• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 13
  • 6
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 45
  • 45
  • 10
  • 9
  • 7
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Analysis and modeling of diffuse ultrasonic signals for structural health monitoring

Lu, Yinghui 06 July 2007 (has links)
Structural Health Monitoring (SHM) refers to the process of nondestructive autonomous in situ monitoring of the integrity of critical engineering structures such as airplanes, bridges and buildings. Ultrasonic wave propagation is an ideal interrogation method for SHM because ultrasound is the elastic vibration of the material itself and is thus directly affected by any structural damage occurring in the paths of the propagating waves. The objective of this thesis is to provide a comprehensive damage detection strategy for SHM using diffuse ultrasonic waves. This strategy includes a systematic temperature compensation method, differential feature extraction methods optimized for discriminating benign surface condition changes from damage, and data fusion methods to determine the structural status. The temperature compensation method is based upon a set of pre-recorded baselines. Using the methods of baseline selection and baseline correction, a baseline that best matches a monitored signal in temperature is provided. For the differential feature extraction, three types of features are proposed. The first type includes basic differential features such as mean squared error. The second type is derived from a matching pursuit based signal decomposition. An ultrasonic signal is decomposed into a sum of characteristic wavelets, and differential features are extracted based upon changes in the decomposition between a baseline signal and a monitored signal. The third type is a phase space feature extraction method, where an ultrasonic signal is embedded into phase space and features are extracted based on changes of the phase portrait. The structural status is determined based on a data fusion strategy consisting of a threshold selection method, fusion at the feature level, and fusion at the sensor level. The proposed damage detection strategy is applied to experiments on aluminum specimens with artificial defects subjected to a variety of environmental variations. Results as measured by the probability of detection, the false alarm rate, and the size of damage detected demonstrate the viability of the proposed techniques.
12

Molecular and computational analysis of temperature compensation of the Neurospora crassa circadian clock

Valentine, Matthew January 2016 (has links)
Circadian clocks are internal timekeepers that allow organisms to anticipate and exploit predictable daily changes in their environment, aiding survival. Clock-driven rhythms, such as asexual spore development (conidiation) in Neurospora crassa, show temperature compensated periodicity that persists in constant conditions and can be reset by environmental time cues. This ability of circadian clocks to maintain a constant period and phase of behaviour over a range of temperatures is important, and whilst much of the machinery making up the circadian clock is known, the mechanism that underpins temperature compensation is not well understood. Further, it is unknown how the clock can control conidiation in the face of changing temperatures. To investigate possible mechanisms underlying temperature compensation, I first explored how compensation may arise within the central clock machinery using a comprehensive dynamic model of the Neurospora crassa circadian clock. This clock incorporates key components of the clock, and I introduced known temperature-sensitive component changes based on experimental observations. This analysis indicated that temperature-dependent changes in the binding of CK-1a to the FRQ-FRH complex may be pivotal in the temperature compensation mechanism. Previous work has highlighted the importance of the blue-light photoreceptor VIVID (VVD), as VVD knockout strains show a temperature-dependent delay in the phase of peak conidiation. Next I explored this potential role using a theoretical output model. By incorporating regulation of this pathway by VVD, I found that VVD may contribute to phase control by increasing expression of genes or proteins that peak early on in the output pathway. RNA-Seq experiments were carried out to assess the contribution of VVD to the overall transcriptomic profile of Neurospora. The analysis highlighted several key genes through which VVD may regulate the conidiation pathway, including the clock-controlled genes eas and ccg-9, which both show temperature- and strain-dependent changes in expression patterns over the time course of conidiation. In conclusion, VVD may indeed have an important role in the temperature compensation of output pathways, though further work is needed to assess the specific
contributions of genes highlighted by my RNA-Seq analysis to the compensatory mechanism.
13

Efeito de cátions alcalinos e cinética complexa durante a eletro-oxidação de etileno glicol / Cations effect and complex kinetics during ethylene glycol electro-oxidation

