• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 14
  • 3
  • 1
  • Tagged with
  • 19
  • 19
  • 18
  • 15
  • 14
  • 11
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Developing Simple Lab Test To Evaluate HMA Resistance To Moisture, Rutting, Thermal Cracking Distress

Zhu, Feng 12 May 2008 (has links)
No description available.
2

The Development of a Simple Test Method to Measure the Low Temperature Cracking Resistance of Hot Mix Asphalt

Wargo, Andrew D. 11 August 2008 (has links)
No description available.
3

DEVELOPMENT OF INDIRECT RING TENSION TEST FOR FRACTURE CHARACTERIZATION OF ASPHALT MIXTURES

Zeinali Siavashani, Alireza 01 January 2014 (has links)
Low temperature cracking is a major distress in asphalt pavements. Several test configurations have been introduced to characterize the fracture properties of hot mix (HMA); however, most are considered to be research tools due to the complexity of the test methods or equipment. This dissertation describes the development of the indirect ring tension (IRT) fracture test for HMA, which was designed to be an effective and user-friendly test that could be deployed at the Department of Transportation level. The primary advantages of this innovative and yet practical test include: relatively large fracture surface test zone, simplicity of the specimen geometry, widespread availability of the required test equipment, and ability to test laboratory compacted specimens as well as field cores. Numerical modeling was utilized to calibrate the stress intensity factor formula of the IRT fracture test for various specimen dimensions. The results of this extensive analysis were encapsulated in a single equation. To develop the test procedure, a laboratory study was conducted to determine the optimal test parameters for HMA material. An experimental plan was then developed to evaluate the capability of the test in capturing the variations in the mix properties, asphalt pavement density, asphalt material aging, and test temperature. Five plant-produced HMA mixtures were used in this extensive study, and the results revealed that the IRT fracture test is highly repeatable, and capable of capturing the variations in the fracture properties of HMA. Furthermore, an analytical model was developed based on the viscoelastic properties of HMA to estimate the maximum allowable crack size for the pavements in the experimental study. This analysis indicated that the low-temperature cracking potential of the asphalt mixtures is highly sensitive to the fracture toughness and brittleness of the HMA material. Additionally, the IRT fracture test data seemed to correlate well with the data from the distress survey which was conducted on the pavements after five years of service. The maximum allowable crack size analysis revealed that a significant improvement could be realized in terms of the pavements performance if the HMA were to be compacted to a higher density. Finally, the IRT fracture test data were compared to the results of the disk-shaped compact [DC(t)] test. The results of the two tests showed a strong correlation; however, the IRT test seemed to be more repeatable.
4

Evaluation of Mixes with High RAP Contents

Manasreh, Dmitry Mohammad Adnan M. 04 November 2020 (has links)
No description available.
5

Evaluation of Asphalt Mixtures Incorporating Terminal Blend GTR (Ground Tire Rubber) Binders

Iqbal, Md Tanvir, 19 September 2016 (has links)
No description available.
6

Towards a Uniform Fracture Mechanics-Based Framework for Flexible Pavement Design

Das, Prabir January 2009 (has links)
Cracking is an important potential failure mechanism for pavement structures. By combining a strain energy-based fracture criterion with conventional fracture mechanics based on the Energy Ratio (ER) concept, crack growth in asphalt can be investigated, and a low temperature Thermal Cracking model (TCMODEL) can be introduced. This thesis presents the implementation of the Florida cracking model into a Mechanistic-Empirical (ME) flexible pavement design framework. An improved analysis procedure for better converting raw data from the Superpave Indirect Tensile Test (IDT) into fundamental viscoelastic properties of the asphalt mixture allows for calibration of the TCMODEL. This thesis involves a detailed review of Florida cracking model and TCMODEL. Finally, a MATLAB tool is prepared for the thermal cracking model to investigate the cause and effect of the problems.
7

FE-analys av sprickvidder i ung betong på grund av tvång / FE analysis of crack widths in young concrete due to restraint

