• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 385
  • 336
  • 86
  • 52
  • 37
  • 21
  • 18
  • 14
  • 6
  • 6
  • 6
  • 6
  • 6
  • 6
  • 5
  • Tagged with
  • 1168
  • 506
  • 236
  • 225
  • 221
  • 181
  • 177
  • 157
  • 152
  • 118
  • 109
  • 101
  • 97
  • 94
  • 94
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
241

Influência da aplicação de um sistema adesivo na resistência de união entre resinas bulk fill flow e resina nanoparticulada em reparos /

Castro, Maria José Domingues de. January 2018 (has links)
Orientador: Rebeca Di Nicoló / Coorientadora: Fernanda Alves Feitosa / Banca: Eduardo Bresciani / Banca: Eduardo Galera da Silva / Banca: Levy Anderson Cesar Alves / Banca: Fabio Matuda / Resumo: O objetivo desta pesquisa foi avaliar a influência da utilização ou não do bond do sistema adesivo Adper Scotchbond Multiuso(A) e o bond Gluma da Heraeus(G) na resistência de união entre as resinas do tipo flow Filtek Bulk Fill Flow(F) e X-tra base (X) como base e uma convencional nanoparticulada Z350 XT(Z)) como cobertura. Simulando assim seu uso em reparos de restaurações diretas em dentes posteriores. Foram confeccionados 120 espécimes em resina composta do tipo flow no formato tronco-cônico com as dimensões de 2mm base menor, 4mm de altura e 4 mm de base maior. 60 Filtek Bulk Fill(F) e 60 X-tra base (X). Metade de cada grupo (n=30) foi envelhecida por termociclagem 5.000 ciclos de 5°C a 55°C, (FE, XE), a outra metade não sofreu envelhecimento (FN e XN). Esses espécimes foram divididos em 3 subgrupos (n=10), sobre a base menor dessas 10 amostras foi aplicado o Bond de cada sistema adesivo após condicionadas pelos seus respectivos ácidos nos tempos preconizados pelos fabricantes. As outras 10 unidades de cada grupo não receberam qualquer sistema adesivo. Na simulação do reparo as duas primeiras metades em teflon foram invertidas ficando a área menor voltada pra cima. Sobre essa face foram colocadas outras duas metades em teflon com a área menor voltada para baixo. Foi inserida então a resina Z350 pela técnica incremental e fotopolimerizada por 20s a 800mw/cm². Após 24h de armazenamento em água destilada, em estufa bacteriológica os espécimes, agora com formato de ampulheta,... (Resumo completo, clicar acesso eletrônico abaixo) / The aim of our paper was to analyse the bonding influence of Adper Scotchbond Multipurpose Adhesive (A) and Heraeus Gluma universal bond (G), or no bond application, on bond strength between microhibrid Filtek Bulk Fill Flow (F) and nanohibrid X-tra base (X) as based composite resin and the conventional nanoparticulate Z350 XT (Z)) as cover. Simulating non-invasive repairs of direct restorations on posterior teeth. A total of 120 specimens were made from flow composite resin in the conical trunk format with the dimensions of 2x4x4, for 40s with Led-5 (N/S LD51803005) at 800mw/cm². Sixty Filtek bulk fill (F) and sixty X-tra base (X) were made. Half of each group (n=30) was aged by thermocycling 5,000 cycles from 5° C to 55° C, (FE, XE), the other half were not subjected to any aging procedure (FN, XN). These specimens were randomly divided into 3 subgroups (n = 10), on the smaller diameter of the 10 samples the Bond of each adhesive system were applied after conditioned by their respectively acids at the time recommended by the manufacturers. The other 10 units of each group did not receive any adhesive system. In the sequency of repair simulation the first two Teflon halves were turned up with the smaller diameter turned upwards. Above this face were placed two other halves in Teflon with the smaller diameter facing down. The Z350 repair composite resin were inserted by incremental technique and photopolymerized for 20s at 800mw/cm². After 24h of storage in distilled water in a bacteriological oven, the now hourglass-shaped specimens were drawn in the universal testing machine EMIC. All the fractured specimens had the type of failure analyzed in stereomicroscope. The most significant faulting specimens were evaluated with electronic microscope (MEV). The data collected at the traction test were analyzed through 3-factor ANOVA and Tukey's test (p <5%). There was... (Complete abstract click electronic access below) / Doutor
242

Untersuchungen zur Biomechanik unterschiedlicher Beugesehnennahtmaterialien und -methoden / Biomechanical analysis of different methods and materials for flexor tendon repair

