• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Die Rolle von Tetrapyrrolen der Chlorophyllbiosynthese bei der retrograden Signalgebung in Arabidopsis thaliana

Schlicke, Hagen 28 February 2017 (has links)
In photosynthetischen Organismen vermitteln Tetrapyrrole während der Chloroplastenbiogenese und als Antwort auf Veränderungen des Entwicklungszustandes sowie wechselnder Umweltbedingungen retrograde Signale zur Kontrolle der Expression von Kerngenen (NGE). In der vorliegenden Arbeit wurde ein induzierbares RNAi-System in Arabidopsis eingesetzt, um enzymatische Schritte des Mg-Zweigs der Tetrapyrrolbiosynthese (TPBS) zu inaktivieren. Es sollte gezeigt werden, inwiefern Tetrapyrrole zu einer kontinuierlichen Regulation der NGE beitragen, um abhängig von durch wechselnde Umweltbedingungen bedingte Veränderungen der TPBS, die Homöostase der Chloroplasten zu justieren. Die Untersuchungen zur Kurzzeitinduktion zeigten, dass veränderte Gehalte an Mg Protoporphyrin IX (MgP), Mg-Protoporphyrin IX-monomethylester (MgPME) und Protochlorophyllid (Pchlid) als Folge verminderter Enzymaktivitäten nicht primär zu einer Anpassung der NGE innerhalb der ersten 24 h führen. Vielmehr weisen die Ergenisse dieser Arbeit auf ein komplexes, vielschichtiges Signalnetzwerk aus retrograden und anterograden Signalwegen unter der Mitwirkung transkriptionellen und posttranslationalen Regulationsmechanismen hin. Es wird angenommen, dass Veränderungen der TPBS über ROS-Signalwege oder Redox-vermittelte Signale zur Regulation der NGE beitragen. Diese Signale könnten aus beeinträchtigten Photosystemen stammen, welche eine Folge der Akkumulation von photoreaktiven Intermediaten und unzureichenden Mengen an Chlorophyll sein können. / In photosynthetic organisms, tetrapyrroles are known to mediate retrograde control of nuclear gene expression (NGE) during chloroplast biogenesis in response to developmental and environmental changes. In these studies, an inducible RNAi system was used in Arabidopsis plants to inactivate enzymatic steps in the Mg-branch of tetrapyrrole biosynthesis (TPBS). It was intended to proof whether tetrapyrroles contribute to a permanent regulation of NGE due to changes in the TPBS and in response to environmental changes to achieve an adjustment of chloroplast homeostasis. The investigations of short-term responses due to altered levels of Mg protoporphyrin (MgP), Mg protoporphyrin monomethylester (MgPME) and protochlorophyllide (Pchlid) caused by a robust down-regulation of enzyme activity within the first 24 h reveal that these Mg porphyrins do not primarily contribute to the modulation of NGE. All results together indicate a complex multi-layered signaling network of anterograde and retrograde control and contributions of transcriptional as well as posttranslational regulation mechanisms. It is proposed that changes in the TPBS mediate the regulation of NGE via ROS-signaling pathways or redox signals deriving from disturbed photosystems due to accumulation of photoreactive intermediates and the lack of chlorophyll.
2

Untersuchungen zu den Folgen der Photosensibilisieung durch akkumulierende Tetrapyrrole in transgenen Tabakpflanzen

