1 |
Construction of extended topological quantum field theories / Construction de théories quantiques des champs topologiques étendusDe Renzi, Marco 27 October 2017 (has links)
La position centrale occupée par les Théories Quantiques des Champs Topologiques (TQFTs) dans l’étude de la topologie en basse dimension est due à leur structure extraordinairement riche, qui permet différentes interactions et applications à des questions de nature géométrique. Depuis leur première apparition, un grand effort a été mis dans l’extension des invariants quantiques de 3-variétés en TQFTs et en TQFT Étendues (ETQFTs). Cette thèse s’attaque à ce problème dans deux cadres généraux différents. Le premier est l’étude des invariants quantiques semi-simples de Witten, Reshetikhin et Turaev issus de catégories modulaires. Bien que les ETQFTs correspondantes étaient connues depuis un certain temps, une réalisation explicite basée sur la construction universelle de Blanchet, Habegger, Masbaum et Vogel apparaît ici pour la première fois. L’objectif est de tracer la route à suivre dans la deuxième partie de la thèse, où la même procédure est appliquée à une nouvelle famille d’invariants quantiques non semi-simples due à Costantino, Geer et Patureau. Ces invariants avaient déjà été étendus en TQFTs graduées par Blanchet, Costantino, Geer and Patureau, mais seulement pour une famille explicite d’exemples. Nous posons la première pierre en introduisant la définition de catégorie modulaire relative, un analogue non semi-simple aux catégories modulaires. Ensuite, nous affinons la construction universelle pour obtenir des ETQFTs graduées étendant à la fois les invariants quantiques de Costantino, Geer et Patureau et les TQFTs graduées de Blanchet, Costantino, Geer et Patureau dans ce cadre général / The central position held by Topological Quantum Field Theories (TQFTs) in the study of low dimensional topology is due to their extraordinarily rich structure, which allows for various interactions with and applications to questions of geometric nature. Ever since their first appearance, a great effort has been put into extending quantum invariants of 3-dimensional manifolds to TQFTs and Extended TQFTs (ETQFTs). This thesis tackles this problem in two different general frameworks. The first one is the study of the semisimple quantum invariants of Witten, Reshetikhin and Turaev issued from modular categories. Although the corresponding ETQFTs were known to exist for a while, an explicit realization based on the universal construction of Blanchet, Habegger, Masbaum and Vogel appears here for the first time. The aim is to set a golden standard for the second part of the thesis, where the same procedure is applied to a new family of non-semisimple quantum invariants due to Costantino, Geer and Patureau. These invariants had been previously extended to graded TQFTs by Blanchet, Costantino, Geer an Patureau, but only for an explicit family of examples. We lay the first stone by introducing the definition of relative modular category, a non-semisimple analogue to modular categories. Then, we refine the universal construction to obtain graded ETQFTs extending both the quantum invariants of Costantino, Geer and Patureau and the graded TQFTs of Blanchet, Costantino, Geer and Patureau in this general setting
|
2 |
Invariants quantiques en dimension 3 et 4, TQFTs et HQFTsPetit, Jérôme 05 October 2007 (has links) (PDF)
Cette thèse est consacrée à l'étude des invariants quantiques en dimension 3 et 4 ainsi que les TQFTs et HQFTs qui leurs sont associées. Cette thèse établit que pour toute catégorie $\C$ sphérique la TQFT de Turaev-Viro est issue d'une HQFT en dimension 1+2 ayant pour but l'espace classifiant $B\grad$. Grâce aux méthodes développées pour montrer ce résultat, nous avons donné une nouvelle description l'invariant de Turaev-Viro homologique. En outre, nous introduisons la notion de catégorie de Picard qui nous permet de relier l'invariant de Turaev-Viro à l'invariant de Dijkgraaf-Witten. Nous construisons également un invariant quantique de dimension 4 que nous comparons à l'invariant quantique de dimension 4 défini par Crane, Kauffman et Yetter. Ce nouvel invariant est obtenu à partir de couples de catégories prémodulaires de dimensions inversibles.
|
3 |
TQFTs from Quasi-Hopf Algebras and Group CocyclesGeorge, Jennifer Lynn 27 August 2013 (has links)
No description available.
|
4 |
Idempotents de Jones-Wenzl évaluables aux racines de l'unité et représentation modulaire sur le centre de $overline{U}_q sl_2$. / Evaluable Jones-Wenzl idempotents at roots of unity and modular representation on the center of $overline{U}_q sl_2$Ibanez, Elsa 04 December 2015 (has links)
Soit $p in N^*$. On définit une famille d'idempotents (et de nilpotents) des algèbres de Temperley-Lieb aux racines $4p$-ième de l'unité qui généralise les idempotents de Jones-Wenzl usuels. Ces nouveaux idempotents sont associés aux représentations simples et indécomposables projectives de dimension finie du groupe quantique restreint $Uq$, où $q$ est une racine $2p$-ième de l'unité. A l'instar de la théorie des champs quantique topologique (TQFT) de [BHMV95], ils fournissent une base canonique de classes d'écheveaux coloriés pour définir des représentations des groupes de difféotopie des surfaces. Dans le cas du tore, cette base nous permet d'obtenir une correspondance partielle entre les actions de la vrille négative et du bouclage, et la représentation de $SL_2(Z)$ de [LM94] induite sur le centre de $Uq$, qui étend non trivialement de la représentation de $SL_2(Z)$ obtenue par la TQFT de [RT91]. / Let $p in N^*$. We define a family of idempotents (and nilpotents) in the Temperley-Lieb algebras at $4p$-th roots of unity which generalizes the usual Jones-Wenzl idempotents. These new idempotents correspond to finite dimentional simple and projective indecomposable representations of the restricted quantum group $Uq$, where $q$ is a $2p$-th root of unity. In the manner of the [BHMV95] topological quantum field theorie (TQFT), they provide a canonical basis in colored skein modules to define mapping class groups representations. In the torus case, this basis allows us to obtain a partial match between the negative twist and the buckling actions, and the [LM94] induced representation of $SL_2(Z)$ on the center of $Uq$, which extends non trivially the [RT91] representation of $SL_2(Z)$.
|
Page generated in 0.0247 seconds