• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 32
  • 8
  • 6
  • 3
  • 1
  • Tagged with
  • 52
  • 52
  • 34
  • 19
  • 18
  • 11
  • 9
  • 8
  • 8
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Estudos estruturais da Seril-tRNA Sintetase nativa e em interação com tRNAs cognatos de Trypanosoma brucei / Structural studies of the native Seryl-tRNA Synthetase and in interaction with cognates tRNAs from Trypanosoma brucei

Daiana Evelin Martil 17 April 2014 (has links)
A síntese de selenocisteína e sua incorporação co-traducional em selenoproteínas como resposta a um códon UGA em fase requerem uma complexa maquinaria molecular. Em eucariotos, foram identificados componentes que participam da reação de formação de selenocisteína: Seril-tRNA sintetase (SerRS), O-fosfoseril-tRNA quinase (PSTK), SECIS Binding Protein 2 SBP2, um fator de elongação específico para Sec (EFSec), selenofosfato sintetase 1 (SPS1) e selenofosfato sintetase 2 (SPS2), SEPSECS, proteína ligante de RNA SECp43, proteína ribossomal L30, um tRNA de inserção de selenocisteína (tRNASec, SELC) e uma sequência específica no RNA mensageiro (elemento SECIS). O primeiro passo da incorporação de selenocisteína em proteínas é realizado pela SerRS, que aminoacila o tRNA com serina através da ativação da serina por Mg+2 e ATP, levando a formação de um intermediário ligado a enzima (Ser-AMP). Posteriormente, ocorre a mudança do radical Ser do intermediário Ser-AMP para o tRNASec, e subsequentemente, a conversão enzimática de Ser-tRNASec para Sec-tRNASec. Através de análises in sílico nosso grupo identificou componentes da maquinaria de inserção de selenocisteína em espécies de Kinetoplastida. Foram identificados homólogos de tRNASec e as enzimas TbSerRS, TbSPS2, TbPSTK, TbSepSecS e TbEFSec. Nosso principal alvo é o estudo estrutural da SerRS de Trypanosoma brucei nativa e em complexo com o tRNASec e com as isoformas do tRNASer. Uma nova metodologia no processo de purificação desta enzima foi desenvolvida e, através das técnicas de cromatografia de exclusão molecular, espalhamento de luz dinâmico e ultracentrifugação analítica conseguimos determinar o estado oligomérico da TbSerRS. O resultado de dímeros em solução corroborou com dados reportados na literatura, além de verificarmos por meio de estudos de cinética enzimática que a enzima encontra-se ativa sob as condições utilizadas. A técnica de ultracentrifugação analítica de sedimentação em equilíbrio também nos permitiu verificar a formação do complexo SerRS-tRNA, mas não nos possibilitou definir a estequiometria deste complexo. Estudos estruturais da enzima nativa e em interação com os tRNAs SELC e com as isoformas do tRNASer, L-serina, um análogo não hidrolisável de AMP, MgCl2, e com porções menores dos tRNAs foram realizados por meio da cristalografia por difração de raios X. Através dessa técnica, dezessete conjunto de dados foram coletados, processados e estão em fase de refinamento. Algumas análises estruturais possibilitaram confirmar a presença de duas moléculas de glicerol em cada monômero na região do sítio ativo para a estrutura da TbSerRS nativa e uma molécula de dAMP para o complexo TbSerRS-dAMP. / The synthesis of selenocysteine and its co-translational incorporation in selenoproteins in response to a UGA codon in frame require complex molecular machinery. In eukaryotes, components that participate in the reaction of selenocysteine formation were identified: SeryltRNA synthetase (SerRS), O-phosphoseryl-tRNA kinase (PSTK), SECIS Binding Protein 2 - SBP2, a selenocysteine-specific elongation factor (EFSec), selenophosphate synthetase 1 (SPS1) and selenophosphate synthetase 2 (SPS2), SEPSECS, SECp43 RNA binding protein, ribosomal protein L30, selenocysteine tRNA (tRNASec, SELC), and a specific sequence in the messenger RNA (SECIS element). The first step for selenocysteine incorporating is performed by SerRS that aminoacylates the tRNA with serine through serine activation by Mg2+ and ATP leading to the formation of an intermediate linked to the enzyme (Ser-AMP). Subsequently, the change of the Ser radical to tRNASec takes place followed by the enzymatic conversion of Ser-tRNASec to Sec-tRNASec. Through in silico analysis our group has identified components of the selenocysteine insertion machinery in species of Kinetoplastida. Homologues of tRNASec and the enzymes TbSerRS, TbSPS2, TbPSTK, TbSepSecS and TbEFSec were identified. Our main target is the structural study of the native SerRS from Trypanosoma brucei and SerRS in complex with the tRNASec and the tRNASer isoforms. A new methodology in the purification process of this enzyme has been developed, and through molecular exclusion chromatography, dynamic light scattering and analytical ultracentrifugation techniques we were able to determine the oligomeric state of TbSerRS. The result of dimers in solution corroborated with the data reported in the literature. Moreover, we were able to verify through studies of enzyme kinetics that the enzyme is active. The sedimentation equilibrium analytical ultracentrifugation technique also demonstrated the formation of the SerRS-tRNA complex, however, it did not allow the definition of the complex stoichiometry. Structural studies of the native enzyme and its interaction with SELC, tRNASer isoforms, L-serine, a non-hydrolyzable AMP analog, MgCl2, and smaller portions of tRNAs were performed by X-ray diffraction crystallography. Through this technique, seventeen data sets were collected, processed, and are being submitted to refinement processes. Initial structural analysis allowed the confirmation of the presence of two glycerol molecules in each monomer in the active site region in the native structure of TbSerRS and one dAMP molecule in the TbSerRS-dAMP complex.
22

