• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 36
  • 8
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 60
  • 14
  • 14
  • 13
  • 13
  • 11
  • 11
  • 11
  • 8
  • 8
  • 7
  • 7
  • 7
  • 6
  • 6
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Porous calcium phosphate based nanovectors for growth factor release / Phosphates de calcium poreux à base de nanovecteurs pour le relargage des facteurs de croissance

Möller, Janina 20 December 2010 (has links)
Les phosphates de calcium sont les céramiques les plus utilisées dans la régénération osseuse grâce à leur biocompatibilité et leur bonne résorption. Pourtant, leur performance peut être améliorée s'ils sont associés à des facteurs de croissance. Afin de contrôler le relargage des facteurs de croissance, l'objectif de la thèse a été de synthétiser des phosphates de calcium avec une mésoporosité contrôlée. Ce travail représente la première association des phosphates de calcium mésoporeux avec les facteurs de croissance TGF et VEGF.Pour obtenir des phosphates de calcium mésoporeux, des nouvelles techniques de réplique ont été mises en place : L'hydroxyapatite est synthétisée dans la porosité des templates siliciques ou carbonés par infiltration de précurseurs en solution aqueuse. L'élimination de la matrice s'effectue par dissolution chimique par de la soude dans le cas du template silicique et par oxydation sélective sous air dans le cas du template carboné. Six céramiques ont été choisies pour une analyse de leurs capacités d'adsorption et de relargage de protéines. Dans un premier temps, un protocole est mis en place en utilisant des protéines modèles, la BSA et le Cytochrome Cavant d'utiliser les facteurs de croissance TGF et VEGF. Ces travaux ont permis de déterminer les poudres les plus efficaces en terme d'adsorption et de relargage contrôlé de ces facteurs de croissance. / Calcium phosphates are the most frequently used ceramics for bone regeneration due to their biocompatibility and favorable resorption properties. Their performance can however be improved if they are associated to growth factors. In order to control the release of growth factors, we have inted to synthesize calcium phosphates with controlled mesoporosity. This thesis represents the first work that combines mesoporous calcium phosphates with the growth factors TGF and VEGF. To obtain hydroxyapatite with controlled mesoporosity, we propose new synthesis pathways: the hydroxyapatite is synthesized inside the porosity of silica or carbon templates by infiltration of aqueous precursor solutions. The template is eliminated by chemical etching with NaOH (silica template) or by selective oxidation (carbon template). Six ceramics have been chosen for the analysis of their protein adsorption and release properties. First, the experimental protocol is defined using the model proteins BSA and Cytochrom C. Then, the growth factors TGF and VEGF have been used. By this study, we were able to determine which samples were the most efficient in terms of protein adsorption and release.
42

Polymer-based mesoporous carbons: soft-templating synthesis, adsorption and structural properties

Gorka, Joanna 23 November 2010 (has links)
No description available.
43

Novel carbon materials with hierarchical porosity : templating strategies and advanced characterization

