• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 49
  • 29
  • 11
  • 7
  • 3
  • 2
  • 2
  • 1
  • Tagged with
  • 123
  • 123
  • 59
  • 24
  • 24
  • 24
  • 24
  • 21
  • 19
  • 19
  • 14
  • 13
  • 13
  • 12
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Molecular Therapy in Urologic Oncology

Fröhner, Michael, Hakenberg, Oliver W., Wirth, Manfred P. January 2007 (has links)
During recent years, significant advances have been made in the field of molecular therapy in urologic oncology, mainly for advanced renal cell carcinoma. In this hitherto largely treatment-refractory disease, several agents have been developed targeting the von Hippel-Lindau metabolic pathway which is involved in carcinogenesis and progression of the majority of renal cell carcinomas. Although cure may not be expected, new drugs, such as the multikinase inhibitors sorafenib and sunitinib and the mammalian target of rapamycine inhibitor temsirolimus, frequently stabilize the disease course and may improve survival. Fewer data are available supporting molecular therapies in prostate, bladder, and testicular cancers. Preliminary data suggest a potential role of high-dose calcitriol and thalidomide in hormone-refractory prostate cancer, whereas targeted therapies in bladder and testicular cancers are still more or less limited to single-case experiences. The great theoretical potential and the multitude of possible targets and drug combinations, however, support further research into this exciting field of medical treatment of urologic malignancies. / Dieser Beitrag ist mit Zustimmung des Rechteinhabers aufgrund einer (DFG-geförderten) Allianz- bzw. Nationallizenz frei zugänglich.
112

Targeting the Histone Acetyl-Transferase, RTT109, for Novel Anti-Fungal Drug Development: A Dissertation

Lopes da Rosa-Spiegler, Jessica 03 May 2012 (has links)
Discovery of new antifungal chemo-therapeutics for humans is limited by the large degree of conservation among eukaryotic organisms. In recent years, the histone acetyl-transferase Rtt109 was identified as the sole enzyme responsible for an abundant and important histone modification, histone H3 lysine 56 (H3K56) acetylation. In the absence of Rtt109, the lack of acetylated H3K56 renders yeast cells extremely sensitive to genotoxic agents. Consequently, the ability to sustain genotoxic stress from the host immune system is crucial for pathogens to perpetuate an infection. Because Rtt109 is conserved only within the fungal kingdom, I reasoned that Rtt109 could be a novel drug target. My dissertation first establishes that genome stability provided by Rtt109 and H3K56 acetylation is required for Candida albicans pathogenesis. I demonstrate that mice infected with rtt109 -/- cells experience a significant reduction in organ pathology and mortality rate. I hypothesized that the avirulent phenotype of rtt109 -/- cells is due to their intrinsic hypersensitivity to the genotoxic effects of reactive oxygen species (ROS), which are utilized by phagocytic cells of the immune system to kill pathogens. Indeed, C. albicans rtt109 -/- cells are more efficiently killed by macrophages in vitro than are wild-type cells. However, inhibition of ROS generation in macrophages renders rtt109 -/- and wild-type yeast cells equally resilient to killing. These findings support the concept that ability to resist genotoxic stress conferred by Rtt109 and H3K56 acetylation is a virulence factor for fungal pathogens and establish Rtt109 as an opportune drug- target for novel antifungal therapeutics. Second, I report the discovery of a specific chemical inhibitor of Rtt109 catalysis as the initial step in the development of a novel antifungal agent. We established a collaboration with the Broad Institute (Cambridge, MA) to perform a high-throughput screen of 300,000 compounds. From these, I identified a single chemical, termed KB7, which specifically inhibits Rtt109 catalysis, with no effect on other HAT enzymes tested. KB7 has an IC50 value of approximately 60 nM and displays noncompetitive inhibition regarding both acetyl-coenzyme A and histone substrates. With the genotoxic agent camptothecin, KB7 causes a synergistic decrease in C. albicans growth rate. However, this effect is only observed in an efflux-pump mutant, suggesting that this compound would be more effective if it were better retained intracellularly. Further studies through structure-activity relationship (SAR) modifications will be conducted on KB7 to improve its effective cellular concentration.
113

MT1-MMP: TARGETING THE CENTER OF MELANOMA METASTASIS, GROWTH AND TREATMENT RESISTANCE

Marusak, Charles 23 May 2019 (has links)
No description available.
114

The epigenetic regulation of the EGF-receptor ligands Amphiregulin and Epiregulin and its impact on the outcome of EGFR-targeted therapies