Caracterização do papel da glutamil-tRNA sintetase na localização subcelular de proteínas / Characterization of the role of glutamyl-tRNA synthetase in the protein subcellular localization

Luíza Lane de Barros Dantas 17 June 2010 (has links)
Nos organismos eucariotos, aproximadamente 50% das proteínas traduzidas no citoplasma são transportadas para as organelas, onde irão desempenhar suas funções. Com isso, surgiu um intricado sistema de transporte intracelular de proteínas. Nas plantas, a presença de uma segunda organela endossimbionte, o plastídio, tornou este sistema mais complexo e gerou demanda adicional por transporte. Ainda, grande maioria das proteínas mitocondriais e plastidiais são codificadas por genes nucleares e importadas do citosol. O dogma uma proteína-uma localização foi associado ao conceito de um gene-uma proteína na biologia celular. Entretanto, proteínas individuais podem ter mais de uma função, e mais recentemente, proteínas codificadas por um único gene foram identificadas em mais de um compartimento subcelular, o que deu origem ao conceito de duplo direcionamento (DD). Um exemplo bem estudado de DD vem das proteínas da família das aminoacil-tRNA sintetases (aaRS), que participam da síntese protéica ao acoplar o aminoácido ao seu tRNA cognato. Dentre as aaRSs, a glutamil-tRNA sintetase citosólica (GluRS), através de sua extensão N-terminal, parece estar envolvida com outras funções além da tradução. Em Arabidopsis thaliana, há dois genes nucleares que codificam a GluRS, um para uma proteína de duplo direcionamento (DD) e outro para uma proteína citosólica. Resultados recentes em nosso laboratório mostraram que a GluRS citosólica pode estar relacionada ao controle da localização subcelular de proteínas organelares em Arabidopsis. Para verificar um eventual papel desta proteína na localização subcelular de outras proteínas, foram realizados ensaios de duplo-híbrido em levedura, os quais mostraram interação entre a GluRS e a glutamina sintetase (GS) de Arabidopsis thaliana, proteína de DD para mitocôndrias e cloroplastos Esta interação foi confirmada in planta, sendo a sequência da GluRS responsável pela interação localizada na região N-terminal, do resíduo 207 ao 316. Análises filogenéticas apontam que esta região encontra-se ausente nas bactérias e que originou-se provavelmente em Archea, entre 2,6 e 1,8 bilhões de anos. Além disso, observa-se que esta sequência é conservada em fungos, musgos e plantas vaculares, tendo originado-se em Arabidopsis há cerca de 2 bilhões de anos. / In eukaryotic organisms, about 50% of cytoplasmic translated proteins are transported to the organelles, where they can play their roles. Thus, a complex system for intracellular transport was established. In plants, the presence of a second endosymbiont organelle, the plastid, turned this system still more intricated and required an additional transport mechanism. Besides, most of organellar proteins are coded by nuclear genes and imported from the cytosol. The one protein-one localization was associated to the idea of one gene-one protein, which has long been established in molecular biology. However, individual proteins can show more than one function, and recently, proteins coded by one single gene were identified in more than one subcellular compartment, which has originated the concept of dual targeting. One of the most studied example of dual targeted proteins is the aminoacyl-tRNA synthetase (aaRS) family, which are related to protein synthesis by attaching the correct amino acid onto the cognate tRNA molecule. Among the aaRSs, cytosolic glutamyl-tRNA synthetase (GluRS), through its N-terminal extension, seems to be involved in other cellular role beyond translation. In Arabidopsis thaliana, there are two genes encoding GluRS, one for a dual-targeted protein and other for a cytosolic protein. Recent results in our laboratory showed that GluRS interacts with proteins destinated to other organelles, which suggest that this protein might have a role in interfering on protein localization in Arabidopsis. In order to gain some information on the role of this protein in subcellular localization, yeast two-hybrid assays were performed. These studies showed the interaction between GluRS and glutamine synthetase (GS), a mitochondrial and chloroplastic dual-targeted protein. This interaction was confirmed in planta. In addition, the GluRS sequence associated to protein interaction was localized at its N-terminal portion, between the residues 207 316. Phylogenetic analysis revealed that this region is absent in bacteria and it probably arose from Archea between 2.6 and 1.8 billion years ago. Also, this sequence is conserved in fungi, moss and all the green plants investigated. Finally, datation analysis showed that this sequence arose in Arabidopsis between 2 and 1.7 billion years ago.
23