Adelhelm, Philipp January 2007 (has links)
The aim of this work was the generation of carbon materials with high surface area, exhibiting a hierarchical pore system in the macro- and mesorange. Such a pore system facilitates the transport through the material and enhances the interaction with the carbon matrix (macropores are pores with diameters > 50 nm, mesopores between 2 – 50 nm). Thereto, new strategies for the synthesis of novel carbon materials with designed porosity were developed that are in particular useful for the storage of energy. Besides the porosity, it is the graphene structure itself that determines the properties of a carbon material. Non-graphitic carbon materials usually exhibit a quite large degree of disorder with many defects in the graphene structure, and thus exhibit inherent microporosity (d < 2nm). These pores are traps and oppose reversible interaction with the carbon matrix. Furthermore they reduce the stability and conductivity of the carbon material, which was undesired for the proposed applications. As one part of this work, the graphene structures of different non-graphitic carbon materials were studied in detail using a novel wide-angle x-ray scattering model that allowed precise information about the nature of the carbon building units (graphene stacks). Different carbon precursors were evaluated regarding their potential use for the synthesis shown in this work, whereas mesophase pitch proved to be advantageous when a less disordered carbon microstructure is desired. By using mesophase pitch as carbon precursor, two templating strategies were developed using the nanocasting approach. The synthesized (monolithic) materials combined for the first time the advantages of a hierarchical interconnected pore system in the macro- and mesorange with the advantages of mesophase pitch as carbon precursor. In the first case, hierarchical macro- / mesoporous carbon monoliths were synthesized by replication of hard (silica) templates. Thus, a suitable synthesis procedure was developed that allowed the infiltration of the template with the hardly soluble carbon precursor. In the second case, hierarchical macro- / mesoporous carbon materials were synthesized by a novel soft-templating technique, taking advantage of the phase separation (spinodal decomposition) between mesophase pitch and polystyrene. The synthesis also allowed the generation of monolithic samples and incorporation of functional nanoparticles into the material. The synthesized materials showed excellent properties as an anode material in lithium batteries and support material for supercapacitors. / Kohlenstoffmaterialien finden aufgrund ihrer Vielseitigkeit heute in den unterschiedlichsten Bereichen des täglichen Lebens ihren Einsatz. Bekannte Beispiele sind Kohlenstofffasern in Verbundwerkstoffen, Graphit als trockenes Schmiermittel, oder Aktivkohlen in Filtersystemen. Ferner wird Graphit als Elektrodenmaterial auch in Lithium-Ionen-Batterien verwendet. Wegen knapper werdender Ressourcen von Öl und Gas wurde in den letzten Jahren verstärkt an der Entwicklung neuer Materialien für die Speicherung von Wasserstoff und elektrischer Energie gearbeitet. Die Nanotechnologie ist dabei auch für neue Kohlenstoffmaterialien zukunftsweisend, denn sie stellt weitere Anwendungsmöglichkeiten in Aussicht. In dieser Arbeit wurden hierzu mittels des sogenannten Nanocastings neue Kohlenstoffmaterialien für Energieanwendungen, insbesondere zur