• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Rolle von Tetrapyrrolen der Chlorophyllbiosynthese bei der retrograden Signalgebung in Arabidopsis thaliana

Schlicke, Hagen 28 February 2017 (has links)
In photosynthetischen Organismen vermitteln Tetrapyrrole während der Chloroplastenbiogenese und als Antwort auf Veränderungen des Entwicklungszustandes sowie wechselnder Umweltbedingungen retrograde Signale zur Kontrolle der Expression von Kerngenen (NGE). In der vorliegenden Arbeit wurde ein induzierbares RNAi-System in Arabidopsis eingesetzt, um enzymatische Schritte des Mg-Zweigs der Tetrapyrrolbiosynthese (TPBS) zu inaktivieren. Es sollte gezeigt werden, inwiefern Tetrapyrrole zu einer kontinuierlichen Regulation der NGE beitragen, um abhängig von durch wechselnde Umweltbedingungen bedingte Veränderungen der TPBS, die Homöostase der Chloroplasten zu justieren. Die Untersuchungen zur Kurzzeitinduktion zeigten, dass veränderte Gehalte an Mg Protoporphyrin IX (MgP), Mg-Protoporphyrin IX-monomethylester (MgPME) und Protochlorophyllid (Pchlid) als Folge verminderter Enzymaktivitäten nicht primär zu einer Anpassung der NGE innerhalb der ersten 24 h führen. Vielmehr weisen die Ergenisse dieser Arbeit auf ein komplexes, vielschichtiges Signalnetzwerk aus retrograden und anterograden Signalwegen unter der Mitwirkung transkriptionellen und posttranslationalen Regulationsmechanismen hin. Es wird angenommen, dass Veränderungen der TPBS über ROS-Signalwege oder Redox-vermittelte Signale zur Regulation der NGE beitragen. Diese Signale könnten aus beeinträchtigten Photosystemen stammen, welche eine Folge der Akkumulation von photoreaktiven Intermediaten und unzureichenden Mengen an Chlorophyll sein können. / In photosynthetic organisms, tetrapyrroles are known to mediate retrograde control of nuclear gene expression (NGE) during chloroplast biogenesis in response to developmental and environmental changes. In these studies, an inducible RNAi system was used in Arabidopsis plants to inactivate enzymatic steps in the Mg-branch of tetrapyrrole biosynthesis (TPBS). It was intended to proof whether tetrapyrroles contribute to a permanent regulation of NGE due to changes in the TPBS and in response to environmental changes to achieve an adjustment of chloroplast homeostasis. The investigations of short-term responses due to altered levels of Mg protoporphyrin (MgP), Mg protoporphyrin monomethylester (MgPME) and protochlorophyllide (Pchlid) caused by a robust down-regulation of enzyme activity within the first 24 h reveal that these Mg porphyrins do not primarily contribute to the modulation of NGE. All results together indicate a complex multi-layered signaling network of anterograde and retrograde control and contributions of transcriptional as well as posttranslational regulation mechanisms. It is proposed that changes in the TPBS mediate the regulation of NGE via ROS-signaling pathways or redox signals deriving from disturbed photosystems due to accumulation of photoreactive intermediates and the lack of chlorophyll.
2

Untersuchungen zu den Folgen der Photosensibilisieung durch akkumulierende Tetrapyrrole in transgenen Tabakpflanzen