Bormann, Felix 06 May 2014 (has links)
AREG und EREG sind Liganden des EGFR, deren Expression mit einem positiven EGFR-zielgerichtetem Therapieansprechen in Darmkrebs korreliert. Ziel dieser Arbeit war es, einen epigenetischen Einfluss auf die AREG und EREG Expression zu klären. Es wurde gezeigt, dass AREG und EREG in verschiedenen kolorektalen Krebszelllinien differenziell exprimiert sind, und dass die Expression beider Gene durch epigenetische Inhibitoren erhöht werden kann. Eine Analyse in fünf Zelllinien zeigte jedoch, dass die Promotoren beider Gene hauptsächlich unmethyliert vorlagen. Hingegen wurden kurze Regionen im Gen als differentiell methyliert identifiziert. Im AREG Gen liegt diese Region im Exon 2, was auf einen ungewöhnlichen Regulationsmechanismus hindeutet. Promotorfunktionsanalysen zeigten dann, dass diese Region eine methylierungs- und orientierungsabhängige Promotorfunktion hat, in die das MDB-Protein CTCF involviert sein könnte. Expressionsanalysen wiesen darauf hin, dass auch ZBTB33, ein anderes MDB-Protein, in die AREG Regulation involviert sein könnte. Die ZBTB33 Expression korrelierte negativ mit der AREG Expression in den Zelllinien. Eine ZBTB33-Bindungsstelle konnte ausserdem bioinformatorisch im AREG Exon 2 identifiziert werden. Des weiteren wurde gezeigt, dass die Behandlung der Zelllinie LIM1215 mit HDAC Inhibitoren in vitro zu einer Erhöhung der Sensitivität gegenüber EGFR-zielgerichteten Medikamenten führt, begleitet von einer Erhöhung der AREG und EREG Expression. Im in vivo Versuch konnte die Sensitivität von LIM1215 Zellen durch die Behandlung mit DNMT Inhibitoren erhöht werden. Begleitet wurde dies hier mit einer Verringerung der Methylierung der AREG und EREG intragenischen CpGs. Diese Ergebnisse zeigen auf, dass Patienten, die resistent gegenüber EGFR-zielgerichteten Therapien sind, möglicherweise sensitiv gemacht werden können. In dem Fall könnten AREG und EREG als prädiktive Marker eingesetzt werden, um den Effekt der epigenetischen Inhibitoren zu evaluieren. / AREG and EREG are ligands of the EGFR whose expression correlates with a positive EGFR-targeted therapy response in colorectal cancer. Aim of this work was to define the influence of epigenetic mechanisms on AREG and EREG gene expression. It could be shown that AREG and EREG are differentially expressed in a set of colorectal cancer cell lines and that the expression of both genes increases after treatment with epigenetically interfering compounds such as DNMT inhibitors and HDAC inhibitors. Methylation analysis showed that the promoters of both genes were mainly unmethylated. Nevertheless, short intragenic regions were identified to be differentially methylated. For AREG, this region is located within exon 2, indicating an uncommon epigenetic regulatory mechanism. Promoter function analyses showed that the AREG exon 2 region harbor methylation- and orientation dependent promoter function and they suggested CTCF, an MDB-protein, to be involved in this mechanism. Expression analysis experiments suggested also ZBTB33, another MDB-protein, to be involved in AREG regulation. ZBTB33 was differentially expressed in the cells and it correlated inversely with the AREG expression. Additionally, bioinformatic analyses identified a ZBTB33 binding site within AREG exon 2. It was also shown in this work that LIM1215 cells treated with HDACis were more sensitive towards EGFR inhibitors in vitro. This effect was accompanied by an increased AREG and EREG expression. In vivo, an increased sensitivity towards EGFR inhibitors was achieved in LIM1215 cells by treatment with a DNMT inhibitor. Here the effect was accompanied by a reduced methylation within the AREG and EREG intragenic CpGs. Together, the results suggested a new possibility to potentially make EGFR-targeted therapy resistant patients suitable for this therapy by epigenetic compound treatment. In that case AREG as well as EREG might be predictive markers to evaluate the effect of the epigenetic compounds during therapy.
115

Pathways, Networks and Therapy: A Boolean Approach to Systems Biology

Layek, Ritwik 2012 May 1900 (has links)
The area of systems biology evolved in an attempt to introduce mathematical systems theory principles in biology. Although we believe that all biological processes are essentially chemical reactions, describing those using precise mathematical rules is not easy, primarily due to the complexity and enormity of biological systems. Here we introduce a formal approach for modeling biological dynamical relationships and diseases such as cancer. The immediate motivation behind this research is the urgency to find a practicable cure of cancer, the emperor of all maladies. Unlike other deadly endemic diseases such as plague, dengue and AIDS, cancer is characteristically heterogenic and hence requires a closer look into the genesis of the disease. The actual cause of cancer lies within our physiology. The process of cell division holds the clue to unravel the mysteries surrounding this disease. In normal scenario, all control mechanisms work in tandem and cell divides only when the division is required, for instance, to heal a wound platelet derived growth factor triggers cell division. The control mechanism is tightly regulated by several biochemical interactions commonly known as signal transduction pathways. However, from mathematical point of view, these pathways are marginal in nature and unable to cope with the multi-variability of a heterogenic disease like cancer. The present research is possibly one first attempt towards unraveling the mysteries surrounding the dynamics of a proliferating cell. A novel yet simple methodology is developed to bring all the marginal knowledge of the signaling pathways together to form the simplest mathematical abstract known as the Boolean Network. The malfunctioning in the cell by genetic mutations is formally modeled as stuck-at faults in the underlying Network. Finally a mathematical methodology is discovered to optimally find out the possible best combination drug therapy which can drive the cell from an undesirable condition of proliferation to a desirable condition of quiescence or apoptosis. Although, the complete biological validation was beyond the scope of the current research, the process of in-vitro validation has been already initiated by our collaborators. Once validated, this research will lead to a bright future in the field on personalized cancer therapy.
116

Cytotoxicity of Metal Based Anticancer Active Complexes and their Targeted Delivery using Nanoparticles