Keetman, Ulrich 27 September 2000 (has links)
Zusammenfassung Transgene Tabakpflanzen, in denen wegen der Expression von Antisense-RNA für zwei Enzyme der Tetrapyrrolbiosynthese die Aktivität der Uroporphyrinogen-Decarboxylase bzw. Coproporphyrinogen-Oxidase vermindert ist, akkumulieren in starkem Ausmaß die Substrate der betroffenen Enzyme. Diese Porphyrinogene werden bei Anwesenheit von Sauerstoff autoxidativ oder durch unspezifische Peroxidasen in ihre photosensibilisierenden Derivate (Porphyrine) umgewandelt, welche die Ursache für zelluläre Schäden darstellen, die sich makroskopisch in Form von Blattläsionen zeigen. Im Verlauf der durch die angehäuften Porphyrine ausgelösten Reaktionen, die u.a. den Folgen der Behandlung von Pflanzen mit photodynamisch wirksamen Herbiziden und auch den Symptomen von Porphyria-Erkrankungen des Menschen ähneln, werden Membranlipide durch Peroxidation geschädigt und alle lichtexponierten Zellen massivem oxidativem Streß ausgesetzt. Dieser läßt sich anhand der kompartiment-übergreifenden und alle Ebenen der Expression umfassenden Aktivierung des antioxidativen Schutzsystems belegen. So können die Transkriptakkumulation und verstärkte Anhäufung der Proteine sowie der damit verbundene Anstieg der Aktivität von Superoxid-Dismutase und Ascorbat-Peroxidase nachgewiesen werden. Die erhöhte Aktivität der Schutzenzyme führt zu beschleunigtem Umsatz und größerem Bedarf an niedermolekularen Antioxidantien wie Ascorbat und Tocopherol. Gleichzeitig kommt es lokal beschränkt auf Blattgewebe in der Umgebung von Nekrosen zur Kreuzinduktion von pathogenese-assoziierten Prozessen, wie der Akkumulation von "pathogenesis related" (PR)-Proteinen, von Salicylsäure und der antimikrobiell wirksamen phenolischen Verbindung Scopolin. Diese Aktivierung der Pathogenabwehr wird durch die verminderte Ausbreitung einer Infektion der Pflanzen mit dem Tabak Mosaikvirus (TMV) widergespiegelt. Der Prozeß der Photosensibilisierung ist stark licht- und sauerstoffabhängig und wird außerdem durch erhöhte Temperaturen beschleunigt. Wird eine bestimmte Lichtdosis überschritten, werden die Porphyrine durch die dann rasch irreversibel geschädigten Plastiden freigesetzt, und es kommt wegen des nachfolgenden Absterbens von Gewebe zur Ausbildung der Blattläsionen. Dieser Effekt wurde ausgenutzt, um die Kinetik von Prozessen der antioxidativen und Pathogenabwehr in den Pflanzen zu untersuchen. Mittels Subtraktiver Suppressions-Hybridisierung (SSH) wurde eine subtrahierte cDNA-Bank angelegt, in der Gene vertreten sind, deren Expression bereits sehr früh als Reaktion auf die Photosensibilisierung induziert wird. Unter diesen Genen sind auch vermutete Komponenten von Signaltransduktionskaskaden einschließlich Transkriptionsfaktoren. Etwas überraschend war die Erkenntnis, daß vor allem pathogenese- und zelltod-assoziierte Prozesse frühzeitig aktiviert werden, die klassischen Enzyme der antioxidativen Streßabwehr aber erst später reagieren. Bei letzteren kommt es vor Veränderungen in der Expression zuerst zu einem Anstieg der Aktivität, der sich in verändertem Gehalt und Redoxstatus der niedermolekularen Antioxidantien niederschlägt. Insgesamt stellt sich die durch Antisense-Expression verursachte Deregulation der Tetrapyrrolbiosynthese und die daraus resultierende Photosensibilisierung als komplexes System dar, in dem antioxidative und Pathogenabwehr kreuzinduziert werden und welches als Modell zur Aufklärung von Mechanismen der Streßabwehr wertvolle Aussagen liefert. / Abstract Transgenic tobacco plants expressing antisense RNA for two enzymes of the tetrapyrrole biosynthetic pathway are characterized by decreased enzyme activity of either uroporphyrinogen decarboxylase or coproporphyrinogen oxidase and accumulate the substrates of these enzymes in large amounts. If oxygen is present the accumulated porphyrinogens are transformed either by autoxidation or unspecific peroxidases into their photosensitizing derivatives (porphyrins). They are the molecular basis for cellular damage which eventually becomes visible as leaf lesions. During photosensitization membrane lipids are damaged due to peroxidation reactions and most of the symptoms observed are similar to the effects caused by the treatment of plants with photodynamic herbicides, or resemble the characteristics of porphyria diseases in human. These plants suffer from oxidative stress which is concluded from the general and intercompartimental activation of the antioxidative stress defense system. Transcripts and proteins of superoxide dismutase and ascorbate peroxidase accumulate and the corresponding enzyme activities are increased. This increase leads to accelerated turnover and enhanced demand of low molecular weight antioxidants like ascorbate and tocopherol. Simultaneously, cross induction of pathogenesis-related responses is observed in the plants, like the accumulation of PR proteins, salicylic acid and the antimicrobial phenolic compound scopolin. The activation of the pathogen defense system leads to restricted spread of Tobacco Mosaic Virus (TMV) infection in the transgenic plants. Photosensitization strongly depends on light and oxygen and is enhanced by elevated temperature. Porphyrins are only released from rapidly damaged plastids into other cellular compartments if a certain light dose is exceeded. Then cell death commences and dead tissue becomes visible as leaf lesions. This light dosage effect was exploited to investigate the kinetics of antioxidative and pathogen defense responses upon light shift. By the use of Suppression Subtractive Hybridization (SSH) a subtracted cDNA library was established that contains genes which are early induced in response to photosensitization. The library also contains putative components of signal transduction chains and transcription factors. Unexpectedly, the expression of genes related to pathogenesis and cell death is rather early induced while the cellular antioxidative stress defense system responds later. The activity of antioxidative enzymes is increased before changes in transcript or protein accumulation occur, resulting in changes of content and redox ratio of low molecular weight antioxidants. In summary, photosensitization caused by the expression of antisense RNA and resulting in the deregulation of tetrapyrrole biosynthesis is a complex model system in which antioxidative and pathogen defense responses are induced. The approach can be used to further elucidate mechanisms of stress response.
3

