Spelling suggestions: "subject:"terrestisk, limnisk ocho maria ekologi"" "subject:"terrestisk, limnisk ocho marie ekologi""
101 |
Rarity in boreal stream: patterns, causes and consequencesHoffsten, Per-Ola January 2003 (has links)
<p>Patterns of site occupancy among boreal stream insects were studied in central Sweden with focus on sparsely distributed species and the role of dispersal and niche limitations.</p><p>In the study of dispersal limitation, I found that effects of an extraordinarily harsh winter in small to medium-sized streams were strongest in sites located in small streams and far from lake outlets. Species richness and the total abundance of macroinvertebrates and trout returned to pre-disturbance levels after three years. However, some species showed slow recolonization and the proportion of holoaquatic taxa was still reduced after three years. In a second study, I found a positive correlation between site occupancy in stream caddisflies and morphological traits associated with fast and energy-efficient flight, whereas specialized spring caddisflies showed a negative correlation to these traits compared to stream species. This suggested that streams, but not springs, select for strong dispersal ability in caddisflies. In a survey of springs in central Sweden, hydrogeology was found to be a useful predictor of the occurrence of spring specialists. Two of these, <i>Crunoecia irrorata</i> Curtis and <i>Parachiona picicornis</i> (Pictet), were found exclusively in glaciofluvial springs, characterized by a stable discharge and temperature. Less specialized members of the spring fauna (i.e. species also occurring in streams, ponds or lakes) also occurred in moraine and limestone springs characterized by more unstable conditions. </p><p>Niche limitations were studied by contrasting large-scale distributions of closely related rare and common stoneflies. Differences in temperature requirements in the juvenile stages and life cycles suggested that the rare species, <i>Isogenus nubecula</i> Newman, was restricted by a limited tolerance to low stream temperatures, whereas the two common species, <i>Isoperla grammatica</i> (Poda) and <i>Diura nanseni</i> (Kempny), appeared to have a broader tolerance to climatic conditions in the study area. In a second study of niche limitations, macroinvertebrate assemblages in 88 streams in Central Sweden showed a nested distribution pattern. Most species deviating from expected distributions occurred in small streams, indicating competitive exclusion from species-rich sites, predator avoidance, or specialization to unique habitat features of small streams. In the last paper, the longitudinal distribution of filter-feeding caddisflies in a lake-outlet stream demonstrated patterns concordant to feeding specialization. </p>
|
102 |
Ecology and Evolution of Adaptive Morphological Variation in Fish PopulationsSvanbäck, Richard January 2004 (has links)
<p>The work in this thesis deals with the ecology and evolution of adaptive individual variation. Ecologists have long used niche theory to describe the ecology of a species as a whole, treating conspecific individuals as ecological equivalent. During recent years, research about individual variation in diet and morphology has gained interest in adaptive radiations and ecological speciation. Such variation among individual niche use may have important conservation implications as well as ecological and evolutionary implications. However, up to date we know very little about the extension of this phenomenon in natural populations and the mechanisms behind it.</p><p>The results in this thesis show that the extension of individual diet specialization is widely spread throughout the animal kingdom. The variation in diet is mainly correlated to morphological variation but not always. Furthermore, this variation in diet and morphology among individuals could be both genetically determined and environmentally induced and it mainly comes from trade-offs in foraging efficiency between different prey types. </p><p>The results from a number of studies of perch also show that individual perch differ in morphology and diet depending on habitat, where littoral perch has a deeper body compared to pelagic perch. This difference in morphology corresponds to functional expectations and is related to foraging efficiency trade-offs between foraging in the littoral and pelagic zone of a lake. The variation in morphology in perch is mainly due to phenotypic plasticity but there are also small genetic differences between the littoral and pelagic perch. Two separate studies show that both predation and competition may be important mechanism for the variation in morphology and diet in perch.</p><p>In conclusion, the results in this thesis show that individual variation in diet and habitat choice is a common phenomenon with lots of ecological and evolutionary implications. However, there are many mechanisms involved in this phenomenon on which we are just about to start learning more about, and only further research in this area will give us the full insight.</p>
|
103 |
Biodiversity in fragmented boreal forests : assessing the past, the present and the futureBerglund, Håkan January 2004 (has links)
