• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 60
  • 23
  • 16
  • 15
  • 6
  • 6
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 160
  • 160
  • 24
  • 19
  • 18
  • 16
  • 16
  • 16
  • 15
  • 15
  • 13
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
141

Magnetic and Magnetotransport Studies in Transition Metal Oxides : Role of Competing Interactions

Sow, Chanchal January 2013 (has links) (PDF)
There was a fame time for silicon in condensed matter physics, then the graphene era came and now topological insulators are gaining lot of attention, but magnetism in condensed matter physics has remained always fascinating starting from the ancient days up to now and it will remain as one of the core topic in basic or applied physics. The improvement in the modern techniques allows one to explore magnetism in different length scales as well as in different time scales. As an effect of the improvement in experimental techniques, different magnetic anomalies are unearthed. As a result theories are getting refined and the area of magnetism progresses. From the material point of view, oxides carry the most diverse nature in condensed matter starting from high temperature superconductivity (HTS), colossal magnetoresistance, metal insulator transition etc. to ferromagnetism (FM), anti-ferromagnetism (AFM), spin glass (SG) and so on. Among this list, SG and HTS are one of the least understood topics in magnetism till today. A large research community is involved in understanding the underlying physics behind these two, especially in transition metal oxides. It has drawn attention not only due to fundamental aspects but also due to various applications in day to day life. This thesis is an attempt to understand these two phenomena in transition metal oxides. As the title of this thesis suggest, it is all about magnetic and magneto-transport properties of certain transition metal oxide (crystalline) addressing the interplay between two competing order parameters to understand the underlying physics behind it from an experimental point of view. We have studied two different kinds of competing interactions: (i) the FM/AFM interplay either in bulk or at the interface of the two layers in thin films; (ii) the interplay between FM and superconductivity (SC) in superconductor (S)/ferromagnet (F) heterostructures. Basically both of these two kinds lead to non-equilibrium phenomena in these oxides. One of such competition is between FM and AFM leading to slow dynamics (glassy physics). Disorder and frustrations are the key ingredients for such slow dynamics. The spin frustration arises either due to geometry or due to competing interactions. For example, in a triangular antiferromagnet due to the triangular geometry spins gets frustrated. Now, if it prevails spin disorder as well then it satisfies both the criteria for a spin glass and hence it gives birth to glassiness. Another kind of competition is the interplay among SC and FM. It is known that SC and FM are two antagonistic quantum phenomena thus in a single material SC (singlet pairing) and FM does not co-exist. However one can realize this by making F/S heterostructures and observe the battle between these two competing order parameters. The spin polarized quasiparticle injection from F creates non equilibrium spin density inside S and thereby suppressing the order parameter of S. Also by choosing an appropriate ferromagnet the vortex motion inside S can be arrested to certain extent which can enhance the critical current density of S. Thus FM/SC interplay has become an alternative way to look at the high temperature superconductivity. This thesis is categorized into nine chapters. The summary of each chapter is as follows: Chapter: 1 contains certain concepts of magnetism and superconductivity which is useful to understand the topics and experiments described in this thesis. Chapter: 2 gives the underlying principles of the various experimental techniques used in this thesis. Chapter: 3 describes the magnetic properties of successfully synthesized five compositions of LixNi(2-x)O2 (0.67<x<0.99) which has five distinct ground states namely antiferromagnet (AF), spin glass (SG), cluster glass (CG), re-entrant spin glass (RSG) and ferromagnet (FM). The SG and CG ground state has been well described by the frequency dependent peak shift. From the power-law divergence of critical slowing down the estimated value of relaxation time indicates the presence of interacting macro spins (spin cluster) rather than individual spins in certain LixNi(2-x)O2 samples possessing CG ground state which is also supported by the Arrhenius law. The shift in the spin freezing temperature with the application of dc field obeys Almeida-Thouless line. It also exhibits memory effect which is generic to the slow dynamics. The remnant magnetization relaxation follows logarithmic decay. Interestingly, the sample having RSG ground state shows memory effect up-to 50K and behaves like a FM above that temperature. FC-ZFC M(T) curve shows a splitting at the ordering temperature. The critical analysis across the ferromagnetic-paramagnetic phase transition yields a self-consistent γ, β and δ value and the spin-spin interaction in this material follows long range mean field model. The critical exponents obey Widom scaling law: δ = 1 + γ β −1. The universality class of the scaling relations is also verified where the scaled m and scaled h collapses into two branches. Finally the magnetic phase diagram illustrates a vivid picture of the gradual evolution of ferromagnetism in LixNi(2-x)O2 through a glassy state. As a concluding remark, we think, the present study of glassy physics in magnetic insulator/semiconductor sets an example to compare them with the conventional metallic spin glass system. Chapter: 4 exhibits the results of the structural, magnetic and transport measurements to elucidate some of the most striking unusual physical responses of bulk SrRuO3. Two set of polycrystalline SrRuO3 samples with unique ordering temperature have been synthesized. In one case, we have taken the stoichiometric weight ratio of precursors that eventually resulted in Ru-deficient SrRuO3(SROD). In the other case, we have taken extra 2% wt. RuO2 deliberately to form stoichiometric SrRuO3(SRO). Both the samples are found to crystallize in orthorhombic crystal structure with Pnma space group. The low temperature magnetization is found to be well described by the Bloch T3/2 law and the magnetization near Tc is found to follow the scaling law; M~(Tc-T)β with β=0.35 and β=0.30 for SRO and SROD respectively, apparently showing the 3D Ising behaviour. This aspect will be elaborated in the next chapter. The magnetic ac susceptibility study exhibits a broad hump far below the ferromagnetic ordering temperature and the frequency dependence of this hump position exhibits the characteristics of multiple relaxations. Most strikingly, we notice a low temperature glassy magnetic behaviour clearly demonstrated by the time dependent memory effect. This is very surprising and unlikely to happen in systems, which have itinerant ferromagnetic character. However, we conjecture that slow domain growth and spin canting could be the cause for such effect. The transport study evidences a crossover from Fermi liquid (FL) to non-Fermi liquid (NFL) behaviour around 40 K and a slope change in dρ/dT vs. T plot in the vicinity of that temperature. Astonishingly, we observe two distinct dips (one around ferromagnetic ordering temperature and the other far below the ferromagnetic ordering temperature) in the temperature dependent MR response. In addition, we also observe the signature of an unusual dip in the temperature dependent coercive field towards low temperature side. The emergence of such unusual magnetic and transport response is strongly believed to be connected with hidden magnetic interactions. Our effort on neutron diffraction study has been able to trace the cause of such cryptic magnetic interaction. The findings of neutron diffraction study evidence the change in the unit cell lattice parameters around 75 K and that could be the central cause behind such anomalous