Identificação e caracterização do papel da glutamil-tRNA sintetase na localização de proteínas cloroplásticas / Identification and characterization of the role of glutamyl-tRNA synthetase on the localization of chloroplastic proteins

Marcela Emanuele Scarso 11 January 2012 (has links)
A regulação da localização de proteínas é um dos aspectos fundamentais na biologia celular vegetal. Os cloroplastos importam mais de 90% de suas proteínas do citosol, portanto, é importante caracterizar os fatores citosólicos que podem estar envolvidos no direcionamento de proteínas para as organelas. Um ensaio de duplohíbrido em leveduras com as proteínas cloroplastidiais HMPPK/TMPPase (TH1) e Glutamina Sintetase (GS) II usados como iscas revelou que a forma citosólica da glutamil-tRNA sintetase - GluRS (At5g26710) de Arabidopsis thaliana interagiu com ambas as proteínas. Estudos de Complementação da Fluorescência Bimolecular (BiFC) confirmaram tais interações in planta. Estudos com deleções na região Nterminal da GluRS mostraram que esta região é responsável pelas interações com HMPPK/TMPPase e GSII. Além disso, seis resíduos de aminoácidos parecem ser cruciais para a interação entre as proteínas. Curiosamente, foi mostrado que a GluRS está envolvida na localização de proteínas em leveduras. A fim de obter mais informações sobre o envolvimento da GluRS ns localização de proteínas nos cloroplastos, foram produzidos plantas de tabaco transgênicas expressando uma proteína quimérica, feita pela fusão do gene codificador da HMPPK/TMPPase, TH1- GFP, e GSII-GFP e posteriormente usados em ensaios de agroinfiltração com RNA de interferência (RNAi) para GluRS. Análises em microscópio confocal mostraram que TH1-GFP e GSII-GFP acumulam no citosol em vez de serem direcionados aos cloroplastos. Neste trabalho, mostramos pela primeira vez que a GluRS está envolvida na localização de proteínas cloroplastidiais em plantas e esse mecanismo é também conservado em Saccharomyces cerevisiae. / Regulation of protein localization is one of the key aspects in plant cell biology. Chloroplasts import more than 90% of their proteins from the cytosol, therefore, it is important to identify and characterize cytosolic factors that might be involved in protein delivery to the organelar envelope. A yeast two-hybrid screen with a chloroplastlocalized HMPPK/TMPPase protein and glutamine synthetase (GS), used as baits, revealed that the cytosolic form of the glutamyl-tRNA synthetase (GluRS) (At5g26710) from Arabidopsis thaliana interacted with both proteins. Bimolecular Fluorescence Complementation (BiFC) studies confirmed such interactions in planta. Deletion studies of GluRS showed that the N-terminal region of the protein is responsible for proteinprotein interactions (PPI) with TH1 and GS. In addition, six amino acid residues appeared to be crucial for PPI. Interestingly, GluRS has been also shown to be involved in regulating protein localization in yeast. In order to gain more information about the involvement of GluRS on protein localization in chloroplasts, we produced transgenic tobacco plants expressing a chimeric protein made by the fusion of TH1- GFP and GSIIGFP and agroinfiltrated with a RNA interference (RNAi) construct against GluRS. Confocal analysis showed that TH1-GFP and GSII-GFP accumulated in the cytosol instead of being targeted to chloroplasts. Here, we show for the same time that GluRS is involved in protein localization in plants and this mechanism is also conserved in Saccharomyces cerevisiae.
24