Elton Fabiano Sitta 11 May 2012 (has links)
Exemplos de comportamento complexo podem ser encontrados em vários sistemas na natureza, como dinâmica de populações, formação de padrões em pelos de animais e a auto regulação do metabolismo. Em geral, sistemas químicos e eletroquímicos apresentam também esse tipo de comportamento complexo e são comumente escolhidos como sistemas-modelo para estudar esses aspectos, uma vez que as variáveis são facilmente controláveis e as medidas são precisas. Apesar dos esforços realizados nas últimas duas décadas, existem ainda lacunas a serem preenchidas entre o mecanismo de reação e a teoria que explica as oscilações. Visando contribuir para o assunto, o presente trabalho trata da eletro-oxidação de etileno glicol sobre platina em meio alcalino em regime potenciostático e galvanostático. Utilizando Espectroscopia de Infravermelho por Transformada de Fourier in situ acoplada com técnicas eletroquímicas, é observado um decréscimo na razão entre a produção de carbonato/oxalato quando o raio dos cátions alcalinos é diminuído na seguinte ordem: Li+ < Na+ < K+. A origem de tal tendência pode ser dada em termos das interações não-covalentes entre os cátions e as espécies oxigenadas adsorvidas na superfície. Os aspectos não-lineares da reação são estudados aumentando a resistência entre o eletrodo de trabalho e o potenciostato. Oscilações com frequências tão altas quanto 40 Hz são observadas, sendo que estas se tornam mais lentas e complexas com o aumento da resistência, mimetizando o comportamento em controle galvanostático. O pH mostrou-se fundamental para o aparecimento do comportamento oscilatório, observado somente nos valores de pH 0, 2 e 14. Baixas correntes de oxidação e baixas frequências de oscilação em meio ácido são contrastadas com altas correntes e frequências em meio alcalino. Além disso, o efeito da temperatura é testado tanto em regime voltamétrico quanto nas séries temporais oscilatórias em pH ácido e alcalino. Em meio ácido, a energia de ativação decresce à medida que o potencial torna-se próximo ao potencial de pico e esta heterogeneidade está, provavelmente, conectada à diferentes rotas reacionais. A energia de ativação calculada através da frequência remete a valores intermediários aos encontrados em regime voltamétrico. Apesar de valores comuns encontrados para os termos de ativação sob regime voltamétrico em meio alcalino, as frequências de oscilação se mostraram quase invariantes com a temperatura, indicando que o sistema apresenta a chamada compensação de temperatura. / Examples of complex behavior can be found in several systems in nature such as population dynamics, animal coat patterns formation and metabolism self-assembly. In general, chemical and electrochemical systems also display this complex behavior and are commonly chosen as workhorses to study these aspects, once the variables are easily controlled and the measurements are precise. Despite the efforts made in this area in the last two decades, there are still gaps between the reaction mechanism and the theory underlying the oscillations. To shed some light on the non-linear aspects of alcohol electro-oxidation, the present work deals with the study the ethylene glycol electro-oxidation reaction in platinum and alkaline media from both gavanostatic and potenciostático control. By means of in situ Fourier Infrared Spectroscopy coupled with electrochemical techniques, it is found a decrease in the ratio of carbonate/oxalate production when the alkaline cations size decreases in the following order: Li+ < Na+ < K+. The origin of this tendency can be rationalized in terms of non-covalent interaction between cations and adsorbed oxygenated species. These interactions are proportional to the cation size and it influences directly the number of available free sites for alcohol adsorption. The non-linear aspects of the reaction are also studied increasing the total resistance between the working electrode and the potenciostat. It is observed oscillation frequencies as high as 40 Hz. Those non-linearities turned slower and more complex as the resistance increases, mimicking the behavior observed under galvanostatic control. The pH is a decisive parameter to the oscillatory behavior, observed only at pH 2, 4 and 14. Low oxidation currents under potential control followed by low frequency oscillations observed in acid media are in contrast to the high current and frequency in alkaline. Moreover the temperature effect is tested in both cyclic voltammetry profile and oscillatory time series in acid and alkaline media. In acid media, the activation energy decrease as the potential turns closer to the peak potential region, this heterogeneity is probably caused by different reactions. The activation energy calculated by oscillation frequency remits to intermediates values in relation to that found under voltammetry control. Although ordinary values for the activation factors are found under linear voltammetry control mode at pH 14, the oscillations frequencies are almost independent of the temperature, indicating that the system shows the, so called, temperature compensation.
14