Keetman, Ulrich 27 September 2000 (has links)
Zusammenfassung Transgene Tabakpflanzen, in denen wegen der Expression von Antisense-RNA für zwei Enzyme der Tetrapyrrolbiosynthese die Aktivität der Uroporphyrinogen-Decarboxylase bzw. Coproporphyrinogen-Oxidase vermindert ist, akkumulieren in starkem Ausmaß die Substrate der betroffenen Enzyme. Diese Porphyrinogene werden bei Anwesenheit von Sauerstoff autoxidativ oder durch unspezifische Peroxidasen in ihre photosensibilisierenden Derivate (Porphyrine) umgewandelt, welche die Ursache für zelluläre Schäden darstellen, die sich makroskopisch in Form von Blattläsionen zeigen. Im Verlauf der durch die angehäuften Porphyrine ausgelösten Reaktionen, die u.a. den Folgen der Behandlung von Pflanzen mit photodynamisch wirksamen Herbiziden und auch den Symptomen von Porphyria-Erkrankungen des Menschen ähneln, werden Membranlipide durch Peroxidation geschädigt und alle lichtexponierten Zellen massivem oxidativem Streß ausgesetzt. Dieser läßt sich anhand der kompartiment-übergreifenden und alle Ebenen der Expression umfassenden Aktivierung des antioxidativen Schutzsystems belegen. So können die Transkriptakkumulation und verstärkte Anhäufung der Proteine sowie der damit verbundene Anstieg der Aktivität von Superoxid-Dismutase und Ascorbat-Peroxidase nachgewiesen werden. Die erhöhte Aktivität der Schutzenzyme führt zu beschleunigtem Umsatz und größerem Bedarf an niedermolekularen Antioxidantien wie Ascorbat und Tocopherol. Gleichzeitig kommt es lokal beschränkt auf Blattgewebe in der Umgebung von Nekrosen zur Kreuzinduktion von pathogenese-assoziierten Prozessen, wie der Akkumulation von "pathogenesis related" (PR)-Proteinen, von Salicylsäure und der antimikrobiell wirksamen phenolischen Verbindung Scopolin. Diese Aktivierung der Pathogenabwehr wird durch die verminderte Ausbreitung einer Infektion der Pflanzen mit dem Tabak Mosaikvirus (TMV) widergespiegelt. Der Prozeß der Photosensibilisierung ist stark licht- und sauerstoffabhängig und wird außerdem durch erhöhte Temperaturen beschleunigt. Wird eine bestimmte Lichtdosis überschritten, werden die Porphyrine durch die dann rasch irreversibel geschädigten Plastiden freigesetzt, und es kommt wegen des nachfolgenden Absterbens von Gewebe zur Ausbildung der Blattläsionen. Dieser Effekt wurde ausgenutzt, um die Kinetik von Prozessen der antioxidativen und Pathogenabwehr in den Pflanzen zu untersuchen. Mittels Subtraktiver Suppressions-Hybridisierung (SSH) wurde eine subtrahierte cDNA-Bank angelegt, in der Gene vertreten sind, deren Expression bereits sehr früh als Reaktion auf die Photosensibilisierung induziert wird. Unter diesen Genen sind auch vermutete Komponenten von Signaltransduktionskaskaden einschließlich Transkriptionsfaktoren. Etwas überraschend war die Erkenntnis, daß vor allem pathogenese- und zelltod-assoziierte Prozesse frühzeitig aktiviert werden, die klassischen Enzyme der antioxidativen Streßabwehr aber erst später reagieren. Bei letzteren kommt es vor Veränderungen in der Expression zuerst zu einem Anstieg der Aktivität, der sich in verändertem Gehalt und Redoxstatus der niedermolekularen Antioxidantien niederschlägt. Insgesamt stellt sich die durch Antisense-Expression verursachte Deregulation der Tetrapyrrolbiosynthese und die daraus resultierende Photosensibilisierung als komplexes System dar, in dem antioxidative und Pathogenabwehr kreuzinduziert werden und welches als Modell zur Aufklärung von Mechanismen der Streßabwehr wertvolle Aussagen liefert. / Abstract Transgenic tobacco plants expressing antisense RNA for two enzymes of the tetrapyrrole biosynthetic pathway are characterized by decreased enzyme activity of either uroporphyrinogen decarboxylase or coproporphyrinogen oxidase and accumulate the substrates of these enzymes in large amounts. If oxygen is present the accumulated porphyrinogens are transformed either by autoxidation or unspecific peroxidases into their photosensitizing derivatives (porphyrins). They are the molecular basis for cellular damage which eventually becomes visible as leaf lesions. During photosensitization membrane lipids are damaged due to peroxidation reactions and most of the symptoms observed are similar to the effects caused by the treatment of plants with photodynamic herbicides, or resemble the characteristics of porphyria diseases in human. These plants suffer from oxidative stress which is concluded from the general and intercompartimental activation of the antioxidative stress defense system. Transcripts and proteins of superoxide dismutase and ascorbate peroxidase accumulate and the corresponding enzyme activities are increased. This increase leads to accelerated turnover and enhanced demand of low molecular weight antioxidants like ascorbate and tocopherol. Simultaneously, cross induction of pathogenesis-related responses is observed in the plants, like the accumulation of PR proteins, salicylic acid and the antimicrobial phenolic compound scopolin. The activation of the pathogen defense system leads to restricted spread of Tobacco Mosaic Virus (TMV) infection in the transgenic plants. Photosensitization strongly depends on light and oxygen and is enhanced by elevated temperature. Porphyrins are only released from rapidly damaged plastids into other cellular compartments if a certain light dose is exceeded. Then cell death commences and dead tissue becomes visible as leaf lesions. This light dosage effect was exploited to investigate the kinetics of antioxidative and pathogen defense responses upon light shift. By the use of Suppression Subtractive Hybridization (SSH) a subtracted cDNA library was established that contains genes which are early induced in response to photosensitization. The library also contains putative components of signal transduction chains and transcription factors. Unexpectedly, the expression of genes related to pathogenesis and cell death is rather early induced while the cellular antioxidative stress defense system responds later. The activity of antioxidative enzymes is increased before changes in transcript or protein accumulation occur, resulting in changes of content and redox ratio of low molecular weight antioxidants. In summary, photosensitization caused by the expression of antisense RNA and resulting in the deregulation of tetrapyrrole biosynthesis is a complex model system in which antioxidative and pathogen defense responses are induced. The approach can be used to further elucidate mechanisms of stress response.
3