The Biochemical Characterization of Human Histidyl-tRNA Synthetase and Disease Associated Variants

Abbott, Jamie Alyson 01 January 2017 (has links)
Human histidyl-tRNA synthetase (HARS) is an aminoacyl-tRNA synthetase (AARS) that catalyzes the attachment of the amino acid histidine to histidyl-tRNA (tRNAHis) in a two-step reaction that is essential for protein translation. Currently, two human diseases, Usher Syndrome IIIB (USH3B) and an inherited peripheral neuropathy, Charcot Marie Tooth Syndrome (CMT), have been linked genetically to single point mutations in the HARS gene. The recessive HARS USH3B mutation encodes an Y454S substitution localized at the interface between the anticodon-binding domain and the catalytic domain of the opposing subunit. Patients with Usher Syndrome IIIB lose their sight and hearing during their second decade of life, and clinicians have observed that the onset of deafness and blindness may be episodic and correlate with febrile illness. Furthermore, some young USH3B patients present with a fatal form of acute respiratory distress. In addition to the single HARS mutation linked to Usher Syndrome, eight other mutations in the HARS gene are associated with CMT, an inherited peripheral neuropathy. Peripheral neuropathies are associated with progressive and length-dependent damage of the motor and sensory neurons that transmit information to the spinal cord. The age of onset and phenotypic severity of CMT linked to HARS is highly variable. When expressed in a yeast model system, the HARS variants are dominantly lethal, and confer defects in axonal guidance and locomotor deficiencies when expressed in C.elegans. Here, the biochemical characterization of the HARS USH3B and three peripheral neuropathy variants are described. The approaches included enzyme kinetic analysis with purified HARS enzymes to monitor catalytic deficiencies, differential scanning fluorimetry (DSF) to evaluate structural instability, and cellular models to detect physiological effects of axonal outgrowth by CMT variants. The results suggest that Usher Syndrome IIIB is unlikely to be a consequence of a simple loss of aminoacylation function, while HARS-linked peripheral neuropathy variants all share common catalytic defects in aminoacylation. The HARS system represents a notable example in which two different complex human diseases arise from distinct mutations in the same parent gene. By understanding the biochemical basis of these inherited mutations and their link to Usher Syndrome and CMT, it may be possible to develop mechanism-based therapies to improve the quality of life of patients afflicted with them.
25

Mistranslation and Quality Control of Aminoacyl-tRNA Synthetases

Han, Nien-Ching 07 October 2021 (has links)
No description available.
26

Biophysical Parameters of Nucleic Acid Binding Proteins and Protein-Protein Interactions

Refaei, Mary Anne January 2022 (has links)
No description available.
27

Role of Coupled Dynamics and a Strictly Conserved Lysine Residue in the Function of Bacterial Prolyl-tRNA Synthetase and Substrate Binding by a Related <i>trans</i>-Editing Enzyme ProXp-ala

Sanford, Brianne 05 September 2014 (has links)
No description available.
28

The Role in Translation of Editing and Multi-Synthetase Complex Formation by Aminoacyl-tRNA Synthetases

Raina, Medha Vijay 25 September 2014 (has links)
No description available.
29

Beyond Mistranslation: Expanding the Role of Aminoacyl-tRNA Synthetases towards the Maintenance of Cellular Viability

Mohler, Kyle 27 October 2017 (has links)
No description available.
30

Requirements and rationale for amber translation as pyrrolysine

Longstaff, David Gordon 10 December 2007 (has links)
No description available.

Page generated in 0.0615 seconds