growth inhibition of 100%. The concentration of 0.18 mg.mL-1 of essential oil was sufficient to significantly reduce the number of spores of T. paradoxa. The minimal fungicidal concentration T. paradoxa was found between concentrations from 0.80 to 0.98 mg.mL-1 for the essential oils and 0.26 mg.mL-1 for carvacrol and 0.35 mg.mL-1 to thymol. / O presente trabalho teve como objetivo determinar a influencia da época de colheita e do estresse hídrico na composição química do óleo essencial e testar a atividade carrapaticida e fungicida do óleo essencial de L. gracilis. Para as análises de época de colheita o material vegetal foi colhido de sete genótipos de L. gracilis no Campus Rural da UFS , nas épocas chuvosa e seca. Já para o ensaio de estresse hídrico o experimento foi conduzido na época seca. A extração de óleos essenciais foi realizada no Laboratório de Fitotecnia da UFS, por meio de hidrodestilação. A análise química do óleo essencial foi realizada utilizando CG-EM, no Laboratório de Cromatografia da UFS. Para a atividade carrapaticida foram realizadas os testes de pacote de larvas e de imersão de fêmeas ingurgitadas do carrapato Rhipicephalus microplus em diversas concentrações de óleo essencial, timol ou carvacrol. Para o teste de atividade fungicida, o óleo essencial, em diferentes concentrações foi adicionado ao meio BDA. Cada placa foi inoculada com micélios da cultura monospórica de Thielaviopis paradoxa. O óleo essencial de L. gracilis apresentou dois quimiotipos distintos um com o genótipo LGRA-106 apresentando o composto timol como majoritário e os demais o carvacrol. As folhas forneceram óleos essenciais amarelados com teor médio de 1,55% na época chuvosa e 2,09% na seca. Na época chuvosa não houve diferença significativa tanto no rendimento como no teor. A composição química dos óleos essenciais de L. gracilis apresentou altos níveis de terpenos, 92% na época chuvosa e 96% na época seca. No ensaio com irrigação os valores de teor e rendimento de todos os genótipos são menores quando comparado com o ensaio sem irrigação. De maneira geral a espécie L. gracilis, quanto à presença de água no solo, apresenta estabilidade na composição química do óleo essencial independente da época do ano, uma vez que as plantas submetidas à irrigação, mesmo no verão, produziram óleo essencial em quantidade e qualidade semelhantes à época do inverno. O óleo essencial de L. gracilis apresenta alta atividade carrapaticida, comprovados pelas concentrações letais dos genótipos LGRA-201 (1,31 mg.mL-1) e LGRA-106 (4,66 mg.mL-1), demonstrando eficiência no controle desse parasita. Os ensaios demonstraram que as concentrações 0,45; 0,91 e 2,75mg.mL-1 de todos os genótipos de L. gracilis inibiram completamente o desenvolvimento do patógeno T. paradoxa, correspondendo a uma porcentagem de inibição do crescimento micelial de 100%. A concentração de 0,18mg.mL-1 de óleo essencial foi suficiente para reduzir significativamente o número de esporos de T. paradoxa. A concentração fungicida mínima de T. paradoxa foi encontrada entre as concentrações de 0,80 a 0,98mg.mL-1 para os óleos essenciais e 0,26mg.mL-1 para o carvacrol, e 0,35mg.mL-1 para o timol.
|
285 |
The role of the Borrelia oxidative stress regulator protein in virulence gene expression of the Lyme disease spirocheteKhoo, Joleyn Yean Chern 25 February 2014 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / The Lyme disease agent, Borrelia burgdorferi, has a complex system that allows it to thrive in the harsh and distinct environments of its tick vector and mammalian host. Although it has been known for some time that the Borrelia oxidative stress regulator protein (BosR) plays a necessary role in mammalian infectivity and functions as a transcriptional regulator of alternative sigma factor RpoS, very little is known about its mechanism of action, other than the suggestion that BosR activates rpoS transcription by binding to certain upstream regions of the gene. In our studies, we performed protein degradation assays and luciferase reporter assays for further understanding of BosR function. Our preliminary findings suggest that BosR is post-transcriptionally regulated by an unknown protease and may not need to bind to any rpoS upstream regions in order to activate transcription. We also describe the construction of luciferase reporter systems that will shed light on BosR’s mechanism of action. We postulate the provocative possibility that unlike its homologs Fur and PerR in other bacterial systems, BosR may not utilize a DNA-binding mechanism in order to fulfill its role as a transcriptional regulator to modulate virulence gene expression.
|
Page generated in 0.0618 seconds