<p>The aims of this thesis are to (1) analyze the predictability (indicators) of plant and fungal species diversity in old-growth forests, and (2) assess the history and biodiversity of woodland key habitats (WKHs) and their potential to maintain species diversity in fragmented boreal forest landscapes. </p><p>Predictability was explored in Granlandet nature reserve, an unexploited landscape composed of discrete old-growth Picea forest patches of varying size isolated by wetland, reflecting conditions of insular biota at stochastic equilibrium. Data from 46 patches (0.2-12 ha) showed that most species were rare. However, species richness and composition patterns exhibited a high degree of predictability, which strengthen the possibility to apply biodiversity indicators in old-growth forest stands. Area was a key factor. The increase in species richness starts to level out at 2-3 ha. Large patches host more Red-list species in their interiors than do small ones, i.e. stand size is an important qualitative aspect of old-growth habitat. Nestedness emerged in relation to area but also in equal-sized plots. Structural complexity and habitat quality were important for species richness and compositional patterns, and small habitats of high quality could harbor many rare species. Monitoring of wood-fungi on downed logs showed that species diversity on downed logs changed over periods of 5-10 years and that the occurrences of annual species were unpredictable. It is suggested that monitoring of species with durable fruit bodies (mainly polypores) is likely to be a feasible approach to obtain comparable data over time.</p><p>Assessments of biodiversity of WKHs were performed in two areas with contrasting histories of forest exploitation, namely in south boreal and north boreal Sweden. Analyses of the history of 15 south boreal WKHs showed that fire-suppression, selective logging until mid-20th century and abandonment by modern forestry has shaped their forest structure. These WKHs are not untouched forests, they lack key structural components and harbor few Red-list species. Artificial interventions to restore natural processes and patterns are needed to further increase their suitability for threatned species. Modeling analyses of species richness in 32 WKHs in north boreal Sweden, some of which have not been isolated by modern forestry until recently, indicated an excess of crustose lichen species, i.e. WKHs may face delayed species extinctions. By contrast, the results indicate that wood-fungi have tracked the environmental changes. Differences in substrate dynamics between epiphytes on living trees and species growing on decaying logs may explain the diffeence between species groups. The results indicate that population densities of Red-list species were low, which may result in further depletion of species diversity.</p><p>Continuing species declines and extinctions are likely if not conservation of WKHs are combined with other considerations in th managed forest landscape. Both WKHs and their surroundings must be managed and designed to maintain biodiversity over time. For a successful future conservation of boreal forest biodiversity monitoring of WKHs must be combined with monitoring of refeence areas. </p>
|
104 |
Living on the edge : effectiveness of buffer strips in protecting biodiversity on boreal riparian forestsHylander, Kristoffer January 2004 (has links)
<p>The objective of this thesis is to evaluate the ecological consequences of buffer strip retention on riparian and terrestrial biodiversity. Earlier studies on forest buffer strips have evaluated their effectiveness in relation to water quality and aquatic biota. However, forests along streams are species rich habitats for many organism groups. Buffer strip management is assumed to be important also for protecting such species. Current approaches to biodiversity-oriented forest management practices need to be scientifically evaluated. In this thesis the effects on bryophytes and land snails have been evaluated.</p><p>A before-and-after experiment along 15 small streams in northern Sweden showed that buffer strips of 10 m on each side of the stream moderated the negative effects exhibited at the clear-cuts. The number of land snail species remained similar as to before logging and the number of vanished bryophyte species was lower in the buffer strips than in the clear-cuts. The ground moisture influenced the survival rate of land snails at the clear-cuts. At mesic sites many species vanished but at wet sites the snail fauna was unaffected by the logging.</p><p>Many bryophyte species, most of them liverworts, decreased or disappeared in the buffer strips. These were mostly growing on substrates elevated from the forest floor, such as logs, stumps and tree-bases. A number of nationally red-listed species, sensitive for changes in microclimate, were among those decreasing most. Thus, for the species in most need of protection the buffer strips were too narrow.</p><p>An experiment with bryophyte transplants followed over a season showed that wet ground moisture moderated the negative edge effects in narrow buffer strips. On the other hand, the growth in mesic and moist sites was almost as low as in comparable clear-cuts.</p><p>Microclimatic edge effects are stronger at south facing than north-facing edges of forest clear-cuts. This was shown in an experiment using bryophyte growth as an indicator of differences in microclimate. However, the depth of edge influence seemed to be similar between north- and south-facing forest edges, >30 m for one species. An explanation for this could be that wind penetrates deeper into edges than solar radiation and has a more variable direction.</p><p>In conclusion, narrow buffer strips consist entirely of edge habitat. For many species the environment in buffer strips is good enough for persistence. For others, most notably bryophyte species on convex substrates, wider buffer strips are needed to ensure long-term survival. </p>