low temperature magnetic responses. It also demonstrates that the octahedral tilt freezes around the FM transition and has a minimum around the low temperature glass transition temperature. Most remarkably we observe a decline in the total integrated magnetic intensity towards the low temperature side indicating the presence of antiferromagnetic like interaction in SrRuO3. Chapter: 5 resolves the ambiguity in determining the crritical exponents in SrRuO3. Most remarkably, the application of scaling law in the FC magnetization leads a systematic change in the values of critical exponent with the measuring field in SRO. The β value changes from 0 to o.44 to to 0.29 (corresponds to mean field to Ising) with the increase in the measurement field from 10 to 2500 Oe. However, the H→0 extrapolation fields β=0.5. In order to substantiate the actual nature, the critical behavior is studied across the phase transition from the M-H isotherms. The critical analysis yields a self-consistent β, γ and δ values and the spin-spin interaction follows long range mean field δ=γ β model 1+. The critical exponents also obey Widom scaling law: δ = 1 + γ β-1 The universality class of the scaling relations is verified where the scaled m and scaled h collapses into two branches. We have also found that Ru deficiency does not affect the nature of the spin-spin interaction (though ferromagnetism gets reduced). Further the directional dependence of the critical exponent reflects the isotropic nature of the magnetic interaction. In other words the spin-spin interaction found to be: i) three dimensional, ii) long range, iii) mean field type and iv) isotropic in SrRuO3. We have also found magnetocaloric effect (calculated from the M-H isotherms) that across the phase transition. The specific heat measurements find sharp jump at the ferromagnetic transition due to the magnetic contribution of the specific heat. Chapter: 6 describes the magnetism at the SrRuO3 (SRO)/LaAlO3 (LAO) interface where SRO is an itinerant ferromagnet (FM) and LAO is non-magnetic (NM) (rather diamagnetic). Most surprisingly SRO/LAO exhibits pronounced exchange bias (EB) effect realized by observing a shift in the field cooled M-H hysteresis. Further investigation results an increasing trend of the strength of the EB with the decreases in the thickness of ferromagnetic layer. This system also displays the training effect which essentially confirms that this effect is due to EB. EB arises due to the uncompensated spins at the FM/AFM interface hence the EB effect in SRO/LAO system is unconventional. However, the origin of such AFM interaction (responsible for EB effect in FM/NM system) at SRO/LAO interface is realized and explained through the temperature dependence of the EB effect. Further, we have extensively investigated EB effect in other analogous ferromagnets, FM/FM bilayers and FM/FM superlattices. We found that La0.7Sr0.3MnO3 (LSMO) grown on LAO exhibits the signature of EB. In contrast to that La0.5Sr0.5CoO3 (LSCO) does not show any signature of EB. All the bilayers (LSMO/SRO, LSMO/LSCO and LSCO/SRO) exhibit EB and have similar kind of temperature dependence. In order to gain more insight we have grown a (LSMO/SRO)8 superlattice and observed a complex magnetic behaviour. It exhibits partial inverted magnetic hysteresis. But the system shows EB effect characterized by the shift in the FC hysteresis and training effect. All these observations essentially demonstrate that the magnetic nature of various ferromagnetisms at the interfaces can be changed by choosing a proper partner (acts like adding perturbations into one of those system which lies close to the instability region). Chapter: 7 presents the magneto-transport properties of three SRO films grown on LAO (100) of thicknesses of 12, 24 and 48 nm are studied extensively. For a one to one comparison one of the sample is also grown on STO(100). The coercivity vs. temperature in SRO(48 nm)/LAO exhibits a plateau at ~40 K. The dR/dT exhibits the low temperature hump in all the samples which very much replicates with the bulk scenario that we observed in SRO. Most strikingly the 12 nm SRO sample exhibits NFL behaviour throughout the temperature range of measurement (10-150 K). Our careful investigation reveals a cross-over from FL to NFL in all SRO thin films. The cross-over temperature increases with the increase in thickness and eventually shifts towards the bulk cross-over value. It is apt to remind that in bulk SRO we have demonstrated (by employing temperature dependent neutron diffraction) that there is a presence of antiferromagnetic like interaction at low temperature giving birth to glassiness in bulk SRO. Further, an attempt is made to understand the low temperature magneto-transport anomaly by looking into the spin fluctuation through the low frequency 1/f noise measurements. It conveys a message that there are two types of magnetic ordering present in SRO giving rise to two peaks in the temperature dependence of the relative variance. Application of magnetic field suppresses both the peaks in the relative variance. This certainly indicates that the origin of such peak is caused by the spin fluctuations and thereby it is of magnetic origin. Further we have looked into the Hall effect of a structured (Hall patterned) SRO thin film and observed regular Hall effect (RHE) as well as anomalous Hall effect (AHE) in it. Most remarkably the temperature dependence of the RHE coefficient changes its sign close to the ferromagnetic transition temperature of SRO. This implies a change of the type of the carrier as the temperature is varied. Based on these results, the carrier concentration of SRO as a function of temperature is determined. Chapter: 8 is about the magnetic and magnetotransport studies on the successfully grown high quality S/F heterostructures. The oxygen content plays a vital role in superconductivity of oxide materials thus for studying FM/SC interplay in oxides we have discussed how to achieve a high quality sample (oxygen stoichiometric). We have observed a great influence of a FM in suppressing the superconductivity in YBa2Cu3O(7-δ) (YBCO) in FM/SC heterostructures. The analysis of the out of plane M-H hysteresis reveals a significant reduction of the critical fields (HC1 and HC2) of the SC (in SRO/YBCO bilayer) which might have a great significance to understand the superconductivity in a better way (from both the perspectives: theory and experiments). Most remarkably we have found 40% enhancement of the critical current density of YBCO in SRO/YBCO bilayer. We have demonstrated that in order to see the effect of spin polarizes quasiparticle (SPQP) injection into YBCO, one should not apply more than 20mA current since Joule heating contribution wins over pair breaking effect. The SPQP injection from SRO into YBCO exhibits pair breaking effect as the TC (of the SC) shift follows I2/3 law. The resistive transitions under various applied magnetic fields and the field dependence of the activation energy confirms that the vortices are in the 2D regimes (it follows power law, U0~Hα withα=0.5) in SRO/YBCO. To get a better insight into the FM/SC interplay we have looked into two of the FM/YBCO combinations (LSCO/YBCO and LSMO/YBCO). We observe that the degree of the spin polarizations of the FMs scales with the suppression of superconductivity in YBCO which means more the spin polarization more is the suppression. We have also found out that spin polarization is not the sole parameter in suppressing superconductivity in SRO/YBCO bilayers. It also depends upon the state of magnetization of the ferromagnet. Further, we observed a significant reduction (one order) of the activation energy in LSCO/YBCO compared to SRO/YBCO which clearly indicates that the vortex dynamics might depend on other aspects as well (of the FM). It also reveals the formation of decoupled pancake vortices (pure 2D regime) in LSCO/YBCO and LSMO/YBCO bilayers whereas in case of YBCO and SRO/YBCO it is of 2D coupled type. Chapter: 9 summarizes the whole work presented in this thesis. It also discusses about few research problems which one need to look at in future.
142