Hohenstein, Melanie January 2016 (has links) (PDF)
Tensile strength of flexor tendon repair using barbed suture material in a dynamic ex vivo model. The purpose of this study was to compare two sutures; a knotted polydioxane with a knotless barbed in a 4-strand Kirchmayr-Kessler suture technique. Human flexor digitorum tendons were separated into four groups. Group 1 - polydioxane; Group 2 - barbed suture; Group 3 and 4 - same as group 1 and 2 with an additional peripheral running suture. In each group the repaired tendons were subjected to linear and cyclical loads. No difference in maximum tensile strength after linear and cyclical force could be detected between the knotted polydioxane suture and the knotless barbed suture. On linear force tests an additional circumferential repair increased the maximum tensile strength of both sutures. Cyclical force loading did not lead to a reduction of maximum strength. Following linear and cyclical loading the 4-strand barbed suture achieved maximum tensile strengths comparable to the 4-strand repair using the polydioxane suture. Barbed suture repair may offer the advantage of knotless suture techniques. / In einem ex vivo Modell wurde die Stabilität verschiedener Beugesehnennähte mit unterschiedlichen Nahtmaterialien und -methoden verglichen. Darunter eine knotenlose Technik mit Nahtmaterial mit Widerhaken. Des weiteren wurde der Stabilitätsvorteil durch eine zusätzliche Feinadaptionsnaht getestet. Angelehnt an eine frühe postoperative aktive Nachbehandlung wurde auch ein dynamisches Testmodell mit zyklischer Vorbelastung angewendet.
243

Studies of the Insulator-Metal Transition in La1-xCaxMnO3 and Thin Film Growth of Nd0.2Sr0.8MnO3

Neupane, Krishna Prasad 13 May 2009 (has links)
Two experimental projects involving perovskite manganese oxide compounds are presented. The first involved dielectric and transport studies of the insulator-metal transition as a function of charge-carrier doping in La1-xCaxMnO3 (0 < x < 0.15) bulk samples. The results provide new insight into the role of competing magnetic, lattice and Coulomb energies in determining the insulator-metal transition near x=0.22. The second project involved the growth, structural characterization, and resistive anisotropy of a-axis oriented Nd0.2Sr0.8MnO3 thin films with thicknesses t in the range 10 nm< t < 150 nm. Thicker films develop regular crack arrays which are the origin of a highly anisotropic in-plane electrical resistance. These cracks form parallel to the crystallographic c-axis on films with tensile strain deposited on NdGaO3 (100) and La0.3Sr0.7Al0.65Ta0.35O3 (110) substrates. Films grown under compressive strain on LaAlO3 (110) substrates have no cracks.
244

Investigation of the Processing, Structure and Properties of Poly(phenylene sulfide) (PPS) Melt Spun Fibers

Gulgunje, Prabhakar 01 May 2010 (has links)
Numerous publications are available on the structure and properties correlation of fibers spun from polymers with flexible chains such as polyethylene terephthalate (PET), nylon, polypropylene. Also considerable amount of work is reported in fibers spun from rigid rod polymers like poly(p-phenylene terephthalamide) due to their value in high performance fibers category. However, very limited literature is available on the structure-properties relationship in fibers manufactured from poly(phenylene sulfide) (PPS), a high performance polymer which possesses chain flexibility between above two classes of polymers. A few researchers have studied crystallization kinetics and the fibers by extruding the polymer using capillary rheometers. However, there is a lack of in-depth study of conversion of PPS into fibers through melt spinning and further enhancement of properties by drawing and annealing experiments. The purpose of the present research was to fill this void by systematically studying the fiber manufacture from PPS polymers. Four variances of proprietary Fortron® linear PPS resins differing in MW were analyzed for their characteristics such as molecular weight (MW) and MW distribution (MWD) using gel permeation chromatography (GPC), rheological properties using melt flow indexer (MFI) and capillary extrusion rheometer, and crystallization kinetics using differential scanning calorimetry (DSC). The fibers were spun on a pilot melt spinning facility, using a multi-hole spinneret, under different processing conditions. As-spun fibers were drawn and annealed subsequently by varying draw-annealing conditions. Thorough characterization of the as-spun and drawn-annealed fibers was carried out using various analytical techniques such as tensile testing, DSC, polarized light optical microscopy (POM), wide angle X-ray scattering (WAXS), and small angle X-ray scattering (SAXS). Relationship between polymer characteristics, process conditions and structure-properties in the fibers was analysed statistically. A strong correlationship between polymer molecular weight, processing conditions during melt spinning and draw-annealing, processing behavior during melt spinning and drawing, fiber tensile properties and fiber morphology is reported herein. Interaction effects of material and process variables in evolving fiber structure and properties are also discussed. Through optimal combination of material and process variables, PPS fibers of tenacity close to six gpd were obtained. With the help of several characterization tools listed earlier, melting behavior of PPS polymers and fibers is decoded, and probable structural model of high tenacity PPS fibers is proposed.
245