Speicherung von elektrischer Energie entwickelt. Die Eigenschaften eines Kohlenstoffmaterials beruhen im Wesentlichen auf der Struktur des Kohlenstoffs im molekularen Bereich. Die in dieser Arbeit hergestellten Materialen bestehen aus nichtgraphitischem Kohlenstoff und wurden im ersten Teil der Arbeit mit den Methoden der Röntgenstreuung genau untersucht. Eine speziell für diese Art von Kohlenstoffen kürzlich entwickelte Modellfunktion wurde dazu an die experimentellen Streubilder angepasst. Das verwendete Modell basiert dabei auf den wesentlichen Strukturmerkmalen von nichtgraphitischem Kohlenstoff und ermöglichte von daher eine detaillierte Beschreibung der Materialien. Im Gegensatz zu den meisten nichtgraphitischen Kohlenstoffen konnte gezeigt werden, dass die Verwendung von Mesophasen-Pech als Vorläufersubstanz (Precursor) ein Material mit vergleichsweise geringem Grad an Unordnung ermöglicht. Solch ein Material erlaubt eine ähnlich reversible Einlagerung von Lithium-Ionen wie Graphit, weist aber gleichzeitig wegen des nichtgraphitischen Charakters eine deutlich höhere Speicherfähigkeit auf. Zur Beschreibung der Porosität eines Materials verwendet man die Begriffe der Makro-, Meso-, und Mikroporen. Die Aktivität eines Materials kann durch die Erhöhung der Oberfläche noch erheblich gesteigert werden. Hohe Oberflächen können insbesondere durch die Schaffung von Poren im Nanometerbereich erzielt werden. Um die Zugänglichkeit zu diesen Poren zu steigern, weist ein Material idealerweise zusätzlich ein kontinuierliches makroporöses Transportsystem (Porendurchmesser d > 50 nm) auf. Solch eine Art von Porosität über mehrere Größenordnungen wird allgemein als „hierarchische Porosität“ bezeichnet. Für elektrochemische Anwendungen sind sogenannte Mesoporen (d = 2 – 50 nm) relevant, da noch kleinere Poren (Mikroporen, d < 2 nm) z.B. zu einer irreversiblen Bindung von Lithium- Ionen führen können. Wird Mesophasen-Pech als Kohlenstoffprekursor verwendet, kann die Entstehung dieser Mikroporen verhindert werden. Im zweiten und dritten Teil der Arbeit konnte mit den Methoden des „Nanocastings“ zum ersten Mal die spezielle Struktur des Mesophasen-Pech basierenden Kohlenstoffmaterials mit den Vorteilen einer hierarchischen (makro- / meso-) Porosität kombiniert werden. Im ersten Syntheseverfahren wurde dazu ein sogenanntes „hartes Templat“ mit entsprechender Porosität aus Siliziumdioxid repliziert. Aufgrund der hohen Viskosität des Pechs und der geringen Löslichkeit wurde dazu ein Verfahren entwickelt, das die Infiltration des Templates auch auf der Nanometerebene ermöglicht. Das Material konnte in Form größerer Körper (Monolithen) hergestellt werden, die im Vergleich zu Pulvern eine bessere technische Verwendung ermöglichen. Im zweiten Syntheseverfahren konnte die Herstellung eines hierarchisch makro- / mesoporösen Kohlenstoffmaterials erstmals mittels eines weichen Templates (organisches Polymer) erreicht werden. Die einfache Entfernung von weichen Templaten durch eine geeignete Temperaturbehandlung, macht dieses Verfahren im Vergleich zu hart templatierten Materialien kostengünstiger und stellt eine technische Umsetzung in Aussicht. Desweiteren erlaubt das Syntheseverfahren die Herstellung von monolithischen Körpern und die Einbindung funktionaler Nanopartikel. Die hergestellten Materialien zeigen exzellente Eigenschaften als Elektrodenmaterial in Lithium-Ionen-Batterien und als Trägermaterial für Superkondensatoren.
44