|
105 |
Land Use, Freshwater Flows and Ecosystem Services in an Era of Global ChangeGordon, Line January 2003 (has links)
The purpose of this thesis is to analyse interactions between freshwater flows, terrestrial ecosystems and human well-being. Freshwater management and policy has mainly focused on the liquid water part (surface and ground water run off) of the hydrological cycle including aquatic ecosystems. Although of great significance, this thesis shows that such a focus will not be sufficient for coping with freshwater related social-ecological vulnerability. The thesis illustrates that the terrestrial component of the hydrological cycle, reflected in vapour flows (or evapotranspiration), serves multiple functions in the human life-support system. A broader understanding of the interactions between terrestrial systems and freshwater flows is particularly important in light of present widespread land cover change in terrestrial ecosystems. The water vapour flows from continental ecosystems were quantified at a global scale in Paper I of the thesis. It was estimated that in order to sustain the majority of global terrestrial ecosystem services on which humanity depends, an annual water vapour flow of 63 000 km3/yr is needed, including 6800 km3/yr for crop production. In comparison, the annual human withdrawal of liquid water amounts to roughly 4000 km3/yr. A potential conflict between freshwater for future food production and for terrestrial ecosystem services was identified. Human redistribution of water vapour flows as a consequence of long-term land cover change was addressed at both continental (Australia) (Paper II) and global scales (Paper III). It was estimated that the annual vapour flow had decreased by 10% in Australia during the last 200 years. This is due to a decrease in woody vegetation for agricultural production. The reduction in vapour flows has caused severe problems with salinity of soils and rivers. The human-induced alteration of vapour flows was estimated at more than 15 times the volume of human-induced change in liquid water (Paper II).
|
106 |
Rarity in boreal stream: patterns, causes and consequencesHoffsten, Per-Ola January 2003 (has links)
Patterns of site occupancy among boreal stream insects were studied in central Sweden with focus on sparsely distributed species and the role of dispersal and niche limitations. In the study of dispersal limitation, I found that effects of an extraordinarily harsh winter in small to medium-sized streams were strongest in sites located in small streams and far from lake outlets. Species richness and the total abundance of macroinvertebrates and trout returned to pre-disturbance levels after three years. However, some species showed slow recolonization and the proportion of holoaquatic taxa was still reduced after three years. In a second study, I found a positive correlation between site occupancy in stream caddisflies and morphological traits associated with fast and energy-efficient flight, whereas specialized spring caddisflies showed a negative correlation to these traits compared to stream species. This suggested that streams, but not springs, select for strong dispersal ability in caddisflies. In a survey of springs in central Sweden, hydrogeology was found to be a useful predictor of the occurrence of spring specialists. Two of these, Crunoecia irrorata Curtis and Parachiona picicornis (Pictet), were found exclusively in glaciofluvial springs, characterized by a stable discharge and temperature. Less specialized members of the spring fauna (i.e. species also occurring in streams, ponds or lakes) also occurred in moraine and limestone springs characterized by more unstable conditions. Niche limitations were studied by contrasting large-scale distributions of closely related rare and common stoneflies. Differences in temperature requirements in the juvenile stages and life cycles suggested that the rare species, Isogenus nubecula Newman, was restricted by a limited tolerance to low stream temperatures, whereas the two common species, Isoperla grammatica (Poda) and Diura nanseni (Kempny), appeared to have a broader tolerance to climatic conditions in the study area. In a second study of niche limitations, macroinvertebrate assemblages in 88 streams in Central Sweden showed a nested distribution pattern. Most species deviating from expected distributions occurred in small streams, indicating competitive exclusion from species-rich sites, predator avoidance, or specialization to unique habitat features of small streams. In the last paper, the longitudinal distribution of filter-feeding caddisflies in a lake-outlet stream demonstrated patterns concordant to feeding specialization.