Lagesson, Martin, Hägerstrand, Anton January 2017 (has links)
Betong är ett av våra idag absolut viktigaste och vanligaste byggnadsmaterial. Betong har väldigt låg draghållfasthet och på grund av detta spricker betongkonstruktioner oftast. Att helt förhindra att betong spricker är svårt och ofta kostsamt istället ställs krav för hur vida sprickorna får vara. Sprickviddsbegränsning görs genom att konstruktionerna armeras. Detta examensarbete granskar uppkomsten av sprickor i ung betong (ålder lägre än 28 dygn) som orsakas av förhindrad rörelse. Rörelser som förhindras kallas för tvång. När betongkonstruktioner utsätts för tvång uppstår spänningar i betongen. Dessa spänningar kan leda till sprickor. Tvångsfallet som studerats är när en ny betongvägg gjuts mot en platta av betong som redan uppnått dimensionerad hållfasthet. Examensarbetet fokuserar på tvångsspänningar som uppstår på grund av den värmeutveckling som sker när betong hårdnar samt uttorkningen som sker efter formrivning. I arbetet har 3D modeller i FE-programmet Atena arbetats fram. Dessa modeller simulerar fuktutvecklingen, värmeutvecklingen och avkylningen som sker under betongens hårdnande. De beräknar även de spänningar och sprickor som uppstår på grund av tvånget som uppstår mellan den nygjutna väggen och den befintliga plattan. Det finns sedan tidigare arbeten som studerat dessa fenomen men de har enbart modellerats som 2D problem. Ett antal fall med olika randvillkor har upprättats för att jämföras och nå en sprickbild som stämmer med verkligheten. Att begränsa sprickvidder är viktigt eftersom de påverkar betongens hållfasthet och livslängd. Hur breda sprickor blir är extra viktigt i täta konstruktioner, som exempelvis vattenmagasin. Vida sprickor leder till läckage, försämrad hållfasthet och livslängd. Rapporten tar upp regler från Eurokod gällande hur täta konstruktioner ska konstrueras. En handberäkningsmall för beräkning av sprickvidder orsakade av tvång har skapats. Denna mall har baserats på Eurokods regelverk. Då Eurokod saknar metod för att beräkna värmeutveckling har detta gjorts separat i FE-programmet ConTeSt R&D, som är utvecklat för att specifikt beräkna värme i ett 2D-tvärsnitt. Syftet med arbetet är att ta fram en fungerande metod för att modellera uppkomsten av sprickbildning orsakad av tvångsspänningar. Resultaten från FE-modelleringen ska jämföras med de resultat som fås från handberäkningar enligt eurokodmetoden. Rapporten visar att det är möjligt att simulera en förväntad utveckling i spänningar och sprickor, men åstadkommer ingen generell modell då rapportens lösningen är fallspecifik. Eftersom vi enbart nått fallspecifika lösningar och inga generella metoder har det inte gått att göra någon jämförelse mellan handberäkningar och sprickmodellering i Atena. / Concrete is one of the most important and common building materials today. Concrete has very low tensile strength and because of this some amount of cracking is to be expected. Completely preventing cracking in concrete is complicated and costly. This report examines cracks in concrete caused by restraint. When the natural movement in a construction is restrained this will cause stress. This stress might lead to cracking. This report examines cracks that appear in concrete that has yet to reach its full tensile strength. The case that is being studied is that of a new wall that is cast on a slab that has reached full maturity. The report focuses on stresses that appear because of the heat production during hardening, as well as the drying that occurs after the cast is removed. For this purpose 3D models in the finite element software application Atena have been developed. These models simulate the heat and moisture development as well as the cooling that will occur during the hardening of the concrete. These models are also used to simulate the stress and cracking that will occur because of the relationship between the newly cast wall and the slab in place. Studies have previously been published based on this subject, but only in a 2D context where the shrinkage is applied as a boundary condition. A number of cases with varying boundary conditions have been compared in order to reach a crack pattern that corresponds to actual behavior. Reducing crack widths is important as they affect the strength as well as the lifetime of the concrete. The width of cracks that appear is even more important in constructions that need to be impermeable, for example water containers. Wide cracks are a cause of leakage, as well as reduced strength and longevity. The study looks at rules from Eurocode for designing impermeable structures. A template for calculating crack widths has been produced. This template is based on the Eurocode rule set. Since Eurocode is lacking any formulas to calculate heat development this has been done in the FE-software ConTeSt R&D, which is specifically designed to calculate heat development in a 2D section. The purpose of the study is to achieve a working model for the simulation of crack widths due to restraint. These results are to be compared to the results of the Eurocode calculations. The study shows that we are able to simulate an expected development in stresses and cracks, but does not result in a general model as the solution becomes specific to the case. As we have only achieved case specific solutions and no general method we have been unable to compare modelled results with manually calculated results.
8