Herstellung, Simulation und Charakterisierung thermoelektrischer Generatoren auf Basis anisotroper Oxidmaterialien

Dreßler, Christian 18 September 2017 (has links) (PDF)
Die thermoelektrische Energiekonversion auf der Basis des Seebeck-Effekts ist eine Methode zur direkten Erzeugung elektrischer Energie aus thermischer Energie. Für die wesentlichen anwendungsrelevanten Parameter Temperaturbereich, elektrische Leistung und Herstellungskosten sind Materialauswahl und Aufbau der TEG entscheidend. In der vorliegenden Arbeit wurden erstmalig thermoelektrische Oxidkeramiken in monolithischen TEG verwendet, die auf der Grundlage des transversalen thermoelektrischen Effekts arbeiten. Die TEG wurden mit industriell skalierbaren Keramiktechnologien hergestellt, untersucht und hinsichtlich ihrer Parameter detailliert theoretisch und experimentell bewertet. Als Modellsystem für die Materialien wurde La1-xSrxCuO4 in Kombination mit Ag bzw. Ag6Pd1 verwendet. Es konnte belegt werden, dass diese monolithischen TEG im Bereich kleiner elektrischer Leistungen eine vorteilhafte Alternative zu herkömmlichen longitudinalen thermoelektrischen Generatoren sein können.
143