Pramanik, Anup Kumar January 2016 (has links) (PDF)
Use of metal based anticancer medication began with the clinical approval of cisplatin in 1978. Research led to the development of six platinum based drug candidates which are in use around the world. However there is a great need to develop better treatment strategies. The present work entitled “Cytotoxicity of Metal Based Anticancer Active Complexes and Their Targeted Delivery Using Nanoparticles” is an effort to prepare cytotoxic metal complexes based on platinum(IV) and copper(II) and deliver them selectively to cancer cells using a targeting ligand, biotin, with two different delivery vehicles, viz. PEGylated polyamidoamine dendrimer (PAMAM) and gold nanoparticles (AuNPs). Chapter 1 provides a brief introduction to cancer and its characteristic features, followed by a short description about different treatment modalities in clinical practice. An account of the development of anticancer drugs starting from purely organic drugs to the field of metal based anticancer drugs is discussed. An overview of the available targeting strategies are discussed with specific examples. The section ends with the scope of the present work. Platinum based anticancer drugs currently in use contain platinum in the +2 oxidation state. These drugs showed side effects and are often ineffective against resistant cells, especially in the latter stages of treatment. A recent focus of metal based anticancer drug research is the development of platinum(IV) systems which shows promise to have greater activity in cancer cells in a reducing environment. Reported platinum(IV) dual drugs contain the components of “cisplatin” or an analogue along with an active organic drug. But there are no known dual drugs based on platinum(IV) that would generate a cytotoxic metal complex along with cisplatin. In Chapter 2, a bimetallic dual drug (M4) (Figure 1), the first of its kind, with components of cisplatin and copper bis(thiosemicarbazone) has been prepared (Figure 1). The components and the bimetallic complex were characterized using several spectroscopic techniques. The dual drug M4 was found to be highly cytotoxic (IC50 1.3 M) against HeLa cells and was better than cisplatin (IC50 6.8 M). The bimetallic complex turned out to be better than the mixture (IC50 7.2 M) of individual drugs which indicated possible synergism of the released cisplatin and the copper bis(thiosemicarbazone) from the dual drug. Figure 1: Structure of the platinum(IV) and copper bis(thiosemicarbazone) complexes. A novel approach towards conjugation of platinum(IV) drugs to a carrier has been developed using a malonate moiety (Figure 2). The bis(butyric acid) complex, Pt(NH3)2(OCOC3H7)2Cl2 (M1), was taken as model complex to demonstrate the conjugation strategy. The complex M4 was also conjugated to the partially PEGylated 5th generation PAMAM dendrimers. Figure 2: Schematic representation of the platinum(IV) drug conjugated PAMAM dendrimer. The cytotoxicity of M4 was reduced to a small extent on conjugation to the dendrimer. In the presence of 5 mM sodium ascorbate as a reducing agent, sustained release (40 %) of the drug was shown to occur over a period of 48 h by the drug release study. The reduction in cytotoxicity of the dendrimer conjugates could be due to incomplete release of the active drug. Unfortunately, no enhanced activity was observed with the additional targeting ligand, biotin. The drug uptake study revealed that the dendrimer conjugates were successful in entering cancer cells. There was no preferential uptake with biotin conjugated dendrimers which explained the similar cytotoxicity of dendrimer conjugates with and without biotin. Different delivery vehicles showed varied efficiency in delivering the pay load (drugs) to the cancer site. In this connection, PEGylated gold nanoparticles have shown good promise as a drug delivery vehicle. In Chapter 3, M1 and M4 are both conjugated to malonate functionalized PEGylated gold nanoparticles (30 nm). Biotin was also attached to the AuNPs for targeting HeLa cells. Figure 3: Schematic representation of the platinum(IV) drug and biotin conjugated AuNPs. The AuNPs were highly stable in water without agglomeration. There was no shift in the Surface Plasmon Resonance (SPR) band after conjugation of the drug molecules and targeting ligands. TEM images and DLS measurements showed there was no change in particle size. Drug conjugated AuNPs were also very stable in high salt concentrations as well as over a large range of pH. AuNPs with M1 were found to be less cytotoxic than the parent drug. Biotinylated AuNPs with M1 were more potent than non-biotinylated nanoparticles and increased cytotoxicity (35 %) was observed with biotin conjugation. Surprisingly, the enhanced activity of biotinylated AuNPs could not be correlated to the drug uptake study. The cytotoxicity of the bimetallic dual drug containing AuNPs were about 10-fold less and no increased activity was observed with the biotinylated conjugates. The reduced activity of AuNPs with the bimetallic drug was due to incomplete release from the AuNPs (20 % release after 48 h). But the release kinetics was very slow and sustained which might increase in vivo activity. The unexpected lower activity of biotinylated conjugates with copper bis(thiosemicarbazone) was suggestive of interference between bis(thiosemicarbazone) complex and the biotin receptor resulting in reduced drug uptake. Copper bis(thiosemicarbazone) complexes hold very good promise as a class of non-platinum anticancer drug candidates. However, they lack selectivity towards malignant cells. Recently, CuATSM has shown hypoxia selectivity and very good cytotoxicity resulting in 64CuATSM being used in advanced stages of clinical trials for imaging hypoxic cells. In Chapter 4, a copper bis(thiosemicarbazone) complex analogous to Cu(ATSM) with a redox active cleavable disulfide linker and a terminal carboxylic acid group (CuATSM-SS-COOH) was synthesised and characterised spectroscopically. The complex was highly cytotoxic and has an IC50 value (6.9 M) similar to that of cisplatin against HeLa cells. The complex was conjugated to PEGylated gold nanoparticles by amide coupling between the acid group from the drug molecule and the amine on the AuNPs (20 nm) for smart drug delivery. The gold nanoparticles were decorated with biotin for targeted delivery to the HeLa cells. Figure 4: Schematic representation of the CuATSM-SS-COOH and biotin decorated AuNPs. The CuATSM-SS-COOH was insoluble in water but conjugation to PEGylated gold nanoparticles made it water soluble. The drug molecules and biotin conjugated AuNPs were highly stable which was confirmed by TEM and DLS measurements. Similar to the study described in the previous chapter, these AuNPs were also stable in a wide range of pH and salt concentrations. In vitro glutathione (GSH) triggered release study demonstrated substantial release of the cytotoxic agent from the AuNPs (60 %) over a period of 48 h. In vitro cell viability study with HeLa cells showed reduced cytotoxicity (IC50 15 M) of AuNPs with and without biotin containing drug conjugates relative to the parent copper complex (IC50 6.9 M). The reduction of the cytotoxicity correlated well with the released amount of the active drug from the nanoconjugates over the same time period. In vivo studies demonstrated the effectiveness of these nanoparticle carriers as suitable vehicles as they exhibited nearly four-fold reduction of tumor volume without significant loss in body weight. Moreover, the biotin targeted nanoparticle showed significant (p < 0.5) reduction in tumor volume compared to the non-targeted gold nanoparticles. Thus, this smart linking strategy Can be extended to other cytotoxic complexes that suffer from non-specificity, low aqueous solubility and toxicity. Multinuclear anticancer active complexes do not act in the same way as that of their corresponding mononuclear analogues. In the case of multinuclear platinum complexes, the activity not only depends on the active moiety but also on the spacer length between the moieties. In Chapter 5, a series of multinuclear copper bis(thiosemicarbazone) complexes were prepared and characterised using different techniques. Figure 5: General structures of binuclear copper bis(thiosemicarbazone) complexes. All the complexes showed redox activity and have a very high negative reduction potential, i.e. these compounds would not be easily reduced in the biological medium and would remain as copper(II) species. As the concentration of the reducing agents are more within cancer cells, once these complexes are inside cells they would be reduced to Cu(I). These compounds were shown to be highly lipophilic from the large log P values. Unfortunately, these binuclear complexes were less active than similar mononuclear complexes. One possible reason for the reduced cytotoxicity of these complexes could be adherence of the complexes to the cell membrane due to the high lipophilicity of these complexes. Out of five different methylene spacers between two bis(thiosemicrarbazone) moieties, the complex with a three carbon spacer was shown to be the most active against HeLa cells. The complexes with five and six methylene spacers turn out to be noncytotoxic. Further experiments are necessary to reveal the mechanism of action in these complexes. In summary, bimetallic complexes can be very active and may be a way of overcoming drug resistance in platinum based therapy. A dual drug can be delivered using a malonate moiety and a disulfide linker. Gold nanoparticles are good delivery vehicles for these dual drugs and show great potential for improvement and translation to the next stage. (For figures pl refer the abstract pdf file)
117