Control and function of two ferrochelatase isoforms in Arabidopsis thaliana

Fan, Tingting 18 March 2019 (has links)
Die Tetrapyrrol-Biosynthese der Pflanzen ist ein hoch konservierter Prozess, indem sich die Häm- und Chlorophyllsynthese gemeinsame Syntheseschritte von der 5-Aminolävulinsäure (ALA)- bis hin zur Protoporphyrin IX (Proto)-Bildung teilen. Zur Hämsynthese sind in Arabidopsis thaliana zwei Isoformen der Ferrochelatase (FC) vorhanden, welche die Insertion von Eisenionen in Proto katalysieren. In dieser Arbeit wurden fc1 und fc2 Mutanten analysiert und für Komplementationsversuche mit nativen und modifizierten FC1/FC2-Sequenzen genutzt. Die in der fc1-2 Mutante gestörte Embryonalentwicklung infolge des FC1 Mangels konnte durch Expression eines pFC1::FC1 Genkonstruktes komplementiert werden. Die Expression von FC2 unter dem FC1 Promoter (pFC1::FC2) konnte die fc1-2 Mutante unter Standard-Wachstumsbedingungen vollständig komplementieren, jedoch nicht unter Salzstress. Zusätzlich zu den Komplementationsversuchen der fc1 Mutanten wurde auch eine fc2 Null-Mutante zur Expression der beiden genomischen FC Sequenzen herangezogen, um die spezifischen Funktionen der FC2-Varianten zu untersuchen. Während die pFC1FC2 (fc2/fc2) Pflanzen unter Dauerlicht eine vollständige Komplementation zeigten, konnte unter Kurztagbedingungen nur eine partielle Komplementation beobachtet werden. Versuche geben erste wichtige Hinweise, dass auch FC2 an der Regulation der ALA-Synthese infolge ihrer Interaktion mit PORB beteiligt ist. Dies deutet darauf hin, dass der Häm- und der Chlorophyllzweig eine gemeinsame Regulation der ALA-Synthese teilen, um das Gleichgewicht der TBS zu wahren. Neben der Funktion der FC2 in der Regulation der TBS konnte die vorliegende Arbeit ebenfalls die Rolle der FC2 in der Assemblierung der PSII-LHCII Superkomplexe offenlegen. Basierend auf den Ergebnissen, dieser Studie können Modelle für die funktionale Verteilung der beiden FC-Isoformen in unterschiedlichen Geweben und Entwicklungsstadien, sowie die Funktionen in verschiedenen biologischen Prozessen postuliert werden. / In plants, heme and chlorophyll synthesis share the common synthetic steps from 5- aminolevulinic acid (ALA) formation to Protoporphyrin IX (Proto) production in the conserved Tetrapyrrole biosynthesis (TBS) pathway. Arabidopsis thaliana utilizes two ferrochelatses (FC) to catalyse the insertion of ferrous iron into Proto to yield heme. In this study, the fc1 and fc2 defective mutants have been re-analysed and used for complementation tests with expression of a native or modified FC1/FC2 sequence. The pFC1FC1 (fc1/fc1) complementation plants confirmed that the defective embryo maturation in homozygous fc1-2 seeds is attributed to a lack of FC1. Expression of FC2 under the FC1 promoter contributed to a full complementation of fc1-2 under standard growth conditions, but not under salt stress. A fc2 null mutant has been used to express the two FC genomic sequences to substantiate the specific functions of FC2. Expression of FC2 under its own promoter was able to rescue fc2-2 mutants under both SD and CL conditions. However, pFC2FC1 (fc2/fc2) plants showed a partial complementation under SD condition. Via multiple interaction assays and mutant analyses, this thesis uncovered a mechanism of FC2 action on ALA synthesis regulation via interaction of FC2 and PORB. The results indicate that both branches of heme and chlorophyll synthesis share a common regulation to balance the TBS pathway. Apart from a role of FC2 involved in the regulation of TBS pathway, the presented study also revealed FC2 function in the assembly of the PSII-LHCII supercomplexes. Based on all the results obtained in this study, the functional distribution models of the two FC in different tissues and development stages, as well as diverse biological processes, have been proposed. In addition, to which extent that FC1/FC2 could compensate the function of the other isoform has been discussed.
4