DISSOLUTION AND MEMBRANE MASS TRANSPORT OF SUPERSATURATING DRUG DELIVERY SYSTEMS

Siddhi-Santosh Hate (8715135) 17 April 2020 (has links)
<p>Supersaturating drug delivery systems are an attractive solubility enabling formulation strategy for poorly soluble drugs due to their potential to significantly enhance solubility and hence, bioavailability. Compendial dissolution testing is commonly used a surrogate for assessing the bioavailability of enabling formulations. However, it increasingly fails to accurately predict <i>in vivo</i> performance due its closed-compartment characteristics and the lack of absorptive sink conditions. <i>In vivo</i>, drug is continually removed due to absorption across the gastrointestinal membrane, which impacts the luminal concentration profile, which in turn affects the dissolution kinetics of any undissolved material, as well as crystallization kinetics from supersaturated solutions. Thus, it is critical to develop an improved methodology that better mimics <i>in vivo</i> conditions. An enhanced approach integrates dissolution and absorption measurements. However, currently-used two-compartment absorptive apparatuses, employing a flat-sheet membrane are limited, in particular by the small membrane surface area that restricts the mass transfer, resulting in unrealistic experimental timeframes. This greatly impacts the suitability of such systems as a formulation development tool. The goal of this research is two-fold. First, to develop and test a high surface area, flow-through, absorptive dissolution testing apparatus, designed to provide <i>in vivo</i> relevant information about formulation performance in biologically relevant time frames. Second, to use this apparatus to obtain mechanistic insight into physical phenomenon occurring during formulation dissolution. Herein, the design and construction of a coupled dissolution-absorption apparatus using a hollow fiber membrane module to simulate the absorption process is described. The hollow fiber membrane offers a large membrane surface area, improving the mass transfer rates significantly. Following the development of a robust apparatus, its application as a formulation development tool was evaluated in subsequent studies. The dissolution-absorption studies were carried out for supersaturated solutions generated via anti-solvent addition, pH-shift and by dissolution of amorphous formulations. The research demonstrates the potential of the apparatus to capture subtle differences between formulations, providing insight into the role of physical processes such as supersaturation, crystallization kinetics and liquid-liquid phase separation on the absorption kinetics. The study also explores dissolution-absorption performance of amorphous solid dispersions (ASDs) and the influence of resultant solution phase behavior on the absorption profile. Residual crystalline content in ASDs is a great concern from a physical stability and dissolution performance perspective as it can promote secondary nucleation or seed crystal growth. Therefore, the risk of drug crystallization during dissolution of ASDs containing some residual crystals was assessed using absorptive dissolution measurements and compared to outcomes observed using closed-compartment dissolution testing. Mesoporous silica-based formulations are another type of amorphous formulations that are gaining increased interest due to higher physical stability and rapid release of the amorphous drug. However, their application may be limited by incomplete drug release resulting from the adsorption tendency of the drug onto the silica surface. Thus, the performance of mesoporous silica-based formulations was also evaluated in the absorptive dissolution testing apparatus to determine the impact of physiological conditions such as gastrointestinal pH and simultaneous membrane absorption on the adsorption kinetics during formulation dissolution. Overall, the aim of this research was to demonstrate the potential of the novel <i>in vitro</i> methodology and highlight the significance of a dynamic absorptive dissolution environment to enable better assessment of complex enabling formulations. <i>In vivo</i>, there are multiple physical processes occurring in the gastrointestinal lumen and the kinetics of these processes strongly depend on the absorption kinetics and <i>vice-a-versa</i>. Thus, using this novel tool, the interplay between solution phase behavior and the likely impacts on bioavailability of supersaturating drug delivery systems can be better elucidated. This approach and apparatus is anticipated to be of great utility to the pharmaceutical industry to make informed decisions with respect to formulation optimization.</p>
144

Giant Magnetoresistance - eine ab-initio Beschreibung

Binder, Jörg 09 July 2001 (has links)
Die vorliegende Arbeit ist ein Beitrag zur Theorie des spinabhängigen Transports in magnetischen Vielfachschichten. Es wird erstmalig eine parameterfreie Beschreibung des Giant Magnetoresistance (GMR) vorgelegt, welche detaillierte Einsichten in die mikroskopischen Vorgänge gestattet. Die ab-initio Berechnung der Elektronenstruktur der magnetischen Vielfachschichten basiert auf der Spindichtefunktionaltheorie unter Verwendung eines Screened Korringa-Kohn-Rostoker-Verfahrens. Die Streueigenschaften von Punktdefekten werden über die Greensche Funktion des gestörten Systems selbstkonsistent bestimmt. Die Transporteigenschaften werden durch Lösung der quasiklassischen Boltzmann-Gleichung unter Berücksichtigung der Elektronenstruktur der Vielfachschicht und der Anisotropie der Streuung an Fremdatomen berechnet. Die Boltzmann-Gleichung wird iterativ unter Einbeziehung der Vertex-Korrekturen gelöst. Der Formalismus wird auf Co/Cu- und Fe/Cr-Vielfachschichten, die Standardsysteme der Magnetoelektronik, angewandt. Es werden die Abhängigkeit der Streuquerschnitte, der spezifischen Restwiderstände und des GMR von der Art und der Lage der Übergangsmetalldefekte in Co/Cu- und Fe/Cr-Vielfachschichten diskutiert. Darüber hinaus wird der Einfluß des Quantum Confinements auf den GMR eingehend untersucht. Vorteile und Grenzen der vorliegenden theoretischen Beschreibung werden aufgezeigt. / A new theoretical concept to study the microscopic origin of Giant Magnetoresistance (GMR) from first principles is presented. The method is based on ab-initio electronic structure calculations within the spin density functional theory using a Screened Korringa-Kohn-Rostoker method. Scattering at impurity atoms in the multilayers is described by means of a Green's-function method. The scattering potentials are calculated self-consistently. The transport properties are treated quasi-classically solving the Boltzmann equation including the electronic structure of the layered system and the anisotropic scattering. The solution of the Boltzmann equation is performed iteratively taking into account both scattering out and scattering in terms (vertex corrections). The method is applied to Co/Cu and Fe/Cr multilayers. Trends of scattering cross sections, residual resistivities and GMR ratios are discussed for various transition metal impurities at different positions in the Co/Cu or Fe/Cr multilayers. Furthermore the relation between spin dependence of the electronic structure and GMR as well as the role of quantum confinement effects for GMR are investigated. Advantages and limits of the approach are discussed in detail.
145