Targeted Delivery of Cytotoxic Metal Complexes into Cancer Cells with and without Macromolecular Vehicles

Mitra, Raja January 2013 (has links) (PDF)
Anticancer active metal complexes such as cisplatin are routinely used for treating various cancers since 1978. However, the side effects of cisplatin overwhelm its therapeutic potential, especially in the latter stages of treatment. The nonspecific cytotoxicity of drugs could be avoided if targeted delivery to cancer cells is achieved using two different methodologies namely, enhanced permeability and retention in solid tumors (EPR) and receptor mediated endocytosis using a homing agent (RME). Ru(II)-arene complexes which are delivered specifically into cancer cells by the transferrin enzyme are less toxic compared to other metal complexes. The thesis describes the synthesis and use of Ru(II)-η6cymene complexes with different ancillary ligands which modulates the anticancer activity and the utility of two macromolecular vehicles in directed drug delivery. Ru(II)-η6cymene complexes with different heterocyclic ancillary ligands are synthesized and their anticancer activity tested against various cancer cell lines. Ruthenium complexes with mercaptobenzothiazoles are found to be quite active against the H460 cell lines that overexpress transferrin receptors and non-cytotoxic to the normal cell line, HEL299. Biophysical studies show that complexes (H1 and H8) can unwind the pBR322 DNA and inhibit the Topo IIα enzyme. A unique biphasic melting curve of CT DNA is observed in the presence of H1 which is attributed to formation of a dinuclear species (H20). Half-sandwich complexes of 6-thioguanine (6-TG) have also been prepared to improve the delivery and efficacy of 6-TG which is used in spite of a deleterious photoreaction. The Ru complexes cytotoxic to several leukemia cell lines. As they are photostable and anticancer active, they are better than 6-TG. Anticancer activity exhibiting piazselenols are used as ancillary ligands to make Ru(II)-arene complexes. Unfortunately, 1H NMR spectra suggests that piazselenol complexes dissociate in solution. However, the nitro substituted piazselenol and its Ru complex show the greatest cytotoxicity (<0.1 µM) against the A2780 cell line. The utility of PAMAM dendrimers and hyper branched polymers (hybramers) conjugated with a homing agent to target cancer cells by EPR and RME is probed. A cytotoxic copper complex (CuATSM) is covalently attached to the macromolecules through a disulfide linker, cleaved in the presence of GSH. Targeting efficacy of the folic acid-dendrimer conjugates is checked against two glioma cell lines. The folic acid-dendrimer conjugate is more active compared to dendrimer conjugate without folic acid against folate-receptor-overexpressing LN18 cell line. Biotin conjugated dendrimer shows better accumulation in HeLa cells, which require high amounts of biotin for growth. In vivo studies demonstrate that the conjugate can cross the blood-brain barrier. These studies suggest that PAMAM dendrimer can be used as a targeted delivery vehicle for cytotoxic metal complexes. Hyperbranched polymers decorated with propargyl groups and hydrophilic OH terminated TEG groups are attached to biotin and a cytotoxic Cu complex. (CuATSM-SS-CONH-N3) through ‘click’ reactions and tested against the HeLa cell line. On the basis of the studies conducted, it is concluded that targeted delivery of cytotoxic metal complexes are possible in the case of Ru(II) half-sandwich complexes and macromolecular vehicles like dendrimers are suitable for specifically delivering copper complexes into cancer cells.
118