|
107 |
Adaptation and Constraint in the Plant Reproductive PhaseBolmgren, Kjell January 2004 (has links)
Conservatism is a central theme of organismic evolution. Related species share characteristics due to their common ancestry. Some concern have been raised among evolutionary biologists, whether such conservatism is an expression of natural selection or of a constrained ability to adapt. This thesis explores adaptations and constraints within the plant reproductive phase, particularly in relation to the evolution of fleshy fruit types (berries, drupes, etc.) and the seasonal timing of flowering and fruiting. The different studies were arranged along a hierarchy of scale, with general data sets sampled among seed plants at the global scale, through more specific analyses of character evolution within the genus Rhamnus s.l. L. (Rhamnaceae), to descriptive and experimental field studies in a local population of Frangula alnus (Rhamnaceae). Apart from the field study, this thesis is mainly based on comparative methods explicitly incorporating phylogenetic relationships. The comparative study of Rhamnus s.l. species included the reconstruction of phylogenetic hypotheses based on DNA sequences. Among geographically overlapping sister clades, biotic pollination was not correlated with higher species richness when compared to wind pollinated plants. Among woody plants, clades characterized by fleshy fruit types were more species rich than their dry-fruited sister clades, suggesting that the fleshy fruit is a key innovation in woody habitats. Moreover, evolution of fleshy fruits was correlated with a change to more closed (darker) habitats. An independent contrast study within Rhamnus s.l. documented allometric relations between plant and fruit size. As a phylogenetic constraint, allometric effects must be considered weak or non-existent, though, as they did not prevail among different subclades within Rhamnus s.l. Fruit size was correlated with seed size and seed number in F. alnus. This thesis suggests that frugivore selection on fleshy fruit may be important by constraining the upper limits of fruit size, when a plant lineage is colonizing (darker) habitats where larger seed size is adaptive. Phenological correlations with fruit set, dispersal, and seed size in F. alnus, suggested that the evolution of reproductive phenology is constrained by trade-offs and partial interdependences between flowering, fruiting, dispersal, and recruitment phases. Phylogenetic constraints on the evolution of phenology were indicated by a lack of correlation between flowering time and seasonal length within Rhamnus cathartica and F. alnus, respectively. On the other hand, flowering time was correlated with seasonal length among Rhamnus s.l. species. Phenological differences between biotically and wind pollinated angiosperms also suggested adaptive change in reproductive phenology. / Äpplet faller inte långt från trädet. Men varför? Den biologiska mångfalden präglas i stor utsträckning av fylogenetiskt bevarade karaktärsdrag; närbesläktade arter är lika. Det pågår en diskussion bland evolutionsbiologer om i vilken utsträckning denna konservatism är ett resultat av naturlig selektion eller av en begränsad anpassningsförmåga. Denna avhandling diskuterar begreppet evolutionära begränsningar i relation till den reproduktiva fasen hos växter. I fokus ligger särskilt evolutionen av bärliknande (endozoochora) frukter respektive evolutionen av säsongsmässiga mönster (fenologi) för blomning och fruktsättning. Avhandlingen är hierarkiskt organiserad så att olika delstudier gjordes på olika skalnivåer: fenologi- och fruktevolution analyserades för fröväxter respektive gömfröiga växter; inom brakvedssläktena Rhamnus och Frangula (Rhamnaceae); samt för en lokal population av brakved (Frangula alnus). Populationsstudien baserades på såväl experimentella som deskriptiva data, medan övriga studier i huvudsak genomfördes med fylogenetisk komparativ metodik baserade på litteraturdata. Som en del av de komparativa studierna rekonstruerades fylogenetiska hypoteser för Rhamnus s.l. utifrån DNA-sekvenser (ITS, trnL-F), vilka gav stöd för att Frangula och Rhamnus är monofyletiska systersläkten. I en biogeografiskt kontrollerad fylogenetisk kontrastanalys upptäcktes inga skillnader i artrikedom mellan djur- och vindpollinerade växter. Bärliknande frukter verkar dock vara en betydelsefull karaktär (key innovation) i skogsmiljöer. För det första var fylogenetiska klader med bärliknande frukter mer artrika än systerklader med torra frukter. Dessutom var uppkomster av bärliknande frukt korrelerad till habitat med mer sluten vegetation. En fylogenetisk kontrastanalys av allometriska effekter visade på en positiv korrelation mellan växtindividens och fruktens storlek inom Rhamnus s.l. Upprepade analyser av dessa allometriska samband i olika monofyletiska subklader inom Rhamnus