Der Einfluss von Tetratricopeptide Repeat Proteinen auf die Chlorophyllbiosynthese und Chloroplastenbiogenese

Herbst, Josephine 06 December 2019 (has links)
Chlorophyll spielt eine unabdingbare Rolle für die lichtabhängige Reaktion der Photosynthese. Die adäquate Versorgung mit Chlorophyll wird dabei durch die Tetrapyrrolbiosynthese (TBS) gewährleistet. In den letzten Jahrzehnten wurde eine Vielzahl von Proteinen identifiziert, welche an der Anpassung der TBS an wechselnde (a)biotische Wachstumsbedingungen der Pflanze beteiligt sind. Allerdings konnte bislang nicht zweifelsfrei geklärt werden, wie die TBS mit der Integration von Chlorophyllen in die Photosysteme koordiniert wird. Vor einigen Jahren wurde ein Interaktionspartner der Protochlorophyllid-Oxidoreduktase (POR) in Synechocystis identifiziert, welcher als potenzieller Faktor dieser Koordination in Frage kommt. Das POR-INTERACTING TPR-Protein (Pitt) stabilisiert POR an der Thylakoidmembran und interagiert auch mit dem Vorstufenprotein des D1. Pitt gehört zur Familie der tetratricopeptide repeat (TPR) Proteine, deren Vertreter vorrangig für die Vermittlung von Protein-Protein-Interaktionen zuständig sind. Aus diesem Grund war, neben der Identifikation des potenziellen Pitt-Homologs im Modelorganismus Arabidopsis thaliana, die Analyse von anderen Vertretern dieser Proteinklasse ein vielversprechender Ansatz bei der Identifikation von weiteren Regulatoren der TBS oder Photosynthese. Von den fünf ausgewählten TPR-Proteinen aus Arabidopsis thaliana mit einer hohen Sequenzähnlichkeit zu Pitt waren vier in der Lage, physisch mit POR zu interagieren. Von diesen vier Kandidaten ist das durch das Gen At1g78915 kodierte, membranintegrale TPR-Protein (TPR1) der beste Kandidat des putativen Pitt-Homologs in Arabidopsis. Vergleichbar zu Pitt interagiert TPR1 mit POR und stabilisiert das Enzym an den plastidären Membranen. Die Stabilisierung von POR durch TPR1 spielt eine entscheidende Rolle während der Etiolierung und Ergrünung von Keimlingen. Darüber hinaus steht TPR1 im Zusammenhang mit der schnellen Inaktivierung der 5-Aminolävulinsäuresynthese. / Chlorophyll plays an indispensable role in the light reaction of the photosynthesis. The adequate supply of chlorophyll is ensured by tetrapyrrole biosynthesis (TBS). Within the last decades, multiple proteins were identified, which are involved in adjusting the TBS-pathway to changing (a)biotic plant growth conditions. Nevertheless, it is not fully understood how the TBS-pathway is coordinated parallel to the assembly of the photosystems and the integration of chlorophylls into the pigment-binding subunits of the photosystems. Several years ago, an interaction partner of the protochlorophyllide-oxidoreductase (POR) was identified in Synechocystis which was proposed to be involved in the coordination of these mechanisms. The POR-INTERACTING TPR-Protein (Pitt) binds and stabilizes POR at the thylakoid membranes and interacts with the precursor protein of D1. Therefore, Pitt could facilitate the incorporation of chlorophylls into the plastid-encoded nascent photosynthetic subunits. Pitt belongs to the tetratricopeptide repeat (TPR) protein family, whose members mediate protein-protein-interactions. Besides the identification of the potential Pitt-homolog in the model organism Arabidopsis thaliana, analysis of additional members of the TPR-protein superfamily was a promising approach for the identification of further posttranslational regulators of TBS and photosynthesis. Five Arabidopsis thaliana TPR-proteins with a high sequence similarity to Pitt were selected. Four of those proteins are able to interact physically with POR. Among them, the TPR-protein encoded by the gene At1g78915 (TPR1) was the best candidate to represent a putative Pitt homolog in Arabidopsis. Similar to Pitt, TPR1 is a plastid-localized integral membrane protein, which interacts with POR at the thylakoid membranes. The stabilizing effect of TPR1 on POR is especially needed during etioliation and greening. Additionally, TPR1 is required for a inactivation of the 5'-aminolevulinic acid synthesis.
4