Identification of Therapeutic Targets for Oral Squamous Cell Carcinoma

Avinash, Pradhan Shalmali January 2013 (has links) (PDF)
Oral squamous cell carcinoma (OSCC) is the most common head and neck cancer, with a worldwide incidence of 275,000 new cases annually (Warnakulasuriya, 2009). Globally, the head and neck carcinoma represents a major cause of morbidity and mortality and is the sixth most commonly occurring cancer (Warnakulasuriya, 2009). A majority (>90%) of the head and neck cancers are squamous in origin and thus are linguistically referred to as head and neck squamous cell carcinoma (HNSCC) (Warnakulasuriya, 2009). HNSCC includes cancers of the oral cavity, larynx and pharynx; oral cancer being the most common (Warnakulasuriya, 2009). Although, HNSCC is the sixth most common cancer globally (Warnakulasuriya, 2009), the Indian scenario is graver. According to GLOBOCAN 2008 (http://globocan.iarc.fr), the worldwide age standardized incidence rate (ASR) for HNSCC (and thus OSCC) is 5.3 and 2.5 per 100,000 males and females respectively (Ferlay et al., 2010). In India, the ASR is 9.8 and 5.2 per 100,000 males and females respectively, clearly demonstrating a remarkably high incidence rate of OSCC (Ferlay et al., 2010; http://globocan.iarc.fr). OSCC is a peculiar cancer which is largely preventable and rarely presents as a familial disorder. The most common etiological factors associated with OSCC include tobacco and alcohol consumption (Johnson, 2001). Additionally, high risk human papillomaviruses (HPV strains 16 and 18) as well as genetic predispositions have been implicated. The treatment of OSCC mainly relies on surgical resection of the tumor. The site, size, depth of infiltration and proximity to the bone of the tumor determine whether a combination of surgery with radiation therapy or chemotherapy would be advised (Scully and Bagan, 2009). The concomitant chemo-radiation therapy is the most commonly used strategy in locally advanced cancer. Taxanes (e.g., paclitaxel and docetaxel) and platinum-based induction chemotherapy (e.g., cisplatin) are the options in the treatment of locally advanced cancer. Epidermal growth factor receptor (EGFR) targeted with cetuximab in combination with radiotherapy has been successfully tested in a large randomized trial and thus is currently a new option (Scully and Bagan, 2009). The success of cetuximab has paved the path for the development and implementation of molecules targeting various signaling pathways. Despite extensive research on oral squamous cell carcinoma (OSCC), the five-year survival rate has not changed in several decades with the exception of the targeted treatment strategies involving cetuximab as discussed above. The current chemotherapeutic approaches lack selectivity and are flagitious. Thus, effective treatment of OSCC requires the identification of molecular targets to design appropriate therapeutic strategies. To this end, the present study took three distinct approaches in order to validate the use of existing targets and to reveal novel prognostic biomarkers and therapeutic targets. 1) Targeting the PI3K-AKT-MTOR pathway in OSCC and identification of determinants of its sensitivity. 2) Gene expression analysis of ectopically overexpressed TSC2 to identify new therapeutic targets and prognostic biomarkers as well as to elucidate the genes regulated by it. 3) Expression profiling of CYP1B1 in order to validate the use of CYP1B1 based prodrug therapy in OSCC. Investigations pertaining to the changes in gene and protein expression profiles in malignant as well as pre-malignant lesions have documented the deregulation of the PI3K-AKT-MTOR (phosphoinositide 3-kinase-AKT-mechanistic target of rapamycin) and EGFR (epidermal growth factor receptor) pathways in OSCC which are being widely targeted in many therapeutic strategies (Molinolo et al., 2007; Chakraborty et al., 2008; Matta and Ralhan, 2009; Molinolo et al., 2009; Stransky et al., 2011). The PI3K-AKT-MTOR pathway is a central hub for controlling cellular proliferation and growth in response to various intracellular as well as extracellular stimuli. Crucial signaling cascades including WNT, RAS, HIF-1α and AMPK cross-talk with the PI3K-AKT-MTOR pathway at a variety of molecular junctions. Thus, making this pathway sensitive to perceiving various growth modulatory conditions, ranging from the presence of growth factors to hypoxia and nutrient deprivation (Sengupta et al., 2010; Yang and Guan, 2007). The aberrant expression of the PI3K-AKT-MTOR pathway in OSCC advocated the targeting of this coveted pathway (Chakraborty et al., 2008). In various cancers, the monotherapeutic treatments with inhibitors like LY294002 (PI3K inhibitor) and rapamycin (MTOR inhibitor) demonstrated reduced efficacies. Such reduced efficacies were attributed to the drug toxicity and non-specific action of LY294002 (Davies et al., 2000; Sun et al., 2005; Ikezoe et al., 2007; Wang et al., 2008; Liu et al., 2009), or the ablation of a feedback inhibition loop leading to the reactivation of the PI3K-AKT-MTOR pathway by rapamycin (O'Reilly et al., 2006; Carracedo et al., 2008). Thus, rapamycin or its analogues demonstrated mediocre efficacy due to cytostatic effects in clinical trials, primarily due to the paradoxical activation of major survival kinases namely MAPK and AKT (O'Reilly et al., 2006; Carracedo et al., 2008). The present study aimed at increasing the efficacy of these drugs by incorporating a combinatorial approach. The MTT assay demonstrated that prolonged monotherapeutic treatments with rapamycin led to a modest growth inhibition in three OSCC (KB, SCC131 and SCC084) and HeLa cell lines. Western blot analysis of the phosphorylation status of AKT and RPS6KB1 revealed that monotherapeutic treatments with rapamycin for 96 hr led to the reactivation of the PI3K-AKT-MTOR pathway. Thus, the modest growth inhibitory effect of rapamycin was attributed to the reactivation of the PI3K-AKT-MTOR pathway. A combinatorial treatment approach was hence believed to circumvent this problem in order to increase the efficacy of targeting the PI3K-AKT-MTOR pathway. The PI3K inhibitor LY294002 was used combinatorially with rapamycin. This prolonged dual combinatorial treatment regime was distinctly more efficacious than either of the drugs alone and led to a reduction in cellular viability accompanied by increased sub-G1 population, indicating marked cell death that was characterized as caspase-3 dependent apoptosis. The differential sensitivity of the cell lines towards this combinatorial treatment revealed a novel determinant of the sensitivity, the transactivation of EGFR. The cell lines (SCC131 and SCC084) that were capable of transactivating EGFR were relatively resistant to the dual targeting of PI3K and MTOR in comparison to cell lines that did not transactivate EGFR (HeLa and KB). Further, targeting PI3K, MTOR and EGFR simultaneously was more efficacious in the presence of EGFR transactivation than dually targeting PI3K and MTOR. The results conclusively proved that the combinatorial therapeutic approach dually targeting PI3K and MTOR is a promising treatment strategy as compared to a monotherapeutic treatment and a major factor determining the sensitivity towards this treatment is the status of autophosphorylation of EGFR (Tyr1173) which governs the potential for EGFR transactivation by the combinatorial treatment. Thus, this study demonstrated that the status of EGFR autophosphorylation (Tyr1173) can be used as a biomarker to predict the sensitivity towards the combinatorial