s.l. indikerar dock att allometri, såsom evolutionär begränsning, är svag. I populationsstudien av F. alnus var fruktstorlek positivt korrelerad till såväl fröantal som frövikt. En generell hypotes utifrån denna avhandling blir därför att frugivorer (de djur som äter bären och därmed sprider växtens frön) utövar ett starkt selektionstryck på växter som koloniserar ett habitat där fröstorlek är adaptivt, eftersom fruktstorlek påverkar frugivorernas (ssk. fåglars) sätt att hantera frukten. Reproduktiv fenologi var korrelerad till fruktsättning, fröspridning och fröstorlek hos F. alnus. Detta stödjer tanken att evolutionen av blomnings- och fruktsättningstider begränsas av avvägningar (trade-offs) och partiella beroenden mellan blomning-, fruktsättnings-, spridnings och rekryteringsfaserna. Inomartsvariation i blomningstid för F. alnus respektive getapel (Rhamnus cathartica) över en nordeuropeisk latitudinell transekt var inte korrelerad till säsongslängd, vilket antyder att utvecklingen av blomningstider är evolutionärt begränsad. Å andra sidan påvisades en sådan korrelation mellan blomningstid och säsongslängd i en mellanartsstudie inom Rhamnus s.l. Den fylogenetiska kontrastanalysen mellan djur- och vindpollinerade växter visade också på adaptiva skillnader i fenologi. Blomningstiderna inom en klad med biotiskt pollinerade arter var mer åtskilda än inom den vindpollinerade systerkladen, och den välkända iakttagelsen att vindpollinerade träd blommor tidigare på säsongen fick även stöd i ett fylogenetiskt komparativt perspektiv.
|
108 |
Biodiversity in fragmented boreal forests : assessing the past, the present and the futureBerglund, Håkan January 2004 (has links)
The aims of this thesis are to (1) analyze the predictability (indicators) of plant and fungal species diversity in old-growth forests, and (2) assess the history and biodiversity of woodland key habitats (WKHs) and their potential to maintain species diversity in fragmented boreal forest landscapes. Predictability was explored in Granlandet nature reserve, an unexploited landscape composed of discrete old-growth Picea forest patches of varying size isolated by wetland, reflecting conditions of insular biota at stochastic equilibrium. Data from 46 patches (0.2-12 ha) showed that most species were rare. However, species richness and composition patterns exhibited a high degree of predictability, which strengthen the possibility to apply biodiversity indicators in old-growth forest stands. Area was a key factor. The increase in species richness starts to level out at 2-3 ha. Large patches host more Red-list species in their interiors than do small ones, i.e. stand size is an important qualitative aspect of old-growth habitat. Nestedness emerged in relation to area but also in equal-sized plots. Structural complexity and habitat quality were important for species richness and compositional patterns, and small habitats of high quality could harbor many rare species. Monitoring of wood-fungi on downed logs showed that species diversity on downed logs changed over periods of 5-10 years and that the occurrences of annual species were unpredictable. It is suggested that monitoring of species with durable fruit bodies (mainly polypores) is likely to be a feasible approach to obtain comparable data over time. Assessments of biodiversity of WKHs were performed in two areas with contrasting histories of forest exploitation, namely in south boreal and north boreal Sweden. Analyses of the history of 15 south boreal WKHs showed that fire-suppression, selective logging until mid-20th century and abandonment by modern forestry has shaped their forest structure. These WKHs are not untouched forests, they lack key structural components and harbor few Red-list species. Artificial interventions to restore natural processes and patterns are needed to further increase their suitability for threatned species. Modeling analyses of species richness in 32 WKHs in north boreal Sweden, some of which have not been isolated by modern forestry until recently, indicated an excess of crustose lichen species, i.e. WKHs may face delayed species extinctions. By contrast, the results indicate that wood-fungi have tracked the environmental changes. Differences in substrate dynamics between epiphytes on living trees and species growing on decaying logs may explain the diffeence between species groups. The results indicate that population densities of Red-list species were low, which may result in further depletion of species diversity. Continuing species declines and extinctions are likely if not conservation of WKHs are combined with other considerations in th managed forest landscape. Both WKHs and their surroundings must be managed and designed to maintain biodiversity over time. For a successful future conservation of boreal forest biodiversity monitoring of WKHs must be combined with monitoring of refeence areas.