Evaluation of Laboratory Performance of Foamed Warm Mix Asphalt Produced by Water Injection

Roy, Arjun C. 26 September 2013 (has links)
No description available.
9

Investigation Of Low Temperature Cracking In Asphalt Concrete Pavement

Qadir, Adnan 01 December 2010 (has links) (PDF)
In this study, low temperature cracking of asphalt concrete is investigated based on a laboratory experimental program including the design variables of aggregate type, gradation, asphalt content, binder grading, binder modification, and the experimental variables of cooling rate, and specimen size. The design of experiment is proposed according to the fractional factorial design principles to reduce the required number of test specimens. Mix designs are performed according to the Superpave mix design guidelines using materials obtained from the Turkish General Directorate of High-ways. In the course of this study, a test setup for thermal stress restrained specimen test for asphalt concrete is developed and used successfully to test a number of as-phalt concrete beam specimens. The same setup is also used for measuring the glass transition temperatures to obtain various thermo-volumetric properties of mixtures. Statistical methods are used to identify the effect of experimental variables on frac-ture strength, fracture temperature and other dependent variables obtained from the testing program. Statistical models are also developed to predict the fracture strength, fracture temperature and other thermo-volumetric properties of mixtures. Results of analyses show that aggregate type, binder modification, and asphalt content significantly affect both the fracture strength and fracture temperature of asphalt concrete. While the glass transition temperature is affected by only aggregate type, coefficients of contraction before and after the glass transition temperature are not influenced by any of the experimental variables. The results of this study provide an important basis to prevent low temperature cracking in asphalt concrete pavements.
10

Thermally Induced Fracture Performance of Asphalt Mixtures

Das, Prabir Kumar January 2012 (has links)
A major distress mode in asphalt pavements is low temperature cracking, which results from the contraction and expansion of the asphalt pavement under extreme temperature changes. The potential for low temperature cracking is an interplay between the environment, the road structure and importantly the properties of the asphalt mixture. The thermal cracking performance of asphalt concrete mixtures can be evaluated by conducting thermal stress restrained specimen tests (TSRST) which is known to be correlated well with the fracture temperatures observed in the field. Although TSRST provides a good estimation of the field performance, it may be unrealistic to implement the obtained results in a design framework. On the other hand, recent studies showed Superpave indirect tension tests can be used to evaluate fracture performance (fatigue, moisture damage, low temperature cracking, etc.) of the asphalt concrete  mixtures. In addition, the obtained elastic and viscoelastic parameters from the Superpave IDT tests can be used as an input parameter to establish a design framework. The study presented in this thesis has a main objective to develop a framework using Superpave IDT test results as input parameters in order to evaluate the low temperature cracking performance of asphalt concrete mixtures. Moreover, the study aims to investigate micro-mechanically the low temperature cracking behavior of bitumen using atomic force microscopy (AFM) as a tool. The numerical model has been developed by integrating fracture energy threshold into an asphalt concrete thermal fracture model, considering non-linear thermal contraction coefficients. Based on the asphalt concrete mixture viscoelastic properties, this integrated model can predict thermally induced stresses and fracture temperatures. The elastic, viscoelastic and fracture energy input parameters of the model were measured by conducting indirect tension tests and the thermal contraction coefficients were measured experimentally. The proposed model has been validated by comparing the predicted fracture temperatures with the results obtained from TSRST tests. It was found that, while there is a quantitative discrepancy, the predicted ranking was correct. In the measurement of the thermal contraction coefficients it was observed that the thermal contraction coefficient in asphalt concrete is non-linear in the temperature range of interest for low temperature cracking. The implications of having non-linear thermal contraction coefficient were investigated numerically. In an effort to understand the effect of bitumen properties on low temperature fatigue cracking, AFM was used to characterize the morphology of bitumen. The AFM topographic and phase contrast image confirmed the existence of bee-shaped microstructure and different phases. The bitumen samples were subjected to both environmental and mechanical loading and after loading, micro-cracks appeared in the interfaces of the bitumen surface, confirming bitumen itself may also crack. It was also found that the presence of wax and wax crystallization plays a vital role in low temperature cracking performance of bitumen. / <p>QC 20120828</p>

Page generated in 0.1122 seconds