targeting of PI3K and MTOR in OSCC. The PI3K-AKT-MTOR pathway is negatively regulated by TSC2 (tuberous sclerosis complex 2; tuberin) (Tee et al., 2002). The importance of the TSC2 gene in the regulation of cell growth and proliferation is irrefutable. TSC2 facilitates the crosstalk between a variety of cellular signals, making it a crucial hub where many cellular networks integrate like AKT, MAPK and AMPK (Clements et al., 2007; Rosner et al., 2007; Rosner et al., 2008). It is a tumor suppressor gene and is downregulated in many cancers including OSCC (Chakraborty et al., 2008). In order to identify the genes regulated by TSC2 in OSCC, we stably overexpressed TSC2 in KB cells and the changes in the gene expression profiles caused by this ectopic overexpression were observed using a whole genome expression microarray. The results showed differential regulation of 268 genes (107 genes were upregulated and 161 genes were downregulated, p<0.05, fold change ≥ 1.5). A majority of these genes were functionally associated with transcription, cell growth and proliferation, apoptosis, cell cycle and neurogenesis. Functional annotation and network analysis was performed by using the DAVID v6.7 and IPA version 8.7 softwares. The microarray data revealed a novel aspect in the crosstalk between WNT signaling and TSC2, namely the transcriptional regulation of WNT signaling by TSC2. Further, in the context of therapeutic applications, the microarray analysis revealed multiple genes that were functionally categorized to be involved in response to radiation, UV and drugs (e.g., SERPINB13 and IL1B). Future studies on the regulation of such genes that are involved in responses to drugs and radiation may give insights into the role of TSC2 in resistance or sensitivity towards chemotherapy and radiation therapy. Moreover, EREG, a member of the epidermal growth factor family, was found to be the most downregulated gene in the microarray analysis. Previous reports have documented elevated levels of EREG in tuberous sclerosis lesions and its association with poor clinical prognosis in OSCC patients (Li et al., 2008; Shigeishi et al., 2008), making its regulatory aspects intriguing. Additionally, published data on the transcriptional functions of TSC2 instigated us to analyze the role of TSC2 in the regulation of EREG. TSC2 has been shown to modulate the transcription mediated by members of the steroid receptor superfamily of genes (Henry et al., 1998) and was shown to bind specifically to ERα and inhibit estrogen induced proliferation (Finlay et al., 2004). Also, TSC2 has been shown to possess C-terminal transcriptional activation domains (Tsuchiya et al., 1996). We have therefore attempted to investigate the transcription related functional aspects of TSC2 by exploiting the observed transcriptional repression of EREG. The physiological roles of TSC1 and TSC2 that are independent of the PI3K-AKT-MTOR pathway have been termed as ‘non-canonical’ (Neuman and Henske, 2011). The repression of EREG by TSC2 was observed to be insensitive to rapamycin, suggesting that it was independent of MTORC1 and thus a non-canonical function of TSC2. To determine whether the repression in EREG was at the level of the promoter, we performed a dual luciferase reporter assay. The results showed that the EREG promoter was repressed by stable as well as transient overexpression of TSC2. In order to elucidate the mechanism of transcriptional regulation by TSC2, we performed the ChIP analysis to observe the in vivo binding of TSC2 to the EREG promoter. In the ChIP analysis with the anti-TSC2 antibody, we observed that TSC2 did not bind to the EREG promoter between the regions -857 bp to -302 bp or -325 bp to +165 bp. Further, in silico analysis revealed an interesting trend among the transcription factors that were differentially regulated by TSC2 and had putative binding sites on the EREG promoter. A majority of these transcription factors (17/21) were downregulated by the overexpression of TSC2. This observation suggested that the repression of EREG could be an indirect effect due to repression of transcription factors caused by overexpression of TSC2. On the whole, this study revealed novel functions of TSC2 in OSCC with implications in determining novel biomarkers and therapeutic targets. As discussed previously, OSCC has a very flagitious treatment regime. A prodrug approach is thought to aid in targeting chemotherapy (Rooseboom et al., 2004). CYP1B1, a member of the cytochrome P450 family, has been implicated in chemical carcinogenesis (Bandiera et al., 2005; Sliwinski et al., 2010). There exists a general accordance that this protein is overexpressed in a variety of cancers (e.g., colon, lung, renal, bladder, prostate, breast, endometrial and esophageal cancers), making it an ideal candidate for a prodrug therapy (McFadyen et al., 1999; Murray et al., 2001; McFadyen et al., 2004; Sissung et al., 2006; Wen and Walle, 2007; Sliwinski et al., 2010). The activation of the prodrug facilitated by CYP1B1 would enable the targeting of chemotherapy to tumor tissues in which CYP1B1 is specifically overexpressed as a result reducing the non-specific side effects that the current chemotherapy elicits (Rooseboom et al., 2004). This study was aimed at validating the use of CYP1B1 as a target for the prodrug therapy in OSCC. The expression profile of CYP1B1 was analysed in a panel of 51 OSCC tumors, their corresponding normal tissues, an epithelial dysplasia lesion and its matched normal tissue by qRT-PCR, Western blotting and Immunohistochemistry. Counterintuitively, CYP1B1 was found to be downregulated in 77.78% (28/36) tumor tissues in comparison to their corresponding normal tissues as well as in the epithelial dysplasia lesion compared to its matched normal tissue at the transcriptional level, and in 92.86% (26/28) of tumor tissues at the protein level. This clearly demonstrated the downregulation of CYP1B1 at the transcriptional and translational levels in tumor tissues in comparison to their corresponding normal tissues. These observations indicate that caution should be observed as this therapy may not be applicable universally to all cancers. Since CYP1B1 has been shown to be involved in the activation of pro-carcinogens (Murray et al., 2001; Bandiera et al., 2005; Sissung et al., 2006), its inhibition could facilitate the development of a prophylactic therapy for oral cancer. Overall, this study has identified the transactivation of EGFR as a determinant of sensitivity towards combinatorial targeting of PI3K and MTOR in OSCC and has demonstrated that the autophosphorylation of EGFR (Tyr1173) can be used as a marker to judge the sensitivity towards this treatment. In the clinical perspective, the identification of such markers would aid in predicting the efficacy of targeted therapies. Such investigations would enable the strategic treatment of OSCC patients, thus decreasing the time lost in trial and errors for determining the appropriate treatment. Additionally, this study elucidated a novel role of TSC2 in the transcriptional repression of EREG, a prognostic biomarker for OSCC. Further, the study revealed potential prognostic biomarkers as well as therapeutic targets that are regulated by TSC2 by using a whole genome expression microarray. Moreover, the counterintuitive downregulation of CYP1B1 in OSCC tumors suggested the possibility of a prophylactic therapy for oral cancer but also advised a precautionary note for the application of prodrug treatments based on CYP1B1 overexpression in OSCC.
119