The Mixed Glass Former Effect- Modeling of the Structure and Ionic Hopping Transport

Schuch, Michael 11 October 2013 (has links)
The origin of the Mixed Glass Former Effect (MGFE) is studied, which manifests itself in a non-monotonic behavior of the activation energy for long-range ion transport as a function of the mixing ratio of two glass formers. Two theoretical models are developed, the mixed barrier model and the network unit trap model, which consider different possible mechanisms for the occurrence of the MGFE. The mixed barrier model is based on the assumption that energy barriers are reduced for ionic jumps in regions of mixed composition. By employing percolation theory it is shown that this mechanism can successfully account for the behavior of the activation energy in various ion conducting mixed glass former glasses. The network unit trap model is based on the fact that a variety of network forming units, the so-called Q(n) species, can be associated with one glass former. Using a thermodynamic approach, the change of the concentration of these units in dependence of ionic concentration and the glass former mixing ratio is successfully predicted for alkali borate, phosphate and borophosphate glasses. In a second step, the charge distribution of the various units is considered and related to it, the binding energies to alkali ions. This gives rise to a modeling of the ionic transport in an energy landscape that changes in a defined manner with the glass former mixing ratio. Kinetic Monte Carlo simulations for alkali borophosphate glasses, which serve as a representative system for the MGFE in the literature, demonstrate that this approach succeeds to predict the behavior of the activation energy. In a further part of the thesis, Reverse Monte Carlo (RMC) simulations for the atomic structure of sodium borophosphate glasses are carried out with X-ray and neutron diffraction data as further input from experiments. Three-dimensional structures could be successfully generated that are in agreement with all experimental and theoretical constraints. Volume fractions of the ionic conduction pathways determined from these structures, however, do not show a substantial relationship to the activation energy, as earlier proposed in the iterature for alkali borate and alkali phosphate glasses.
146