New Routes Towards Nanoporous Carbon Materials for Electrochemical Energy Storage and Gas Adsorption

Oschatz, Martin 14 April 2015 (has links) (PDF)
The chemical element carbon plays a key role in the 21st century. “The new carbon age” is associated with the global warming due to increasing carbon dioxide emissions. The latter are a major consequence of the continued combustion of fossil fuels for energy generation. However, carbon is also one key component to overcome these problems. Especially porous carbon materials are highly attractive for many environmentally relevant applications. These materials provide high specific surface area, high pore volume, thermal/chemical stability, and high electrical conductivity. They are promising candidates for the removal of carbon dioxide or other environmentally relevant gases from exhaust gas mixtures. Furthermore, porous carbons are used in electrochemical energy storage devices (e.g. batteries or electrochemical capacitors). The performance of the materials in these applications depends on their pore structure. Hence, precise control over the pore size and the pore geometry is important to achieve. Besides a high specific surface area (SSA) and a well-defined pore size, pore accessibility must be ensured because the surface must be completely available. If the porous carbons exhibit ink-bottle pores, the high surface area is useless because the guest species do not reach the pore interior. Therefore, carbon materials with hierarchical pore structure are attractive. They combine at least two different pore systems of different size which contribute with their individual advantages. While smaller pores provide large specific surface area, larger pores ensure efficient mass transport. Numerous methods for the targeted synthesis of carbide-derived carbon materials (CDCs) with hierarchical pore architectures were developed within this thesis (Figure 1). CDCs are produced by the extraction of metal- or semi-metal atoms from carbide precursors leading to the formation of a microporous carbon network with high specific surface area. PolyHIPE-CDCs with porosity on three hierarchy levels and total pore volumes as high as 8.5 cm3/g were prepared by a high internal phase emulsion technique. CO2 activation increases the SSA to values above 3100 m2/g. These materials are promising for the filtration of non-polar organic compounds from gas mixtures. CDC nanospheres with diameters below 200 nm were obtained from polycarbosilane-based miniemulsions. They show high capacitance of up to 175 F/g in symmetrical EDLCs in 1 M H2SO4 aqueous electrolyte. Besides such emulsion techniques, the hard-templating concept (also referred to as nanocasting) was presented as an efficient approach for the synthesis of CDC mesofoam powders and meso-macroporous CDC monoliths starting from silica templates and polycarbosilane precursors. As a wide range of pore sizes is approachable, the resulting materials are highly versatile in terms of application. Due to their high nanopore volume, well-defined mesopores and large SSA, they show outstanding properties as electrode materials in EDLCs or in Li-S batteries as well as high and rapid uptake in gas adsorption processes. CDC aerogels were produced by pyrolysis and high-temperature chlorine treatment of cross-linked polycarbosilane aerogels. These materials can be tailored for efficient CO2 adsorption and show outstanding performance in EDLC electrodes at high current densities of up to 100 A/g due to the very short electron diffusion pathways within the aerogel-type pore system. It was further shown that CDCs can be combined with mesopores by the sacrificial template method starting from PMMA particles as the pore-forming material. The use of highly toxic hydrofluoric acid for template removal and large amounts of organic solvents as typical for hard- and soft-templating approaches can be overcome. SSAs and total pore volumes of 2434 m2/g and 2.64 cm3/g are achieved ensuring good performance of PMMA-CDCs in Li-S batteries cathodes. Besides the characterization of CDCs in real energy storage devices and adsorption processes, their use as model substances in energy- and environmentally relevant applications was part of this thesis. The questions “How does it work?” and “What do we need?” must be clearly answered before any material can be tailored under the consideration of economic and ecological perspectives. The high potential of CDCs for this purpose was shown in this thesis. These carbons were used as model substances in combination with nuclear magnetic resonance (NMR) techniques to get a detailed understanding of the adsorption processes on porous carbon surfaces. However, such investigations require the use of model substances with a tailored and well-defined pore structure to clearly differentiate physical states of adsorbed species and to understand fundamental mechanisms. The characterization of the interaction of electrolyte molecules with the carbon surface was performed with solid-state NMR experiments. The materials were also studied in the high-pressure adsorption of 129Xe using an in-situ NMR technique. Both NMR studies enable the analysis of ions or gas atoms adsorbed on the carbon surface on an atomic level and experimentally demonstrate different strength of interaction with pores of variable size and connectivity. In addition, the novel InfraSORP technology was used for the investigation of the thermal response of CDCs and templated carbon and carbide materials during n-butane adsorption. These model systems lead to a more profound understanding of this technique for the rapid characterization of porous materials. The Kroll-Carbon (KC) concept is a highly attractive alternative for the synthesis of well-defined carbons on the large scale. In this technique, the porous materials are produced by the reductive carbochlorination reaction between oxidic nanoparticles and a surrounding carbon matrix. First KC materials were produced with high SSA close to 2000 m2/g and total pore volumes exceeding 3 cm3/g. This method was established with template particles of various dimensions as well as by using various types of oxides (silica, alumina, titania). Hence, porous carbon materials with various textural parameters are approachable. The first generation of KCs is promising for the use in Li-S battery cathodes and as electrode materials in EDLCs.
45

Carbide and Carbide-Derived Carbon Materials with Hierarchical Pore Architecture

Borchardt, Lars 13 March 2013 (has links) (PDF)
This thesis addressed the development of new porous carbides and carbide-derived carbons; in particular materials based on silicon-, boron-, tungsten-, and titanium carbide. Therefore, different hard- and soft-templating approaches were applied and the materials were additionally functionalized with catalytic active components and shaped into nm- and mm-sized spherical particles.
46

Elaboration de carbure de silicium poreux et mésoporeux par voie moléculaire / Elaboration of porous and mesoporous silicon carbide by molecular way