WISP1 and EMT-associated response and resistance to immune checkpoint blockade

Gaudreau, Pierre-Olivier 09 1900 (has links)
Les immunothérapies de type immune checkpoint blockade (ICB) ont révolutionné les approches thérapeutiques en oncologie médicale et ont largement contribué au fait que l’immunothérapie est maintenant considérée comme le quatrième pilier des traitements anticancer, aux côtés d’approches traditionnelles telles que la chirurgie, la radiothérapie et la chimiothérapie. Malgré les résultats encourageants des études cliniques évaluant ce type d’immunothérapie, la majorité des patients décèderont des suites de leur maladie. Conséquemment, le domaine de recherche visant à comprendre les mécanismes de résistance aux immunothérapies est en expansion constante. Plusieurs stratégies visant à améliorer les issues cliniques ont été proposées, parmi lesquelles figurent: 1) la recherche de nouvelles cibles thérapeutiques dans le microenvironnement immun tumoral et; 2) les études de combinaisons thérapeutiques où une immunothérapie est jumelée à d’autres types de modalités thérapeutiques potentiellement synergiques. Chacune des études présentées dans cette thèse de recherche s’apparente à l’une ou l’autre de ces stratégies. Dans le cadre de notre première étude, nous démontrons que la protéine WISP1 représente une cible prometteuse à l’intérieur du microenvironnement de plusieurs types de tumeurs solides étant donné son association avec différentes variables pronostiques et proinflammatoires, ainsi qu’avec un programme épigénétique complexe, la transition épithélialemésenchymateuse (Epithelial-Mesenchymal Transition; EMT). De plus, nous démontrons que les niveaux d’expression de WISP1 sont significativement plus élevés au sein des tumeurs démontrant une résistance primaire aux immunothérapies de type ICB, particulièrement lorsque qu’une signature reliée à l’EMT peut être retrouvée de façon concomitante. Pour notre deuxième étude, nous avons utilisé des modèles murins in vivo de cancer pulmonaire non à petites cellules KRAS-mutés afin de tester différentes combinaisons thérapeutiques jumelant une thérapie dite ciblée (i.e., un inhibiteur de MEK) a différentes immunothérapies de type ICB. Nos résultats démontrent que l’ajout d’une immunothérapie anti-CTLA-4 à l’inhibiteur de MEK AZD6244 (selumetinib) et une immunothérapie anti-PD-L1 augmente significativement la survie, et que ces bénéfices sont associés à une diminution de marqueurs reliés à l’EMT. Il existe donc un lien commun entre ces deux études qui repose sur l’importance de l’EMT comme facteur favorisant la résistance thérapeutique aux immunothérapies. De plus, nous démontrons pour la première fois que les bénéfices associés à la triple combinaison thérapeutique susmentionnée peuvent être corrélés à une diminution d’expression de marqueurs liés à l’EMT. Par conséquent, nos résultats sont discutés en tant que base potentielle pour de futures études visant à réduire la résistance thérapeutique reliée à l’EMT. Nous discutons également de la valeur translationnelle de nos résultats à travers le développement d’une étude clinique. / Immune checkpoint blockade (ICB) has revolutionized therapeutic approaches in the field of medical oncology and has largely contributed to the fact that immunotherapy is now being regarded as the fourth pillar of cancer treatment alongside surgery, radiotherapy and chemotherapy. Despite encouraging results from clinical trials using ICB, most patients ultimately relapse or succumb to their disease. Therefore, the field of immunotherapeutic resistance research is rapidly expanding. Many strategies to improve ICB responses have been undertaken, including: 1) the search for novel, actionable targets in the immune tumor microenvironment (TME) and; 2) therapeutic combination studies where an ICB backbone is combined with different, synergistic treatment modalities. Each of the studies presented in this research thesis embraces one of these strategies. In our first study, we show that WISP1 represents a promising TME target in multiple solid tumor types by demonstrating its association with prognostic and pro-inflammatory variables, as well as to a complex epigenetic program termed Epithelial-Mesenchymal Transition (EMT). Furthermore, we show that increased WISP1 expression is associated to primary resistance to ICB, particularly when EMT-related signatures are found concomitantly. In our second study, we used in vivo mouse models of KRAS-mutant Non-Small Cell Lung Cancer (NSCLC) to test different therapeutic combinations of targeted therapies (i.e., MEK inhibitor) and ICB. We found that the addition of anti-CTLA-4 ICB to MEK inhibitor AZD6244 (selumetinib) and anti-PD-L1 ICB increases survival, and that these benefits are associated with the downregulation of EMT-related markers. Therefore, there exists a common link between these studies, which relies on the significance of EMT as a detrimental factor within the TME and its association with ICB resistance. Moreover, we show for the first time that the benefits of ICB combination therapy can be associated to the downregulation of EMT markers in vivo. Consequently, we discuss how our results may constitute the basis for future work aiming at reducing EMT-mediated therapeutic resistance, as well as the translational relevance of our pre-clinical results through the development of a clinical trial.
120