Dependence of Microstructure Evolution, Texture, and Mechanical Behavior of A Mg Alloy on Thermo-Mechanical Input during Friction Stir Processing

Yu, Zhenzhen 01 December 2010 (has links)
In this thesis, the relationship among friction stir processing (FSP) parameters, microstructure evolution, texture development, and mechanical hehavior of AZ31B Mg alloy was investigated. First of all, in order to reveal the correlation among the deformation conditions, dynamic recrystallization (DRX) mechanisms, and microstructure evolution in the Mg alloy, hot compression tests at a wide range of Zener-Hollomon parameter (Z) values were conducted. Through optical microscopic examination, it was found out that above a critical Z value, twinning influences the DRX process resulting in a more effective grain refinement, which is manifested in a significant change in the slope of the Z-drec relationship, where drec is the recrystallized grain size. Moreover, EBSD examination revealed that the twinning also contributed to a distinct change in the recrystallization texture. Compression tests were performed along both through-thickness and in-rolling-plane directions of the plate to study the orientation dependency of twinning activities and its influence on the DRX process. X-ray line profile analysis (XLPA) provides further insights by highlighting the differences in the dislocation density/types, subgrain sizes, and twin densities during the DRX processes operating with or without the twinning. Secondly, the constitutive behaviour study was applied to the investigation of microstructure evolution during FSP. By varying the key FSP parameters systematically, i.e. rotation and travel rates of the tool, a series of FSP specimens were prepared with a wide range of thermo-mechanical inputs in terms of Z. The resulting tensile behavior in the stir zone (SZ) showed a dramatic change as a function of Z, caused by a systematic change in the texture within SZ measured by neutron diffraction. A three-dimensional transient model was developed to investigate the detailed deformation history including the temperature and strain rate profiles and material flow pattern during FSP of the Mg alloy. Such deformation history can be combined with the constitutive study from the compression tests in order to analyze the developments of micro-texture and DRX grains during FSP, which will, in turn, dominate the mechanical properties. Based on the studies above, new fundamental understandings were gained on the governing mechanisms for the deformation and recrystallization processes during FSP and the influence of thermo-mechanical input during FSP on ductility enhancement in the Mg alloy.
246

New nanocomposites based on poly(ethylene-co-vinyl acetate) and multiwall carbon nanotubes : preparation and characterization.

Peeterbroeck, Sophie 15 December 2006 (has links)
Carbon nanotubes (CNTs) have been a major interest of study since 1991. A panel of properties and phenomena associated with carbon nanotubes due to their special combination of dimension, structure and topology have been investigated in the last years. Recently, it appears interesting to use carbon nanotubes at low loading content to obtain materials with enhanced mechanical and thermal properties. One of the major challenges is actually to disperse easily and individually these nanotubes in polymer matrices to obtain materials with increased properties for different application uses. Ethylene-vinyl acetate (EVA) copolymer is commonly used in cable industry. It is required to introduce high contents of alumina trihydrate (ATH) or magnesium dihydroxide (MDH) as fire retardant, to avoid fire hazards and reduce flammability. But this high mineral loading results in a decrease of the mechanical performances of the materials. This work aims at studying the influence of the incorporation of multiwall carbon nanotubes (MWNTs) on the tensile properties and the fire behavior of EVA nanocomposites. This work demonstrates, on one side, the significant effect of the previous nanotube coating by a thin layer of high density polyethylene (HDPE-coating) on the mechanical behavior of the so-obtained nanocomposites and explain, on the other side, the flame retardant efficiency of MWNTs in EVA nanocomposites. An original mechanism related to the action of the MWNTs during the combustion process is proposed and the effect of the HDE-coating on the cohesion of the residues is discussed.
247

Tensile source components of swarm events in West Bohemia in 2000 by considering seismic anisotropy