Návrh nízkonapěťového napájecího a referenčního bloku založeného na teplotně stabilní napěťové referenci / Design of low-voltage supply and reference block based on the bandgap reference

Mudroch, Michal January 2019 (has links)
In this diploma thesis there is elaborated design of low-voltage power supply block using I3T25 technology. The theoretical part describes the basic structures used in the design, using CMOS and bipolar devices. Furthermore, the properties and the analysis used in the evaluation are described. In the design part there is an elaborated design of individual parts, including voltage references, current references, DAC converter, operational amplifier. In the last part, the power supply block is subjected to simulations for verification of temperature compensated output variables and analyzed circuit functionality.
15

Miniature fiber-optic multicavity Fabry-Perot interferometric biosensor

Zhang, Yan 22 December 2005 (has links)
Fiber-optic Fabry-Perot interferometric (FFPI) sensors have been widely used due to their high sensitivity, ease of fabrication, miniature size, and capability for multiplexing. However, direct measurement of self-assembled thin films, receptor immobilization process or biological reaction is limited in the FFPI technique due to the difficulty of forming Fabry-Perot cavities by the thin film itself. Novel methods are needed to provide an accurate and reliable measurement for monitoring the thin-film growth in the nanometer range and under various conditions. In this work, two types of fiber-optic multicavity Fabry-Perot interferometric (MFPI) sensors with built-in temperature compensation were designed and fabricated for thin-film measurement, with applications in chemical and biological sensing. Both the tubing-based MFPI sensor and microgap MFPI sensor provide simple, yet high performance solutions for thin-film sensing. The temperature dependence of the sensing cavity is compensated by extracting the temperature information from a second multiplexed cavity. This provides the opportunity to examine the thin-film characteristics under different environment temperatures. To demonstrate the potential of this structure for practical applications, immunosensors were fabricated and tested using these structures. Self-assembled polyelectrolytes served as a precursor film for immobilization of antibodies to ensure they retain their biological activity. This not only provides a convenient method for protein immobilization but also presents the possibility of increasing the binding capacity and sensitivity by incorporating multilayers of antibodies into polyelectrolyte layers. The steady-state measurement demonstrated the surface concentration and binding ratio of the immunoreaction. Analysis of the kinetic binding profile provided a fast and effective way to measure antigen concentration. Monitoring the immunoreaction between commercially available immunoglobulin G (IgG) and anti-IgG demonstrated the feasibility of using the MFPI sensing system for immunosensing applications. / Ph. D.
16

Development of the capability of testing the accuracy of thermal CAD software for electronic circuit design

MacQuarrie, Stephen W. January 1987 (has links)
The capability of measuring surface temperatures of hybrid circuits at the Virginia Tech Hybrid Microelectronics Laboratory has been established. This capability provides a quantitative method for effectively evaluating thermal design software. Surface operating temperatures were measured and predicted for an operating hybrid circuit. The temperatures were measured using an infrared thermal imaging system, which measures surface temperatures by detecting the infrared radiation emitted and reflected. The accuracy of the measurements has been quantified for variations in surface emissivity, convective cooling condition, and operating temperature range. The most accurate temperature measurement of a one-resistor circuit was compared to the operating temperature predicted by a lumped-parameter one-dimensional heat transfer analysis. The comparison agreed within the expected limits for this simple analysis and identified areas for possible improvement both of the model and the experimental technique. Thermal design of a circuit is critical because excessive temperatures are a common cause of circuit failure. Circuit designers rely on computer programs to predict circuit component temperatures because of the high cost of prototype experimentation. Accurate thermal design software that is currently available is too complicated for occasional use by circuit designers. Simple, yet accurate, thermal design software is essential for this type of design, so that circuit layouts can be quickly and easily optimized. / M.S.
17