Inhibiteurs de PARP : leur rôle potentiel en monothérapie et en combinaison en cancer du sein triple-négatif

Beniey, Michèle 12 1900 (has links)
Quatorze femmes canadiennes meurent chaque jour du cancer du sein. Le cancer du sein triple-négatif (CSTN) détient un mauvais pronostic De nombreux efforts sont fournis afin d'offrir à ces patientes des traitements ciblés, comme les inhibiteurs de poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) afin d’améliorer leur survie et de minimiser la toxicité liée à la chimiothérapie. Le sous-groupe de CSTN qui pourrait bénéficier des PARPi reste à être identifié. De plus, différentes stratégies d'administration des PARPi et de la chimiothérapie pourraient améliorer leur efficacité thérapeutique tout en diminuant la toxicité. Nous avons précédemment dérivé une signature génétique de 63 gènes prédisant la réponse aux PARPi avec une précision globale élevée. Nos objectifs sont 1) d'évaluer les implications cliniques de la signature génétique; et 2) de déterminer la séquence optimale d'administration du talazoparib et du carboplatin in vivo en cancer du sein triple-négatif BRCAWT. D'abord, nous avons évalué la fréquence mutationnelle des 63 gènes dans différents contextes cliniques. Deux bases de données publiques furent utilisées. Puis, nous avons comparé trois cohortes de xénogreffes orthotopiques: A) talazoparib en premier, combiné au carboplatin le jour 3; carboplatin en premier suivi du talazoparib B) un jour après; et C) sept jours après. La fréquence mutationnelle des 63 gènes était élevée chez les tumeurs luminales B et celles de mauvais pronostic. Les patientes luminales B mutées avaient une moindre survie que les patientes non mutées. Aussi, l'inhibition tumorale et métastatique était similaire pour les cohortes A et B, cependant la cohorte B avait moins de toxicité. Les PARPi pourraient avoir un rôle chez les tumeurs luminales B et celles de mauvais pronostic. Deuxièmement, le prétraitement avec le carboplatin semble améliorer la sensibilité au talazoparib et diminuer la toxicité. / Fourteen Canadian women die every day from breast cancer. Triple-negative breast cancer (TNBC) has a poor prognosis. Numerous efforts are made to offer these patients targeted therapies such as poly (adenosine diphosphate-ribose) polymerase inhibitors (PARPi) to improve survival and minimize chemotherapy-related toxicity. It is not well understood which subset of TNBC patients will benefit from PARPi; and if different sequencing strategies of PARPi and chemotherapy can improve therapeutic efficacy and decrease toxicity. We previously derived a 63-gene signature predicting response to PARPi with a high overall accuracy. Our objectives are 1) to evaluate the clinical implications of the 63-gene signature; and 2) to determine the optimal sequence of administration of talazoparib and carboplatin in vivo in BRCAWT TNBC. First, we evaluated the mutational frequency of the 63 genes in different clinical settings using two publically-available datatsets. Second, we compared three cohorts of orthotopic xenografts: A) talazoparib first, combined with carboplatin on day 3; carboplatin first, followed by talazoparib B) one day later; and C) seven days later. We found that the mutational frequency was high in breast cancer subtypes of poor prognosis. Mutated luminal B patients had a lower survival than non-mutated patients. We also found that tumoral and metastatic inhibition were similar between cohorts A and B, but cohort B had less toxicity. In conclusion, there is potential for PARPi efficacy in luminal B and poor prognosis tumors. Second, pretreatment with carboplatin may be an effective approach with less toxicity.

Page generated in 0.0735 seconds