Fluorescence in blue light (FLU): Functional analysis of its structural domains for light and dark-dependent control of ALA synthesis

Hou, Zhiwei 06 January 2020 (has links)
Fluorescence in blue light (FLU) ist ein negativer Feedbackregulator der Chlorophyllbiosynthese, welcher an der Dunkelrepression der 5-Aminolävulinsäure (ALA)-Synthese beteiligt ist. FLU ist Teil eines Komplexes, der die Enzyme umfasst, welche an der Katalyse der finalen Schritte der Chlorophyllbiosynthese beteiligt sind. Drei funktionelle Domänen wurden für das Arabidopsis FLU Protein postuliert: eine Tetratricopeptid-Wiederholungsdomäne (TPR) befindet sich am C-Terminus; eine Transmembrandomäne (TM) ist am N-Terminus lokalisiert; eine Coiled-coil-Domäne (linker) liegt dazwischen. Die TPR-Domäne von FLU Domäne interagiert mit dem C-terminalen Ende der Glutamyl-tRNA Reduktase (GluTR), dem geschwindigkeitsbestimmenden Enzym der ALA-Synthese. Diese Arbeit zur Erweiterung des Wissen über die Funktion von FLU im Licht sowie über die Rolle der funktionellen Domänen von FLU bei der Inaktivierung der ALA-Synthese bei. / Fluorescence in blue light (FLU), a negative feedback regulator of chlorophyll biosynthesis, is involved in dark repression of 5-aminolevulinic acid (ALA) synthesis. FLU is part of a complex comprising the enzymes catalyzing the final steps of chlorophyll synthesis. Three functional domains were proposed in the Arabidopsis FLU protein: a tetratricopeptide repeat (TPR) domain is at the C-terminus; a transmembrane domain (TM) is at the N-terminus; a coiled-coil domain (linker) is in between. The TPR(FLU) domain interacts with the C-terminal end of glutamyl-tRNA reductase (GluTR), the rate-limiting enzyme of ALA synthesis. This thesis contributes to the extended knowledge about the function of FLU in light as well as the role of the structural domains of FLU in the inactivation of ALA synthesis.

Page generated in 0.0423 seconds