Temperature-Compensated Force/Pressure Sensor Based on Multi-Walled Carbon Nanotube Epoxy Composites

Dinh, Nghia Trong, Kanoun, Olfa 10 November 2015 (has links) (PDF)
In this study, we propose a multi-walled carbon nanotube epoxy composite sensor for force and pressure sensing in the range of 50 N–2 kN. A manufacturing procedure, including material preparation and deposition techniques, is proposed. The electrode dimensions and the layer thickness were optimized by the finite element method. Temperature compensation is realized by four nanocomposites elements, where only two elements are exposed to the measurand. In order to investigate the influence of the filler contents, samples with different compositions were prepared and investigated. Additionally, the specimens are characterized by cyclical and stepped force/pressure loads or at defined temperatures. The results show that the choice of the filler content should meet a compromise between sensitivity, temperature influence and noise behavior. At constant temperature, a force of at least 50N can be resolved. The measurement error due to the temperature influence is 150N in a temperature range of –20°C–50°C.
18

Capteur de vision CMOS à réponse insensible aux variations de température / High Dynamic Range CMOS vision sensor with a perturbation insensibility

Zimouche, Hakim 01 September 2011 (has links)
Les capteurs d’images CMOS sont de plus en plus utilisés dans le domaine industriel : la surveillance, la défense, le médical, etc. Dans ces domaines, les capteurs d?images CMOS sont exposés potentiellement à de grandes variations de température. Les capteurs d?images CMOS, comme tous les circuits analogiques, sont très sensibles aux variations de température, ce qui limite leurs applications. Jusquà présent, aucune solution intégrée pour contrer ce problème n’a été proposée. Afin de remédier à ce défaut, nous étudions, dans cette thèse, les effets de la température sur les deux types d?imageurs les plus connus. Plusieurs structures de compensation sont proposées. Elles reprennent globalement les trois méthodes existantes et jamais appliquées aux capteurs d’images. La première méthode utilise une entrée au niveau du pixel qui sera modulée en fonction de l’évolution de la température. La deuxième méthode utilise la technique ZTC (Zero Temperature Coefficient). La troisième méthode est inspirée de la méthode de la tension de référence bandgap. Dans tous les cas, nous réduisons de manière très intéressante l’effet de la température et nous obtenons une bonne stabilité en température de -30 à 125°C. Toutes les solutions proposées préservent le fonctionnement initial de l’imageur. Elles n’impactent également pas ou peu la surface du pixel / CMOS image sensors find widespread use in various industrial applications including military, surveillance, medical, etc. In these applications, CMOS image sensors are often exposed to large temperature variations. As analog circuits, these CMOS image sensors are very sensitive to temperature variations, which limit their applications. Until now, no integrated solution for this problem has been proposed. To solve this problem, we study, in this thesis, the temperature effects on the two most known types of CMOS image sensors. Several compensation structures are proposed. They generally return to the three existing methods and never applied to image sensors. The first method uses an entrance at the pixel level to be adjusted according to changes in temperature. The second method uses the ZTC (Zero Temperature Coefficient) technique. The third method is based on the method of the bandgap voltage reference. In all cases, we reduce a very interesting way the temperature effect and we get a good temperature stability of the sensor from -30 to 125°C. All the solutions preserve the initial operation of the imager. They also affect a little or not the surface of the pixel.
19

