• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 116
  • Tagged with
  • 116
  • 116
  • 116
  • 116
  • 112
  • 110
  • 110
  • 110
  • 72
  • 53
  • 44
  • 10
  • 9
  • 9
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Adjustable white-light emission from a photo-structured micro-OLED array

Krotkus, Simonas, Kasemann, Daniel, Lenk, Simone, Leo, Karl, Reineke, Sebastian 10 January 2017 (has links)
White organic light-emitting diodes (OLEDs) are promising candidates for future solid-state lighting applications and backplane illumination in large-area displays. One very specific feature of OLEDs, which is currently gaining momentum, is that they can enable tunable white light emission. This feature is conventionally realized either through the vertical stacking of independent OLEDs emitting different colors or in lateral arrangement of OLEDs. The vertical design is optically difficult to optimize and often results in efficiency compromises between the units. In contrast, the lateral concept introduces severe area losses to dark regions between the subunits, which requires a significantly larger overall device area to achieve equal brightness. Here we demonstrate a color-tunable, two-color OLED device realized by side-by-side alignment of yellow and blue p-i-n OLEDs structured down to 20 μm by a simple and up-scalable orthogonal photolithography technique. This layout eliminates the problems of conventional lateral approaches by utilizing all area for light emission. The corresponding emission of the photo-patterned two-unit OLED can be tuned over a wide range from yellow to white to blue colors. The independent control of the different units allows the desired overall spectrum to be set at any given brightness level. Operated as a white light source, the microstructured OLED reaches a luminous efficacy of 13 lm W−1 at 1000 cd m−2 without an additional light outcoupling enhancement and reaches a color rendering index of 68 when operated near the color point E. Finally, we demonstrate an improved device lifetime by means of size variation of the subunits.
42

Compile- and run-time approaches for the selection of efficient data structures for dynamic graph analysis

Schiller, Benjamin, Deusser, Clemens, Castrillon, Jeronimo, Strufe, Thorsten 11 January 2017 (has links)
Graphs are used to model a wide range of systems from different disciplines including social network analysis, biology, and big data processing. When analyzing these constantly changing dynamic graphs at a high frequency, performance is the main concern. Depending on the graph size and structure, update frequency, and read accesses of the analysis, the use of different data structures can yield great performance variations. Even for expert programmers, it is not always obvious, which data structure is the best choice for a given scenario. In previous work, we presented an approach for handling the selection of the most efficient data structures automatically using a compile-time approach well-suited for constant workloads. We extend this work with a measurement study of seven data structures and use the results to fit actual cost estimation functions. In addition, we evaluate our approach for the computations of seven different graph metrics. In analyses of real-world dynamic graphs with a constant workload, our approach achieves a speedup of up to 5.4× compared to basic data structure configurations. Such a compile-time based approach cannot yield optimal results when the behavior of the system changes later and the workload becomes non-constant. To close this gap we present a run-time approach which provides live profiling and facilitates automatic exchanges of data structures during execution. We analyze the performance of this approach using an artificial, non-constant workload where our approach achieves speedups of up to 7.3× compared to basic configurations.
43

Do socio-cultural factors influence medical students’ health status and health-promoting behaviors? A cross-sectional multicenter study in Germany and Hungary