Nardin, Thibaud 02 November 2015 (has links)
Grâce à ses excellentes propriétés de résistance et de conductivité thermique ainsi qu'à sa stabilité mécanique et chimique à température ambiante et à haute température, le carbure de silicium (SiC) est un matériau de choix pour le gainage du combustible nucléaire ou les supports de catalyseurs. Cependant, une grande surface spécifique est souvent requise pour ce type d'applications. Cette étude propose deux approches de synthèse :(1) L'approche « Soft Templating ». La porosité et la structure des matériaux finaux sont définies par l'auto-assemblage supramoléculaire d'un agent de structure (SDA) dans un précurseur moléculaire de SiC. Des organogélateurs à faible masse moléculaire et un copolymère tri-bloc commercial sont considérés pour la synthèse de SiC méso-poreux.(2) L'approche « Hard Templating ». Des céramiques SiC sont synthétisées par nanomoulage de silices méso-poreuses par des polymères précéramiques. Ce procédé conserve la nanostructure du template solide et conduit à des SiC méso-poreux à forte surface spécifique.L'approche hard templating permet une bonne réplication du template solide mais la difficulté de cette méthode provient de l'étape d'élimination de ce même template. L'approche soft templating ne présente pas ce désavantage et peut, suivant le SDA utilisé, mener à des céramiques poreuses possédant des structures beaucoup plus variées. La complexité de cette approche réside dans l'étape de réplication du template. / Due to its excellent thermal resistance, mechanical and chemical stability both at room and elevated temperature, silicon carbide (SiC) is an attractive material for nuclear fuel cladding or catalyst substrates. Pore size control and high porosity are the key factors for such applications. Two approaches are studied during this PhD thesis:(1) The Soft Templating Approach. The porosity and the structure of the final materials are defined by the supramolecular self-assembly of a structure directing agent (SDA) into a molecular SiC precursor. Low molecular-mass organic gelators and a commercial tri-block copolymer are considered as SDA for the synthesis of mesoporous SiC materials.(2) The Hard Templating Approach. SiC materials are synthesized by preceramic polymer nanocasting into mesoporous silica. This process preserves the nanoscale structure of the solid template and leads to mesostructured SiC materials with a high specific surface area.The hard templating approach allows a good replication of the solid template but the difficulty of this method lies in the elimination step of this template. Meanwhile, soft templating approach does not have this drawback and may lead to porous ceramics with more varied structures depending on the SDA used. The complexity of this approach is the template replication step.
47

P­prava hybridn­ch keramickch materil metodou ice-templating / Preparation of hybrid ceramic materials by ice-templating