Charakterisierung des physiologischen Einflusses der Phosphorylierung von GENOMES UNCOUPLED 4 (GUN4) auf die Tetrapyrrolbiosynthese und Untersuchung der retrograden Kommunikation zwischen Plastiden und Zellkern

Richter, Andreas Sven 03 April 2017 (has links)
Die Endprodukte der Tetrapyrrolbiosynthese sind essentiell für die Schwefel- und Stickstoffassimilation (Sirohäm), der von Photorezeptoren abhängigen Genexpression (Phytochromobilin), Elektronenübertragungsreaktionen (Häm) und der Photosynthese (Chlorophyll). Die Synthese von Chlorophyllen wird durch eine Mg-Chelatase (MgCh) eingeleitet, die durch das GENOMES UNCOUPLED 4 (GUN4) Protein stimuliert wird. GUN4 ist essentiell für die Aktivierung der MgCh und die Synthese von Chlorophyllen. Das GUN4 aus Arabidopsis thaliana wird ausschließlich an der vorletzten Aminosäure (S264) des C-Terminus phosphoryliert. Die in vitro und in vivo MgCh-Aktivität wird hingegen durch phosphoryliertes GUN4 nicht mehr stimuliert. De-phosphoryliertes GUN4 bewirkt die lichtabhängige Aktivierung der MgCh im Übergang von der Nacht zum Tag in Angiospermen. Im Laufe der Evolution photosynthetisch aktiver Organismen hat sich die in den Angiospermen hochkonservierte Phosphorylierungsstelle entwickelt. GUN4-Homologe aus Synechocystis oder Chlamydomonas werden nicht phosphoryliert. Im Rahmen der Suche nach der GUN4-spezifischen Proteinkinase wurden vier in den Plastiden lokalisierte PLASTID PROTEIN KINASE WITH UNKNOWN FUNCTION identifiziert. In dieser Arbeit wurden zusätzlich Experimente zum durch die GUN-Proteine vermittelten retrograden Signalweg durchgeführt. gun Mutanten sind durch eine defizitäre cytosolische Anthocyan-/Flavonoidbiosynthese charakterisiert. Auf der Suche nach Hinweisen für einen Zusammenhang zwischen Anthocyanen und der De-repression von PHOTOSYNTHESIS-ASSOCIATED NUCLEAR GENES wurde eine neue gun Mutante identifiziert. Der knockout der durch TRANSPARENT TESTA 4 (TT4) kodierten CHALCON SYNTHASE führte zu einer mit den gun Mutanten vergleichbaren De-repression der PHANGs nach Norflurazon-Behandlung. Pharmakologische Experimente belegen eine mögliche Funktion der Phenylpropanoidbiosynthese in der durch die GUN-Proteine vermittelten retrograden Kommunikation. / Endproducts of the tetrapyrrole biosynthesis pathway are essential for the assimilation of sulfur and nitrogen (siroheme), photoreceptor mediated control of nuclear gene expression (phytochromobilin), electron transfer reactions (heme) and photosynthesis (chlorophyll). The synthesis of chlorophyll is initiated by a Mg-chelatase (MgCh) which is stimulated by the GUN4 protein. GUN4 is essential for the activation of MgCh and synthesis of chlorophyll. GUN4 from Arabidopsis thaliana is exclusively phosphorylated at the next-to-last amino acid of the C-terminus (S264). The stimulatory impact towards MgCh is reduced upon GUN4 phosphorylation. De-phosphorylated GUN4 stimulates MgCh activity during the transition from night to daytime. The phosphorylation site of GUN4 has evolved in the clade of angiosperms. GUN4 homologs of Synechocystis or Chlamydomonas are not phosphorylated. In an attempt to isolate the GUN4-kinase four formerly unknown PLASTID PROTEIN KINASE WITH UNKNOWN FUNCTION were identified. In addition to the elucidation of the post-translational GUN4 modifications, experiments concerning the GUN-dependent retrograde signaling pathway were performed. Under conditions which lead to a block of chloroplast development the de-repression of PHOTOSYNTHESIS-ASSOCIATED NUCLEAR GENES is paralleled by a reduced accumulation of anthocyanins in the gun mutants. When searching for a correlation between anthocyanin biosynthesis and expression of PHANGs a new gun mutant was identified. The knockout of CHALCONE SYNTHASE encoded by TRANSPARENT TESTA 4 (TT4) leads to a comparable de-repression of PHANGs after norflurazon treatment as it was observed for the gun mutants. Pharmacological modification of phenylpropanoid biosynthesis revealed that an intermediate of the pathway is a component of chloroplast-to-nucleus communication. Hence, first evidences for a function of the phenylpropanoid biosynthesis pathway in mediating the GUN-dependent retrograde signal were obtained.

Page generated in 0.0683 seconds