Topics in the Physics and Astrophysics of Neutron Stars

Postnikov, Sergey A. 16 April 2010 (has links)
No description available.
147

ULTRAFAST LASER ABSORPTION SPECTROSCOPY IN THE ULTRAVIOLET AND MID-INFRARED FOR CHARACTERIZING NON-EQUILIBRIUM GASES

Vishnu Radhakrishna (5930801) 23 April 2024 (has links)
<p dir="ltr">Laser absorption spectroscopy (LAS) is a widely used technique to acquire path-integrated measurements of gas properties such as temperature and mole fraction. Although extremely useful, the application of LAS to study heterogeneous combustion environments can be challenging. For example, beam steering can be one such challenge that arises during measurements in heterogeneous combustion environments such as metallized propellant flames or measurements at high-pressure conditions. The ability to only obtain path integrated measurements has been a major challenge of conventional LAS techniques, especially in characterizing combustion environments with a non-uniform thermo-chemical distribution along the line of sight (LOS). Additionally, simultaneous measurements of multiple species using LAS with narrow-bandwidth lasers often necessitates employing multiple light sources. Aerospace applications, such as characterizing hypersonic flows may require ultrashort time resolution to study fast-evolving chemistry. Similarly, atmospheric entry most often requires measurements of atoms and molecules that absorb at wavelengths ranging from ultraviolet to mid-infrared. The availability of appropriate light sources for such measurements has been limited. In the past, several researchers have come up with diagnostic techniques to overcome the above-mentioned challenges to a certain extent. Most often, these solutions have been need-based while compromising on other diagnostic capabilities. Therefore, LAS diagnostics capable of acquiring broadband measurements with ultrafast time resolution and the ability to acquire measurements at wavelengths in ultraviolet through mid-infrared is required to study advanced combustion systems and for the development of advanced aerospace systems for future space missions. Ultrafast laser absorption spectroscopy is one such technique that provides broadband measurements, enabling simultaneous multi-species and high-pressure measurements. The light source utilized for ULAS provides the ultrafast time resolution necessary for resolving fast-occurring chemistry and more importantly the ability to acquire measurements at a wide range of wavelengths ranging from ultraviolet to far-infrared. The development and application of ULAS for characterizing propellant flames and hypersonic flows under non-equilibrium conditions by overcoming the above-mentioned challenges is presented here. </p><p>This work describes the development of a single-shot ultrafast laser absorption spectroscopy (ULAS) diagnostic for simultaneous measurements of temperature and concentrations of CO, NO, and H<sub>2</sub>O in flames and aluminized fireballs of HMX (C<sub>4</sub>H<sub>8</sub>N<sub>8</sub>O<sub>8</sub>). Ultrashort (55 fs) pulses from a Ti:Sapphire oscillator emitting near 800 nm were amplified and converted into the mid-infrared through optical parametric amplification (OPA) at a repetition rate of 5 kHz. Ultimately, pulses with a spectral bandwidth of ≈600 cm<sup>-1</sup> centered near 4.9 µm were utilized in combination with a mid-infrared spectrograph to measure absorbance spectra of CO, NO, and H<sub>2</sub>O across a 30 nm bandwidth with a spectral resolution of 0.3 nm. The gas temperature and species concentrations were determined by least-squares fitting simulated absorbance spectra to measured absorbance spectra. Measurements of temperature, CO, NO, and H<sub>2</sub>O were acquired in an HMX flame burning in air at atmospheric pressure and the measurements agree well with previously published results. Measurements were also acquired in fireballs of HMX with and without 16.7 wt% H-5 micro-aluminum. Time histories of temperature and column densities are reported with a 1-σ precision of 0.4% for temperature and 0.3% (CO), 0.6% (NO), and 0.5% (H<sub>2</sub>O), and 95% confidence intervals (C.I.) of 2.5% for temperature and 2.5% (CO), 11% (NO), and 7% (H<sub>2</sub>O), thereby demonstrating the ability of ULAS to provide high-fidelity, multi-parameter measurements in harsh combustion environments. The results indicate that the addition of the micron-aluminum increases the fireball peak temperature by ≈100 K and leads to larger concentrations of CO. The addition of aluminum also increases the duration fireballs remain at elevated temperatures above 2000 K.</p><p dir="ltr">Next, the application of ULAS for dual-zone temperature and multi-species (CO, NO, H<sub>2</sub>O, CO<sub>2</sub>, HCl, and HF) measurements in solid-propellant flames is presented. ULAS measurements were acquired at three different central wavelengths (5.121 µm, 4.18 µm, and 3.044 µm) for simultaneous measurements of temperature and: 1) CO, NO, and H<sub>2</sub>O, 2) CO<sub>2</sub> and HCl, and 3) HF and H<sub>2</sub>O. Absorption measurements with a spectral resolution of 0.35 nm and bandwidth of 7 cm<sup>-1</sup>, 18 cm<sup>-1</sup>, and 35 cm<sup>-1</sup>, respectively were acquired. In some cases, a dual-zone absorption spectroscopy model was implemented to accurately determine the gas temperature in the hot flame core and cold flame boundary layer via broadband absorption measurements of CO<sub>2</sub>, thereby overcoming the impact of line-of-sight non-uniformities. Results illustrate that the hot-zone temperature of CO<sub>2</sub> agrees well with the equilibrium flame temperature and single-zone thermometry of CO, the latter of which is insensitive to the cold boundary layer due to the corresponding oxidation of CO to CO<sub>2</sub>.</p><p dir="ltr">The initial development and implementation of an ultraviolet and broadband ultrafast-laser-absorption-imaging (UV-ULAI) diagnostic for one dimensional (1D) imaging of temperature and CN via its <i>B</i><sup>2</sup>Σ<sup>+</sup>←<i>X</i><sup>2</sup>Σ<sup>+ </sup>absorption bands near 385 nm. The diagnostic was demonstrated by acquiring single-shot measurements of 1D temperature and CN profiles in HMX flames at a repetition rate of 25 Hz. Ultrashort pulses (55 fs) at 800 nm were generated using a Ti:Sapphire oscillator and then amplification and wavelength conversion to the ultraviolet was carried out utilizing an optical parametric amplifier and frequency doubling crystals. The broadband pulses were spectrally resolved using a 1200 l/mm grating and imaged on an EMCCD camera to obtain CN absorbance spectra with a resolution of ≈0.065 nm and a bandwidth of ≈4 nm (i.e. 260 cm<sup>-1</sup>). Simulated absorbance spectra of CN were fit to the measured absorbance spectra using non-linear curve fitting to determine the gas properties. The spatial evolution of gas temperature and CN concentration near the burning surface of an HMX flame was measured with a spatial resolution of ≈10 µm. 1D profiles of temperature and CN concentration were obtained with a 1-σ spatial precision of 49.3 K and 4 ppm. This work demonstrates the ability of UV-ULAI to acquire high-precision, spatially resolved absorption measurements with unprecedented temporal and spatial resolution. Further, this work lays the foundation for ultraviolet imaging of numerous atomic and molecular species with ultrafast time resolution.</p><p dir="ltr">Ultraviolet ULAS was applied to characterize the temporal evolution of non-Boltzmann CN (<i>X</i><sup>2</sup>Σ<sup>+</sup>) formed behind strong shock waves in N<sub>2</sub>-CH<sub>4</sub> mixtures at conditions relevant to entry into Titan's atmosphere. An ultrafast (femtosecond) light source was utilized to produce 55 fs pulses near 385 nm at a repetition rate of 5 kHz and a spectrometer with a 2400 lines/mm grating was utilized to spectrally resolve the pulses after passing through the Purdue High-Pressure Shock Tube. This enabled broadband single-shot absorption measurements of CN to be acquired with a spectral resolution and bandwidth of ≈0.02 nm and ≈6 nm (≈402 cm<sup>-1</sup> at these wavelengths), respectively. A line-by-line absorption spectroscopy model for the <i>B</i><sup>2</sup>Σ<sup>+</sup>←<i>X</i><sup>2</sup>Σ<sup>+</sup> system of CN was developed and utilized to determine six internal temperatures (two vibrational temperatures, four rotational) of CN from the (0,0), (1,1), (2,2) and (3,3) absorption bands. Measurements were acquired behind reflected shock waves in 5.65% CH<sub>4</sub> and 94.35% N<sub>2</sub> with an initial pressure of 1.56 mbar and incident shock speed of ≈2.1 km/s. For this test condition, the chemically and vibrationally frozen temperature of the mixture behind the reflected shock was 5000 K and the pressure was 0.6 atm. The high repeatability of the shock-tube experiments (0.3% variation in shock speed across tests) enabled multi-shock time histories of CN mole fraction and six internal temperatures to be acquired with a single-shot time resolution of less than 1 ns. The measurements revealed that CN <i>X</i><sup>2</sup>Σ<sup>+</sup> is non-Boltzmann rotationally and vibrationally for greater than 200 µs, thereby strongly suggesting that chemical reactions are responsible for the non-Boltzmann population distributions. </p><p><br></p>
148