Advanced Thin Film Electroacoustic Devices / Avancerade Elektroakustiska Tunnfilmskomponenter

Bjurström, Johan January 2007 (has links)
The explosive development of the telecom industry and in particular wireless and mobile communications in recent years has lead to a rapid development of new component and fabrication technologies to continually satisfy the mutually exclusive requirements for better performance and miniaturization on the one hand and low cost on the other. A fundamental element in radio communications is time and frequency control, which in turn is achieved by high performance electro-acoustic components made on piezoelectric single crystalline substrates. The latter, however, reach their practical limits in terms of performance and cost as the frequency of operation reaches the microwave range. Thus, the thin film electro-acoustic technology, which uses thin piezoelectric films instead, has been recently developed to alleviate these deficiencies. This thesis explores and addresses a number of issues related to thin film synthesis on the one hand as well as component design and fabrication on other. Specifically, the growth of highly c-axis textured AlN thin films has been studied and optimized for achieving high device performance. Perhaps, one of the biggest achievements of the work is the development of a unique process for the deposition of AlN films with a mean c-axis tilt, which is of vital importance for the fabrication of resonators operating in contact with liquids, i.e. biochemical sensors. This opens the way for the development of a whole range of sensors and bio-analytical tools. Further, high frequency Lamb wave resonators have been designed, fabricated and evaluated. Performance enhancement of FBAR devices is also addressed, e.g. spurious mode suppression, temperature compensation, etc. It has been demonstrated, that even without temperature compensation, shear mode resonators operating in a liquid still exhibit an excellent performance in terms of Q (200) and coupling (~1.8%) at 1.2 GHz, resulting in a mass resolution better than 2 ng cm-2 in water, which excels that of today’s quartz sensors.
20

Silicon-Based Resonant Microsensor Platform for Chemical and Biological Applications

Seo, Jae Hyeong 13 November 2007 (has links)
The main topic of this thesis is the performance improvement of microresonators as mass-sensitive biochemical sensors in a liquid environment. Resonant microstructures fabricated on silicon substrates with CMOS-compatible micromachining techniques are mainly investigated. Two particular approaches have been chosen to improve the resolution of resonant chemical/biochemical sensors. The first approach is based on designing a microresonator with high Q-factor in air and in liquid, thus, improving its frequency resolution. The second approach is based on minimizing the frequency drift of microresonators by compensating for temperature-induced frequency variations. A disk-shape resonant microstructure vibrating in a rotational in-plane mode has been designed, fabricated and extensively characterized both in air and in water. The designed resonators have typical resonance frequencies between 300 and 1,000kHz and feature on-chip electrothermal excitation elements and a piezoresistive Wheatstone-bridge for vibration detection. By shearing the surrounding fluid instead of compressing it, damping is reduced and quality factors up to 5800 in air and 94 in water have been achieved. Short-term frequency stabilities obtained from Allan-variance measurements with 1-sec gate time are as low as 1.1 10-8 in air and 2.3 10-6 in water. The performance of the designed resonator as a biological sensor in liquid environment has been demonstrated experimentally using the specific binding of anti-beta-galactosidase antibody to beta-galactosidase enzyme covalently immobilized on the resonator surface. An analytical model of the disk resonator, represented by a simple harmonic oscillator, has been derived and compared with experimental results. The resonance frequency and the Q-factor of the disk resonator are determined from analytical expressions for the rotational spring constant, rotational moment of inertia, and energy loss by viscous damping. The developed analytical models show a good agreement with FEM simulation and experimental results and facilitate the geometrical optimization of the disk-type resonators. Finally, a new strategy to compensate for temperature-induced frequency drifts of resonant microstructures has been developed based on a controlled stiffness modulation by an electronic feedback loop. The developed method is experimentally verified by compensating for temperature-induced frequency fluctuations of a microresonator. In principle, the proposed method is applicable to all resonant microstructures featuring excitation and detection elements.

Page generated in 0.1514 seconds