RoleÄek, Jakub January 2019 (has links)
Ice-templating, znm tak© jako freeze-casting, je relativnÄ jednoduchou, levnou a velmi univerzln­ technikou pro vrobu por©zn­ch keramickch struktur s ­zenou mikrostrukturou. Takto pipraven© keramick© struktury jsou pouity pro vrobu hybridn­ch keramickch kompozit, nebo jako biokeramick© scaffoldy. Hybridn­ keramick© kompozitn­ materily jsou zaloeny na napodobovn­ p­rodn­ch/ biologickch materil. Hlavn­m c­lem je napodobit v p­rodÄ se vyskytuj­c­ zhouevnauj­c­ mechanismy t­m, e por©zn­ keramick© struktury jsou po slinut­ naputÄny polymern­mi materily. Hlavn­m probl©mem pi vrobÄ por©zn­ch keramickch vzork s velkmi rozmÄry, pomoc­ metody ice-templating, je dosaen­ ­zen©ho rstu ledovch krystal v cel©m objemu vzorku. Aby tedy bylo mon© z­skat velk© keramick© vzorky s dobe definovanou lamelrn­ strukturou je teba proces ice-templatingu velmi pesnÄ kontrolovat. Biologick aktivita biokeramickch materil zvis­ na kombinaci fyzikln­ch a chemickch charakteristik, kter© silnÄ souvisej­ s jejich mikrostrukturou. Porozita scaffold mus­ bt vzjemnÄ propojen a velikost­ pr dostateÄnÄ velk pro spÄn rst kostn­ tknÄ v cel©m objemu implanttu. Prezentovan disertaÄn­ prce je zamÄena na problematiku zvÄtovn­ rozmÄr keramickch vzork pipravench pomoc­ metody ice-templating, vytvoen­ v­cerovov© porozity uvnit vzork a vrobu hybridn­ch keramickch kompozit pro balistickou ochranu. Keramick© suspenze pro ice-templating byly spÄnÄ pipraveny z rznch prk (zejm©na hydroxyapatitu a oxidu hlinit©ho s rznm plnÄn­m keramick©ho prku od 7,5 obj.% do 45 obj.%. Byl tak© studovn vliv aditiv na utven­ lamelrn­ drsnosti a mezilamelrn­ch pemostÄn­. V souÄasnosti je zkoumn dopad tÄchto strukturn­ch prvk na vsledn© mechanick© vlastnosti. Hybridn­ kompozity oxid hlinit/polymer byly spÄnÄ navreny a pipraveny z destiÄek z oxidu hlinit©ho pipravench metodou ice-templating s d©lkou lamel a 70 mm a rznch polymern­ch pryskyic. Byla testovny mechanick© vlastnosti hybridn­ch kompozit oxid hlinit/polymer a vsledky ukzaly, e ice-templating je robustn­ metodou pro vrobu hybridn­ch kompozit keramika-polymer s dobrm pomÄrem pevnost/hustota. Avak balistick© testy hybridn­ch kompozit oxid hlinit/polymer odhalily, e vÄtina kompozit vytvoench v rmci t©to prce nebyla schopna ÄinnÄ zastavit stely s prbojnm jdrem. Ukzalo se, e kombinace procesu ice-templating a nep­m©ho 3D tisku umouje vrobu biokeramickch scaffold pro kostn­ nhrady z hydroxyapatitu s v­cerovovou porozitou, co by se mohlo ukzat jako prospÄn© pro vvoj bioaktivn­ch vysoce por©zn­ch scaffold se zvenou biologickou aktivitou. Ice-templating tak© vznamnÄ ovlivnil zmÄnu fzov©ho sloen­ bÄhem slinovn­ hydroxyapatitovch vzork.
48

New Routes Towards Nanoporous Carbon Materials for Electrochemical Energy Storage and Gas Adsorption