Rößler, Dirk, Krüger, Frank, Rümpker, Georg, Psencik, Ivan January 2006 (has links)
Earthquake swarms occur frequently in West Bohemia, Central Europe. Their occurrence is correlated with and propably triggered by fluids that escape on the earth's surface near the epicentres. These fluids raise up periodically from a seemingbly deep-seated source in the upper mantle. Moment tensors for swarm events in 1997 indicate tensile faulting. However, they were determined under assumption of seismic isotropy although anisotropy can be observed. Anisotropy may obscure moment tensors and their interpretation. In 2000, more than 10,000 swarm earthquakes occurred near Novy Kostel, West Bohemia. Event triggering by fluid injection is likely. Activity lasted from 28/08 until 31/12/00 (9 phases) with maximum ML=3.2. High quality P-wave seismograms were used to retrieve the source mechanisms for 112 events between 28/08/00 and 30/10/00 using > 20 stations. We determine the source geometry using a new algorithm and different velocity models including anisotropy. From inversions of P waves we observe ML<3.2, strike-slip events on steep N-S oriented faults with additional normal or reverse components. Tensile components seem to be evident for more than 60% of the processed swarm events in West Bohemia during the phases 1-7. Being most significant at great depths and at phases 1-4 during the swarm they are time and location dependent. Although tensile components are reduced when anisotropy is assumed they persist and seem to be important. They can be explained by pore-pressure changes due to the injection of fluids that raise up. Our findings agree with other observations e.g. correlation of fluid transport and seismicity, variations in b-value, forcing rate, and in pore pressure diffusion. Tests of our results show their significance.
248

Characterisation of green-glued wood adhesive bonds

Sterley, Magdalena January 2012 (has links)
The gluing of unseasoned wood, called green gluing, is a relatively new sawmill process, implying a radically changed order of material flow in the production of value-added wood-based products. It facilitates the enhancement of raw material recovery and value yield by integrating defect elimination and gluing already before kiln drying. The present study evaluates green glued adhesive bonds in flatwise glued beams and finger joints. The main part of this work deals with green gluing using a moisture curing polyurethane adhesive (PUR). Standardised test methods and specially designed, small scale, specimens were used for the determination of the strength, fracture energy and the ductility of both dry- and green glued bonds in tension and in shear. Using the small scale specimens it was possible to capture the complete stress versus deformation curves, including also their unloading part. An optical system for deformation measurement was used for the analysis of bond behaviour. The influence of moisture content during curing and temperature after curing on the adhesive chemical composition and on the mechanical properties was investigated. Furthermore, the moisture transport through the adhesive bond during curing was tested. Finally, microscopy studies were performed for analysis of bond morphology and fracture. The results show that two significant factors influence the shear strength of green glued bonds: wood density and adhesive spread rate. Bonds which fulfil the requirements according to EN 386 could be obtained within a wide range of process parameters. The small specimen tests showed that green glued PUR bonds can reach the same strength and fracture energy, both in shear and in tension, as dry glued bonds with the same adhesive amount. The local material properties of the bonds could be determined, thanks to the failure in the tests taking place within the adhesive bond itself and not in the wood. Following process factors were shown to cause lower bond strength: a) a low adhesive spread rate, b) high pressure and c) short pressing time in combination with low wood density and high moisture content. Moreover, the heat treatment of the cured PUR adhesive during drying influenced the chemical composition of the adhesive, providing for higher strength, stiffness and Tg of the adhesive, caused by an increased amount of highly ordered bidentate urea.
249

Interaction of dissolved and colloidal substances with fines of mechanical pulp - influence on sheet properties and basic aspects of adhesion

Rundlöf, Mats January 2002 (has links)
No description available.
250

Tensile testing and stabilization/carbonization studies of polyacrylonitrile/carbon nanotube composite fibers

Lyons, Kevin Mark 14 November 2012 (has links)
This study focuses on the processing, structure and properties of polyacrylonitrile (PAN)/ carbon nanotube (CNT) composite carbon fibers. Small diameter PAN/CNT based carbon fibers have been processed using sheath-core and islands-in-a-sea (INS) fiber spinning technology. These methods resulted in carbon fibers with diameters of ~3.5 μm and ~1 μm (for sheath-core and INS respectively). Poly (methyl methacrylate) has been used as the sheath or the sea component, which has been removed prior to carbonization. These fibers have been stabilized and carbonized using a batch process. The effect of stabilization has been characterized by Fourier Transform Infrared Spectroscopy (FTIR), wide-angle X-ray diffraction (WAXD), and differential scanning calorimetry (DSC). A non-isothermal extent of cyclization (Mcyc) from the DSC kinetics study was developed in order to obtain an unbiased method for determining the optimal stabilization condition. The results of Mcyc were found to be in good agreement with the experimental FTIR and WAXD observations. The carbon fiber fracture surfaces have been examined using SEM. Various test parameters that affect the tensile properties of the precursor fiber (both PAN and PAN/CNT), as well as carbon fiber have been studied. In an attempt to validate single filament tests, fiber tow testing has also been done using standard test methods. Batch processed carbon fibers obtained via sheath-core geometry exhibited tensile strengths as high as 6.5 GPa, while fibers processed by islands-in-a-sea geometry exhibited strength values as high as 7.7 GPa.

Page generated in 0.0336 seconds