Partial barriers to chaotic transport in 4D symplectic maps

Firmbach, Markus, Bäcker, Arnd, Ketzmerick, Roland 22 August 2024 (has links)
Chaotic transport in Hamiltonian systems is often restricted due to the presence of partial barriers, leading to a limited flux between different regions in phase space. Typically, the most restrictive partial barrier in a 2D symplectic map is based on a cantorus, the Cantor set remnants of a broken 1D torus. For a 4D symplectic map, we establish a partial barrier based on what we call a cantorus-NHIM—a normally hyperbolic invariant manifold with the structure of a cantorus. Using a flux formula, we determine the global 4D flux across a partial barrier based on a cantorus-NHIM by approximating it with high-order periodic NHIMs. In addition, we introduce a local 3D flux depending on the position along a resonance channel, which is relevant in the presence of slow Arnold diffusion. Moreover, for a partial barrier composed of stable and unstable manifolds of a NHIM, we utilize periodic NHIMs to quantify the corresponding flux.
149

Amélioration de la production de gaz des « Tight Gas Reservoirs » / Production enhancement of Tight Gas Reservoirs

Khaddour, Fadi 11 April 2014 (has links)
La valorisation des réservoirs gaziers compacts, dits Tight Gas Reservoirs (TGR), dont les découvertes sont importantes, permettrait d’augmenter significativement les ressources mondiales d’hydrocarbures. Dans l’objectif d’améliorer la production de ces types de réservoirs, nous avons mené une étude ayant pour but de parvenir à une meilleure compréhension de la relation entre l’endommagement et les propriétés de transport des géomatériaux. L’évolution de la microstructure d’éprouvettes qui ont été soumises préalablement à des chargements dynamiques est étudiée. Une estimation de leurs perméabilités avec l’endommagement est tout d’abord présentée à l’aide d’un modèle de pores parallèles couplant un écoulement de Poiseuille avec la diffusion de Knudsen. Nous avons ensuite mené des travaux expérimentaux afin d’estimer l’évolution de la perméabilité avec l’endommagement en relation avec l’évolution de la distribution de tailles de pores. Les mesures de perméabilité sont effectuées sur des cylindres en mortier similaire aux roches tight gas, soumis à une compression uniaxiale. La caractérisation des microstructures des mortiers endommagés est réalisée par porosimétrie par intrusion de mercure. Afin d’estimer l’évolution de la perméabilité, un nouveau modèle hiérarchique aléatoire est présenté. Les comparaisons avec les données expérimentales montrent la capacité de ce modèle à estimer non seulement les perméabilités apparentes et intrinsèques mais aussi leurs évolutions sous l’effet d’un chargement introduisant une évolution de la distribution de taille de pores. Ce modèle, ainsi que le dispositif expérimental employé, ont été étendus afin d’estimer à l’avenir les perméabilités relatives de mélanges gazeux. Le dernier chapitre présente une étude de l’adsorption de méthane dans différents milieux fracturés par chocs électriques. Les résultats, utiles pour l’estimation des ressources en place, ont montré que la fracturation permet de favoriser l’extraction du gaz initialement adsorbé. / The valorization of compact gas reservoirs, called tight gas reservoirs (TGR), whose discoveries are important, would significantly increase the global hydrocarbon resources. With the aim of improving the production of these types of gas, we have conducted a study to achieve a better understanding of the relationship between damage and the transport properties of geomaterials. The microstructure evolution of specimens, which were submitted beforehand to dynamic loading, has been investigated. An estimation of their permeability upon damage is first presented with the help of a bundle model of parallel capillaries coupling Poiseuille flow with Knudsen diffusion. Then, we have carried out an experimental work to estimate the permeability evolution upon damage in relation to the evolution of the pore size distribution in uniaxial compression. The measurements of permeability have been performed on mortar cylinders, designed to mimic typical tight rocks that can be found in tight gas reservoirs. Microstructural characterization of damaged mortars has been performed with the help of mercury intrusion porosimetry (MIP). To estimate the permeability evolution, a new random hierarchical model has been devised. The comparisons with the experimental data show the ability of this model to estimate not only the apparent and intrinsic permeabilities but also their evolutions under loading due to a change in the pore size distribution. This model and the experimental set up have been extended to estimate the relative permeabilities of gas mixtures in the future. The final chapter presents a study of the adsorption of methane on different porous media fractured by electrical shocks. The results, concerning the estimation of the in-place resources, have shown that fracturing can enhance the extraction of the initial amount of adsorbed gas.
150