Oschatz, Martin 01 April 2015 (has links)
The chemical element carbon plays a key role in the 21st century. “The new carbon age” is associated with the global warming due to increasing carbon dioxide emissions. The latter are a major consequence of the continued combustion of fossil fuels for energy generation. However, carbon is also one key component to overcome these problems. Especially porous carbon materials are highly attractive for many environmentally relevant applications. These materials provide high specific surface area, high pore volume, thermal/chemical stability, and high electrical conductivity. They are promising candidates for the removal of carbon dioxide or other environmentally relevant gases from exhaust gas mixtures. Furthermore, porous carbons are used in electrochemical energy storage devices (e.g. batteries or electrochemical capacitors). The performance of the materials in these applications depends on their pore structure. Hence, precise control over the pore size and the pore geometry is important to achieve. Besides a high specific surface area (SSA) and a well-defined pore size, pore accessibility must be ensured because the surface must be completely available. If the porous carbons exhibit ink-bottle pores, the high surface area is useless because the guest species do not reach the pore interior. Therefore, carbon materials with hierarchical pore structure are attractive. They combine at least two different pore systems of different size which contribute with their individual advantages. While smaller pores provide large specific surface area, larger pores ensure efficient mass transport. Numerous methods for the targeted synthesis of carbide-derived carbon materials (CDCs) with hierarchical pore architectures were developed within this thesis (Figure 1). CDCs are produced by the extraction of metal- or semi-metal atoms from carbide precursors leading to the formation of a microporous carbon network with high specific surface area. PolyHIPE-CDCs with porosity on three hierarchy levels and total pore volumes as high as 8.5 cm3/g were prepared by a high internal phase emulsion technique. CO2 activation increases the SSA to values above 3100 m2/g. These materials are promising for the filtration of non-polar organic compounds from gas mixtures. CDC nanospheres with diameters below 200 nm were obtained from polycarbosilane-based miniemulsions. They show high capacitance of up to 175 F/g in symmetrical EDLCs in 1 M H2SO4 aqueous electrolyte. Besides such emulsion techniques, the hard-templating concept (also referred to as nanocasting) was presented as an efficient approach for the synthesis of CDC mesofoam powders and meso-macroporous CDC monoliths starting from silica templates and polycarbosilane precursors. As a wide range of pore sizes is approachable, the resulting materials are highly versatile in terms of application. Due to their high nanopore volume, well-defined mesopores and large SSA, they show outstanding properties as electrode materials in EDLCs or in Li-S batteries as well as high and rapid uptake in gas adsorption processes. CDC aerogels were produced by pyrolysis and high-temperature chlorine treatment of cross-linked polycarbosilane aerogels. These materials can be tailored for efficient CO2 adsorption and show outstanding performance in EDLC electrodes at high current densities of up to 100 A/g due to the very short electron diffusion pathways within the aerogel-type pore system. It was further shown that CDCs can be combined with mesopores by the sacrificial template method starting from PMMA particles as the pore-forming material. The use of highly toxic hydrofluoric acid for template removal and large amounts of organic solvents as typical for hard- and soft-templating approaches can be overcome. SSAs and total pore volumes of 2434 m2/g and 2.64 cm3/g are achieved ensuring good performance of PMMA-CDCs in Li-S batteries cathodes. Besides the characterization of CDCs in real energy storage devices and adsorption processes, their use as model substances in energy- and environmentally relevant applications was part of this thesis. The questions “How does it work?” and “What do we need?” must be clearly answered before any material can be tailored under the consideration of economic and ecological perspectives. The high potential of CDCs for this purpose was shown in this thesis. These carbons were used as model substances in combination with nuclear magnetic resonance (NMR) techniques to get a detailed understanding of the adsorption processes on porous carbon surfaces. However, such investigations require the use of model substances with a tailored and well-defined pore structure to clearly differentiate physical states of adsorbed species and to understand fundamental mechanisms. The characterization of the interaction of electrolyte molecules with the carbon surface was performed with solid-state NMR experiments. The materials were also studied in the high-pressure adsorption of 129Xe using an in-situ NMR technique. Both NMR studies enable the analysis of ions or gas atoms adsorbed on the carbon surface on an atomic level and experimentally demonstrate different strength of interaction with pores of variable size and connectivity. In addition, the novel InfraSORP technology was used for the investigation of the thermal response of CDCs and templated carbon and carbide materials during n-butane adsorption. These model systems lead to a more profound understanding of this technique for the rapid characterization of porous materials. The Kroll-Carbon (KC) concept is a highly attractive alternative for the synthesis of well-defined carbons on the large scale. In this technique, the porous materials are produced by the reductive carbochlorination reaction between oxidic nanoparticles and a surrounding carbon matrix. First KC materials were produced with high SSA close to 2000 m2/g and total pore volumes exceeding 3 cm3/g. This method was established with template particles of various dimensions as well as by using various types of oxides (silica, alumina, titania). Hence, porous carbon materials with various textural parameters are approachable. The first generation of KCs is promising for the use in Li-S battery cathodes and as electrode materials in EDLCs.
49

Carbide and Carbide-Derived Carbon Materials with Hierarchical Pore Architecture

Borchardt, Lars 04 March 2013 (has links)
This thesis addressed the development of new porous carbides and carbide-derived carbons; in particular materials based on silicon-, boron-, tungsten-, and titanium carbide. Therefore, different hard- and soft-templating approaches were applied and the materials were additionally functionalized with catalytic active components and shaped into nm- and mm-sized spherical particles.
50

Directed Self-Assembly of Nanostructured Block Copolymer Thin Films via Dynamic Thermal Annealing

Basutkar, Monali N. 21 September 2018 (has links)
No description available.

Page generated in 0.0729 seconds