Riemenschneider, Henna, Balázs, Péter, Balogh, Erika, Bartels, Axel, Bergmann, Antje, Cseh, Károly, Faubl, Nora, Füzesi, Zsuzsanna, Horváth, Ferenc, Kiss, István, Schelling, Jörg, Terebessy, András, Voigt, Karen 11 January 2017 (has links)
Background Physical and mental health is important for coping with the high requirements of medical studies that are associated with a higher risk for severe stress, insomnia, smoking, harmful alcohol consumption and easier access to drugs. Health behaviors of medical students influence not just their own health but also the health of their future patients. We examined whether socio-cultural factors can explain differences in students’ health status and health-promoting behaviors. Methods A multicenter cross-sectional survey in Germany (Dresden, Munich) and Hungary (Budapest, Pécs) enclosed international medical students in their 1st, 3rd and 5th academic years. The students were invited to voluntarily and anonymously complete a questionnaire on different aspects of health behavior during obligatory seminars and lectures in 2014. The response rate of the total sample was 56.2 % (n = 2935); the subgroup analysis enclosed data of German (n = 1289), Hungarian (n = 1057) and Norwegian (n = 148) students. Results A high number of Norwegian students (84.5 %) assessed their health status as very good/excellent. In comparison, only 60.3 % of the Hungarian and 70.7 % of the German participants reported a very good/excellent health status. The distributions were comparable between the study sites. Although gender, financial situation and nationality were significant health status predictors, they could explain only 8.2 % of the total variance of health status in the multivariable model. A comparably high number of Hungarian students (95.3 % vs. 67.4 % German and 56.7 % Norwegian) reported that they can currently do a lot/very much for their health. In contrast, a significant number of Norwegians (73.0 % vs. 63.7 % Hungarian and 51.5 % German) reported that they currently do a lot/very much for their health (chi2-test, p ≤ 0.001). Financial situation, study site and study year were the strongest predictors for health promotion activities (Nagelkerkes R2 = 0.06). Conclusions Based on our study, gender and study year played only a minor role in the health status and health promotion beliefs and activities of medical students. Structural (study site) and somewhat socio-cultural factors (nationality, financial situation) mainly explained the differences regarding health promoting behaviors. Obligatory, free-of-charge courses for health promotion (activity and relaxation) should be included in study curriculums.
44

A Self-Consistent Model for Thermal Oxidation of Silicon at Low Oxide Thickness

Gerlach, Gerald, Maser, Karl 11 January 2017 (has links)
Thermal oxidation of silicon belongs to the most decisive steps in microelectronic fabrication because it allows creating electrically insulating areas which enclose electrically conductive devices and device areas, respectively. Deal and Grove developed the first model (DG-model) for the thermal oxidation of silicon describing the oxide thickness versus oxidation time relationship with very good agreement for oxide thicknesses of more than 23 nm. Their approach named as general relationship is the basis of many similar investigations. However, measurement results show that the DG-model does not apply to very thin oxides in the range of a few nm. Additionally, it is inherently not self-consistent. The aim of this paper is to develop a self-consistent model that is based on the continuity equation instead of Fick’s law as the DG-model is. As literature data show, the relationship between silicon oxide thickness and oxidation time is governed—down to oxide thicknesses of just a few nm—by a power-of-time law. Given by the time-independent surface concentration of oxidants at the oxide surface, Fickian diffusion seems to be neglectable for oxidant migration. The oxidant flux has been revealed to be carried by non-Fickian flux processes depending on sites being able to lodge dopants (oxidants), the so-called DOCC-sites, as well as on the dopant jump rate.
45

The effect of dimethyl sulfoxide on the induction of DNA strand breaks in plasmid DNA and colony formation of PC Cl3 mammalian cells by alpha-, beta-, and Auger electron emitters 223Ra, 188Re, and 99mTc

Runge, Roswitha, Oehme, Liane, Kotzerke, Jörg, Freudenberg, Robert 16 January 2017 (has links)
BACKGROUND: DNA damage occurs as a consequence of both direct and indirect effects of ionizing radiation. The severity of DNA damage depends on the physical characteristics of the radiation quality, e.g., the linear energy transfer (LET). There are still contrary findings regarding direct or indirect interactions of high-LET emitters with DNA. Our aim is to determine DNA damage and the effect on cellular survival induced by (223)Ra compared to (188)Re and (99m)Tc modulated by the radical scavenger dimethyl sulfoxide (DMSO). METHODS: Radioactive solutions of (223)Ra, (188)Re, or (99m)Tc were added to either plasmid DNA or to PC Cl3 cells in the absence or presence of DMSO. Following irradiation, single strand breaks (SSB) and double strand breaks (DSB) in plasmid DNA were analyzed by gel electrophoresis. To determine the radiosensitivity of the rat thyroid cell line (PC Cl3), survival curves were performed using the colony formation assay. RESULTS: Exposure to 120 Gy of (223)Ra, (188)Re, or (99m)Tc leads to maximal yields of SSB (80 %) in plasmid DNA. Irradiation with 540 Gy (223)Ra and 500 Gy (188)Re or (99m)Tc induced 40, 28, and 64 % linear plasmid conformations, respectively. DMSO prevented the SSB and DSB in a similar way for all radionuclides. However, with the α-emitter (223)Ra, a low level of DSB could not be prevented by DMSO. Irradiation of PC Cl3 cells with (223)Ra, (188)Re, and (99m)Tc pre-incubated with DMSO revealed enhanced survival fractions (SF) in comparison to treatment without DMSO. Protection factors (PF) were calculated using the fitted survival curves. These factors are 1.23 ± 0.04, 1.20 ± 0.19, and 1.34 ± 0.05 for (223)Ra, (188)Re, and (99m)Tc, respectively. CONCLUSIONS: For (223)Ra, as well as for (188)Re and (99m)Tc, dose-dependent radiation effects were found applicable for plasmid DNA and PC Cl3 cells. The radioprotection by DMSO was in the same range for high- and low-LET emitter. Overall, the results indicate the contribution of mainly indirect radiation effects for each of the radionuclides regarding DNA damage and cell survival. In summary, our findings may contribute to fundamental knowledge about the α-particle induced DNA damage.
46