L'influence de l'irradiation sur les propriétés structurelles et de transport du graphène / The influence of irradiation on structural and transport properties of graphene

Deng, Chenxing 26 May 2015 (has links)
Le graphène est une simple couche de nid d'abeille motifs atomes de carbone. Il a suscité beaucoup d'intérêt dans la dernière décennie en raison de ses excellentes propriétés électroniques, optiques et mécaniques, etc., et montre larges perspectives d'applications dans le futur. Parfois, les propriétés du graphène doivent être modulées pour s’adapter à des applications spécifiques. Par exemple, le contrôle du niveau de dopage fournit un bon moyen de moduler les propriétés électriques et magnétiques de graphène, qui est important pour la conception de dispositifs de mémoire et de logique à base de graphène. En outre, la possibilité de régler la conductance électrique peut être utilisée pour fabriquer le transistor de graphène, et le dépôt chimique en phase vapeur (CVD) Procédé montre la possibilité d'effectuer la préparation de graphène intégrées dans les processus de fabrication de semi-conducteur. L'injection de spin et l'irradiation sont méthodes efficaces et pratiques pour adapter les propriétés de transport du graphène. Mais en raison du processus de fabrication complexe, il est difficile de préparer le dispositif de transport de spin graphène succès. La lithographie et décoller les processus qui impliquent utilisant résine photosensible va dégénérer les propriétés de transport du graphène. En outre, la sensibilité du graphène aux molécules H2O et O2 lorsqu'il est exposé à l’air ambiant entraînera faible signal de rotation et le bruit de fond. L'irradiation fournit une méthode propre à moduler les propriétés électriques de graphène qui n’impliquent pas de traitement chimique. En ions ou irradiation d'électrons, la structure de bande électronique de graphène peut être réglé et la structure en treillis est modulé aussi bien. En outre, les impuretés chargées et dopage résultant de l'irradiation peuvent modifier les propriétés électroniques du graphène comme la diffusion électron-phonon, libre parcours moyen et la densité de support. Comme indiqué, le graphène oxydation peut être induite par exposition à un plasma d'oxygène, et le N- dopage de graphène par recuit thermique dans de l'ammoniac a été démontré. En outre, la souche dans le graphène peut également être adaptée par irradiation, qui contribue également à la modification des propriétés de transport de graphène. En conclusion, l'irradiation fournit une méthode physique efficace pour moduler les propriétés structurelles et de transport de graphène, qui peuvent être appliqués dans la mémoire à base de graphène et des dispositifs logiques, transistor, et des circuits intégrés. Dans cette thèse, l'irradiation d'ions hélium a été réalisée sur le graphène cultivé sur substrat SiO2 par la méthode CVD, et les propriétés structurelles et de transport ont été étudiés. Le dopage de transfert de charge dans le graphène induite par les résultats d'irradiation dans une modification de ces propriétés, qui suggère une méthode pratique pour les adapter. En outre, l'irradiation par faisceau d'électrons a été effectuée sur graphène cultivé sur substrat de SiC. Les amorphisations progressives, contraintes et d'électrons dopage locales contribuent à la modification des propriétés structurelles et de transport dans le graphène qui peuvent être observés. / Graphene is a single layer of honeycomb patterned carbon atoms. It has attracted much of interest in the past decade due to its excellent electronic, optical, and mechanical properties, etc., and shows broad application prospects in the future. Sometimes the properties of graphene need to be modulated to adapt for specific applications. For example, control of doping level provides a good way to modulate the electrical and magnetic properties of graphene, which is important to the design of graphene-based memory and logic devices. Also, the ability to tune the electrical conductance can be used to fabricate graphene transistor, and the chemical vapor deposition (CVD) method shows the possibility to make the preparation of graphene integrated into semiconductor manufacture processes. Moreover, the sensitivity of graphene to the H2O and O2 molecules when exposed to the air ambient will result in weak spin signal and noise background. Irradiation provides a clean method to modulate the electrical properties of graphene which does not involve chemical treatment. By ion or electron irradiation, the electronic band structure of graphene can be tuned and the lattice structure will be modulated as well. Moreover, the charged impurities and doping arising from irradiation can change the electronic properties of graphene such as electron-phonon scattering, mean free path and carrier density. As reported, graphene oxidization can be induced by exposure to oxygen plasma, and N-Doping of Graphene through thermal annealing in ammonia has been demonstrated. Furthermore, the strain in graphene can also be tailored by irradiation, which also contributes to the modification of transport properties of graphene. In conclusion, irradiation provides an efficient physical method to modulate the structural and transport properties of graphene, which can be applied in the graphene-based memory and logic devices, transistor, and integrated circuits (ICs). In this thesis, Helium ion irradiation was performed on graphene grown on SiO2 substrate by CVD method, and the structural and transport properties were investigated. The charge transfer doping in graphene induced by irradiation results in a modification of these properties, which suggests a convenient method to tailor them. Moreover, electron beam irradiation was performed on graphene grown on SiC substrate. The local progressive amorphization, strain and electron doping contribute to the modification of structural and transport properties in graphene which can be observed.

Page generated in 0.0363 seconds