|
109 |
Living on the edge : effectiveness of buffer strips in protecting biodiversity on boreal riparian forestsHylander, Kristoffer January 2004 (has links)
The objective of this thesis is to evaluate the ecological consequences of buffer strip retention on riparian and terrestrial biodiversity. Earlier studies on forest buffer strips have evaluated their effectiveness in relation to water quality and aquatic biota. However, forests along streams are species rich habitats for many organism groups. Buffer strip management is assumed to be important also for protecting such species. Current approaches to biodiversity-oriented forest management practices need to be scientifically evaluated. In this thesis the effects on bryophytes and land snails have been evaluated. A before-and-after experiment along 15 small streams in northern Sweden showed that buffer strips of 10 m on each side of the stream moderated the negative effects exhibited at the clear-cuts. The number of land snail species remained similar as to before logging and the number of vanished bryophyte species was lower in the buffer strips than in the clear-cuts. The ground moisture influenced the survival rate of land snails at the clear-cuts. At mesic sites many species vanished but at wet sites the snail fauna was unaffected by the logging. Many bryophyte species, most of them liverworts, decreased or disappeared in the buffer strips. These were mostly growing on substrates elevated from the forest floor, such as logs, stumps and tree-bases. A number of nationally red-listed species, sensitive for changes in microclimate, were among those decreasing most. Thus, for the species in most need of protection the buffer strips were too narrow. An experiment with bryophyte transplants followed over a season showed that wet ground moisture moderated the negative edge effects in narrow buffer strips. On the other hand, the growth in mesic and moist sites was almost as low as in comparable clear-cuts. Microclimatic edge effects are stronger at south facing than north-facing edges of forest clear-cuts. This was shown in an experiment using bryophyte growth as an indicator of differences in microclimate. However, the depth of edge influence seemed to be similar between north- and south-facing forest edges, >30 m for one species. An explanation for this could be that wind penetrates deeper into edges than solar radiation and has a more variable direction. In conclusion, narrow buffer strips consist entirely of edge habitat. For many species the environment in buffer strips is good enough for persistence. For others, most notably bryophyte species on convex substrates, wider buffer strips are needed to ensure long-term survival.
|
110 |
Masking environmental feedback : Misfits between institutions and ecosystems in Belize and ThailandHuitric, Miriam January 2004 (has links)
The thesis analyses relationships between ecological and social systems in the context of coastal ecosystems. It examines human impacts from resource extraction and addresses management and governance behind resource exploitation. The main premises are that a lack of ecological knowledge leads to poor ecosystem management and that the dichotomy between social and natural systems is an artificial one. The thesis illustrates the importance of basing resource management on the ecological conditions of the resource and its ecosystem. It also demonstrates the necessity of accounting for the human dimension in ecosystem management and the challenges of organising human actions for sustainable use of ecosystem services in the face of economic incentives that push users towards short-term extraction. Many Caribbean coral reefs have undergone a shift from coral to macroalgal domination. An experiment on Glovers Reef Atoll in Belize manually cleared patch reefs in a no-take zone and a fished zone (Papers I and II). The study hypothesised that overfishing has reduced herbivorous fish populations that control macroalgae growth. Overall, management had no significant effect on fish abundance and the impacts of the algal reduction were short-lived. This illustrated that the benefits of setting aside marine reserves in impacted environments should not be taken for granted. Papers III and IV studied the development of the lobster and conch fisheries in Belize, and the shrimp farming industry in Thailand respectively. These studies found that environmental feedback can be masked to give the impression of resource abundance through sequential exploitation. In both cases inadequate property rights contributed to this unsustainable resource use. The final paper (V) compared the responses to changes in the resource by the lobster fisheries in Belize and Maine in terms of institutions, organisations and their role in management. In contrast to Maine’s, the Belize system seems to lack social mechanisms for responding effectively to environmental feedback. The results illustrate the importance of organisational and institutional diversity that incorporate ecological knowledge, respond to ecosystem feedback and provide a social context for learning from and adapting to change.
|
Page generated in 0.1639 seconds