Influence of Caloric Vestibular Stimulation on Body Experience in Healthy Humans

Schönherr, Andreas, May, Christian Albrecht 16 January 2017 (has links)
The vestibular system has more connections with and influence on higher cortical centers than previously thought. These interactions with higher cortical centers and the phenomena that they elicit require a structural intact cerebral cortex. To date, little is known about the role and influence of the vestibular system on one’s body experience. In this study we show that caloric vestibular stimulation (CVS) in healthy participants has an effect on the perceptive component of one’s body experience. After CVS all participants showed a statistically significant difference of thigh width estimation. In contrast to previous studies, which demonstrated an influence of CVS on higher cortical centers with an intact cerebral cortex both the cognitive and affective component of body experience were not effected by the CVS. Our results demonstrate the influence of the vestibular system on body perception and emphasize its role in modulating different perceptive-qualities which contributes to our body experience. We found that CVS has a limited influence on one’s conscious state, thought process and higher cortical functions.
47

Rational Structure-Based Rescaffolding Approach to De Novo Design of Interleukin 10 (IL-10) Receptor-1 Mimetics

Ruiz-Gómez, Gloria, Hawkins, John C., Philipp, Jenny, Künze, Georg, Wodtke, Robert, Löser, Reik, Fahmy, Karim, Pisabarro, M. Teresa 06 January 2017 (has links)
Tackling protein interfaces with small molecules capable of modulating protein-protein interactions remains a challenge in structure-based ligand design. Particularly arduous are cases in which the epitopes involved in molecular recognition have a non-structured and discontinuous nature. Here, the basic strategy of translating continuous binding epitopes into mimetic scaffolds cannot be applied, and other innovative approaches are therefore required. We present a structure-based rational approach involving the use of a regular expression syntax inspired in the well established PROSITE to define minimal descriptors of geometric and functional constraints signifying relevant functionalities for recognition in protein interfaces of non-continuous and unstructured nature. These descriptors feed a search engine that explores the currently available three-dimensional chemical space of the Protein Data Bank (PDB) in order to identify in a straightforward manner regular architectures containing the desired functionalities, which could be used as templates to guide the rational design of small natural-like scaffolds mimicking the targeted recognition site. The application of this rescaffolding strategy to the discovery of natural scaffolds incorporating a selection of functionalities of interleukin-10 receptor-1 (IL-10R1), which are relevant for its interaction with interleukin-10 (IL-10) has resulted in the de novo design of a new class of potent IL-10 peptidomimetic ligands.
48

Towards an optimal contact metal for CNTFETs

Fediai, Artem, Ryndyk, Dmitry A., Seifert, Gotthard, Mothes, Sven, Claus, Martin, Schröter, Michael, Cuniberti, Gianaurelio 07 April 2017 (has links)
Downscaling of the contact length Lc of a side-contacted carbon nanotube field-effect transistor (CNTFET) is challenging because of the rapidly increasing contact resistance as Lc falls below 20–50 nm. If in agreement with existing experimental results, theoretical work might answer the question, which metals yield the lowest CNT–metal contact resistance and what physical mechanisms govern the geometry dependence of the contact resistance. However, at the scale of 10 nm, parameter-free models of electron transport become computationally prohibitively expensive. In our work we used a dedicated combination of the Green function formalism and density functional theory to perform an overall ab initio simulation of extended CNT–metal contacts of an arbitrary length (including infinite), a previously not achievable level of simulations. We provide a systematic and comprehensive discussion of metal–CNT contact properties as a function of the metal type and the contact length. We have found and been able to explain very uncommon relations between chemical, physical and electrical properties observed in CNT–metal contacts. The calculated electrical characteristics are in reasonable quantitative agreement and exhibit similar trends as the latest experimental data in terms of: (i) contact resistance for Lc = ∞, (ii) scaling of contact resistance Rc(Lc); (iii) metal-defined polarity of a CNTFET. Our results can guide technology development and contact material selection for downscaling the length of side-contacts below 10 nm.
49

T Wave Amplitude Correction of QT Interval Variability for Improved Repolarization Lability Measurement

Schmidt, Martin, Baumert, Mathias, Malberg, Hagen, Zaunseder, Sebastian 19 January 2017 (has links)
Objectives: The inverse relationship between QT interval variability (QTV) and T wave amplitude potentially confounds QT variability assessment. We quantified the influence of the T wave amplitude on QTV in a comprehensive dataset and devised a correction formula. Methods: Three ECG datasets of healthy subjects were analyzed to model the relationship between T wave amplitude and QTV. To derive a generally valid correction formula, linear regression analysis was used. The proposed correction formula was applied to patients enrolled in the Evaluation of Defibrillator in Non-Ischemic Cardiomyopathy Treatment Evaluation trial (DEFINITE) to assess the prognostic significance of QTV for all-cause mortality in patients with non-ischemic dilated cardiomyopathy. Results: A strong inverse relationship between T wave amplitude and QTV was demonstrated, both in healthy subjects (R2 = 0.68, p < 0.001) and DEFINITE patients (R2 = 0.20, p < 0.001). Applying the T wave amplitude correction to QTV achieved 2.5-times better group discrimination between patients enrolled in the DEFINITE study and healthy subjects. Kaplan-Meier estimator analysis showed that T wave amplitude corrected QTVi is inversely related to survival (p < 0.01) and a significant predictor of all-cause mortality. Conclusion: We have proposed a simple correction formula for improved QTV assessment. Using this correction, predictive value of QTV for all-cause mortality in patients with non-ischemic cardiomyopathy has been demonstrated.
50

High Area Capacity Lithium-Sulfur Full-cell Battery with Prelitiathed Silicon Nanowire-Carbon Anodes for Long Cycling Stability

Krause, Andreas, Dörfler, Susanne, Piwko, Markus, Wisser, Florian M., Jaumann, Tony, Ahrens, Eike, Giebeler, Lars, Althues, Holger, Schädlich, Stefan, Grothe, Julia, Jeffery, Andrea, Grube, Matthias, Brückner, Jan, Martin, Jan, Eckert, Jürgen, Kaskel, Stefan, Mikolajick, Thomas, Weber, Walter M. 25 January 2017 (has links)
We show full Li/S cells with the use of balanced and high capacity electrodes to address high power electro-mobile applications. The anode is made of an assembly comprising of silicon nanowires as active material densely and conformally grown on a 3D carbon mesh as a light-weight current collector, offering extremely high areal capacity for reversible Li storage of up to 9 mAh/cm(2). The dense growth is guaranteed by a versatile Au precursor developed for homogenous Au layer deposition on 3D substrates. In contrast to metallic Li, the presented system exhibits superior characteristics as an anode in Li/S batteries such as safe operation, long cycle life and easy handling. These anodes are combined with high area density S/C composite cathodes into a Li/S full-cell with an ether- and lithium triflate-based electrolyte for high ionic conductivity. The result is a highly cyclable full-cell with an areal capacity of 2.3 mAh/cm(2), a cyclability surpassing 450 cycles and capacity retention of 80% after 150 cycles (capacity loss <0.4% per cycle). A detailed physical and electrochemical investigation of the SiNW Li/S full-cell including in-operando synchrotron X-ray diffraction measurements reveals that the lower degradation is due to a lower self-reduction of polysulfides after continuous charging/discharging.

Page generated in 0.0842 seconds